1
|
Lin S, Ji Z, Gao J, Fan J, Hou J, Liu S, Wang C, Chen K, Tao L, Jiang Z. Poldip2 Aggravates inflammation in diabetic retinopathy by impairing mitophagy via the AMPK/ULK1/Pink1 pathway. Life Sci 2025; 373:123681. [PMID: 40320136 DOI: 10.1016/j.lfs.2025.123681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 04/23/2025] [Accepted: 04/26/2025] [Indexed: 05/08/2025]
Abstract
BACKGROUND AND AIM Inflammation is a crucial aspect of the pathophysiology of diabetic retinopathy (DR). Polymerase delta-interacting protein 2 (Poldip2) has been linked to inflammation in various disorders, but its role in DR remains unclear. This study aims to elucidate the underlying mechanisms of Poldip2 in DR. METHODS Transmission Electron Microscopy (TEM) revealed significant mitophagy reduction due to the accumulation of damaged mitochondria in the retinas of Streptozotocin (STZ)-induced diabetic Sprague Dawley (SD) rats. In vivo, AAV9-Poldip2-shRNA was administered to STZ-induced DR rats, partially restoring mitophagy. Microglia (BV2) cells cultured in high glucose (HG) conditions exhibited similar behavior. Likewise, BV2 received Poldip2-siRNA treatment to further explore the regulatory mechanism of Poldip2. RESULTS In vivo, Poldip2 was significantly elevated alongside VEGFR and SQSTM1/P62, while mitophagy markers were inhibited. Under HG conditions, BV2 secret large amounts of pro-inflammatory factors. Human Retinal Microvascular Endothelial Cells (HRMECs) were significantly affected by these HG-cultured BV2, leading to angiogenesis. Notably, Poldip2 knockdown significantly increased Pink1 by preventing its ubiquitination-mediated degradation, thereby enhancing mitophagy and reducing retinal inflammation. CONCLUSION Our findings suggest that Poldip2 contributes to DR by promoting Pink1 degradation, which inhibits mitophagy and leads to inflammation. Targeting Poldip2 may offer a novel therapeutic strategy for DR.
Collapse
Affiliation(s)
- Siyu Lin
- Department of Ophthalmology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China
| | - Zhiyu Ji
- Department of Ophthalmology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China
| | - Jie Gao
- Department of Ophthalmology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China
| | - Jiawei Fan
- Department of Ophthalmology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China
| | - Jingjing Hou
- Department of Ophthalmology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China
| | - Sha Liu
- Department of Ophthalmology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China
| | - Chuanxi Wang
- Department of Ophthalmology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China
| | - Keyang Chen
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, China
| | - Liming Tao
- Department of Ophthalmology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China
| | - Zhengxuan Jiang
- Department of Ophthalmology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China.
| |
Collapse
|
2
|
Shteinfer-Kuzmine A, Moyal MM, Karunanithi Nivedita A, Trishna S, Nadir A, Tripathi S, Shoshan-Barmatz V. Metformin-Induced Apoptosis Is Mediated Through Mitochondrial VDAC1. Pharmaceuticals (Basel) 2025; 18:757. [PMID: 40430574 PMCID: PMC12115184 DOI: 10.3390/ph18050757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 05/03/2025] [Accepted: 05/13/2025] [Indexed: 05/29/2025] Open
Abstract
Background: Besides diabetes mellitus, metformin has been identified as a potential therapeutic agent for treating various other conditions that include various cancers, cardiovascular diseases, neurodegenerative diseases, and aging. In cancer, metformin increased apoptotic cell death, while inhibiting it in neurodegenerative diseases. Thus, different modes of metformin action at the molecular level have been proposed. Methods: In this study, we present the mitochondria and the VDAC1 (voltage-dependent anion channel) as a potential target of metformin. Results: Metformin induces VDAC1 overexpression, its oligomerization, and subsequent apoptosis. Metformin analogs phenformin and buformin at much lower concentrations also induce VDAC1 overexpression, oligomerization, and cell death. We demonstrate the interaction of metformin with purified VDAC1, which inhibited its channel conduction in a voltage-dependent manner. Metformin bound to the synthetic VDAC1-N-terminal peptide and binding to this domain was also found by its molecular docking with VDAC1. Moreover, we demonstrated metformin binding to purified hexokinases (HK-I) with a 400-fold lower metformin concentration than that required for cell death induction. In cells, metformin induced HK-I detachment from the mitochondrial VDAC1. Lastly, metformin increased the expression of NLRP3 and ASC and induced their co-localization, suggesting inflammasome activation. Conclusions: The results suggest that VDAC1 is a target for metformin and its analogs, and this is associated with metformin's adverse effects on many diseases.
Collapse
Affiliation(s)
- Anna Shteinfer-Kuzmine
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel;
| | - Meital M. Moyal
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (M.M.M.); (A.K.N.); (S.T.); (A.N.)
| | - Aditya Karunanithi Nivedita
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (M.M.M.); (A.K.N.); (S.T.); (A.N.)
| | - Sweta Trishna
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (M.M.M.); (A.K.N.); (S.T.); (A.N.)
| | - Almog Nadir
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (M.M.M.); (A.K.N.); (S.T.); (A.N.)
| | - Shubhandra Tripathi
- Department of Chemistry, Indian Institute of Technology, Kanpur 208016, India;
| | - Varda Shoshan-Barmatz
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel;
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (M.M.M.); (A.K.N.); (S.T.); (A.N.)
| |
Collapse
|
3
|
Jin Y, Dong W, Jiang Y, Dong L, Li Z, Yu D. VDAC1 Inhibition Protects Against Noise-Induced Hearing Loss via the PINK1/Parkin Pathway. CNS Neurosci Ther 2025; 31:e70410. [PMID: 40285415 PMCID: PMC12032401 DOI: 10.1111/cns.70410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 04/03/2025] [Accepted: 04/11/2025] [Indexed: 04/29/2025] Open
Abstract
AIMS This study examined the effect of 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS), an anion channel blocker of voltage-dependent anion channel 1 (VDAC1), on noise-induced hearing loss (NIHL) and its underlying mechanisms. METHODS Cochlear explants and House Ear Institute-Organ of Corti 1 (HEI-OC1) cells were used to assess the effect of DIDS in vitro. Auditory brainstem responses were used to assess auditory functions in mice. Immunofluorescence staining of myosin 7a and CTBP2 were used to examine hair cells and synaptic ribbons. The accumulation of reactive oxygen species (ROS) was measured by 4-HNE staining. The gene expression changes of cochlea were analyzed using RNA sequencing. RESULTS DIDS reduced the levels of ROS in cochlear explants and attenuated cell death caused by hydrogen peroxide in both cochlear explants and HEI-OC1 cells. In C57BL/6 mice, DIDS reduced ROS generation and tumor necrosis factor-α induced by noise exposure, thereby protecting outer hair cells and inner hair cell synaptic ribbons from noise-induced damage through a mechanism involving the PINK1/Parkin signaling pathway. The preventive effect of DIDS in cochlear explants was eliminated by mitophagy inhibition. CONCLUSION VDAC1 inhibition enhances mitophagy in cochlear hair cells, playing a critical role in defending against oxidative stress and inflammation. Downregulation of VDAC1 may thus be considered a therapeutic strategy for preventing cochlear hair cell damage and reducing NIHL.
Collapse
Affiliation(s)
- Yuchen Jin
- Shanghai Key Laboratory of Sleep Disordered Breathing, Department of Otolaryngology‐Head and Neck Surgery, Otolaryngology Institute of Shanghai Jiao Tong UniversityShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Wenqi Dong
- Shanghai Key Laboratory of Sleep Disordered Breathing, Department of Otolaryngology‐Head and Neck Surgery, Otolaryngology Institute of Shanghai Jiao Tong UniversityShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yumeng Jiang
- Shanghai Key Laboratory of Sleep Disordered Breathing, Department of Otolaryngology‐Head and Neck Surgery, Otolaryngology Institute of Shanghai Jiao Tong UniversityShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Lingkang Dong
- Shanghai Key Laboratory of Sleep Disordered Breathing, Department of Otolaryngology‐Head and Neck Surgery, Otolaryngology Institute of Shanghai Jiao Tong UniversityShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Zhuangzhuang Li
- Department of Otolaryngology, Sun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhouChina
| | - Dongzhen Yu
- Shanghai Key Laboratory of Sleep Disordered Breathing, Department of Otolaryngology‐Head and Neck Surgery, Otolaryngology Institute of Shanghai Jiao Tong UniversityShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
4
|
Hu X, Lv J, Zhao Y, Li X, Qi W, Wang X. Important regulatory role of mitophagy in diabetic microvascular complications. J Transl Med 2025; 23:269. [PMID: 40038741 PMCID: PMC11877814 DOI: 10.1186/s12967-025-06307-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 02/23/2025] [Indexed: 03/06/2025] Open
Abstract
Microvascular complications of diabetes pose a significant threat to global health, mainly including diabetic kidney disease (DKD), diabetic retinopathy (DR), diabetic peripheral neuropathy (DPN), and diabetic cardiomyopathy (DCM), which can ultimately lead to kidney failure, blindness, disability, and heart failure. With the increasing prevalence of diabetes, the search for new therapeutic targets for diabetic microvascular complications is imminent. Mitophagy is a widespread and strictly maintained process of self-renewal and energy metabolism that plays an important role in reducing inflammatory responses, inhibiting reactive oxygen species accumulation, and maintaining cellular energy metabolism. Hyperglycemia results in impaired mitophagy, which leads to mitochondrial dysfunction and ultimately exacerbates disease progression. This article summarizes the relevant molecular mechanisms of mitophagy and reviews the current status of research on regulating mitophagy as a potential treatment for diabetic microvascular complications, attempting to give new angles on the treatment of diabetic microvascular complications.
Collapse
Affiliation(s)
- Xiangjie Hu
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Jiao Lv
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Yunyun Zhao
- Endocrinology Department, First Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, Jilin, 130021, China
| | - Xiangyan Li
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, 130017, China
| | - Wenxiu Qi
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, 130017, China.
| | - Xiuge Wang
- Endocrinology Department, First Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, Jilin, 130021, China.
| |
Collapse
|
5
|
Tariq M, Sjögren M, Salehi A. Sulindac prevents increased mitochondrial VDAC1 expression and cell surface mistargeting induced by pathological conditions in retinal cells. Biochem Biophys Res Commun 2024; 739:150558. [PMID: 39181068 DOI: 10.1016/j.bbrc.2024.150558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 08/27/2024]
Abstract
Diabetic retinopathy (DR) continues to be the primary cause of vision loss in poorly controlled diabetic subjects. The molecular mechanisms underlying retinal pigment epithelium (RPE) cell dysfunction in DR still remain elusive. We investigated the role of mitochondrial volt-age-dependent anion channel 1 (VDAC1) in RPE dysfunction under glucotoxic and inflammatory conditions. Our results demonstrate that both glucotoxicity and cytokine treatment reduces cellular viability accompanied by increased VDAC1 and inducible nitric oxide synthase (iNOS) expression, concomitant with decreased expression of mitochondrial VDAC2 and constitutively ex-pressed endothelial NOS (eNOS). Increased VDAC1 expression during these conditions leads to its mistargeting to the cell surface, leading to ATP loss. Additionally, VDAC1 upregulation by glucotoxicity and inflammatory cytokines induces leakage of mitochondrial DNA (mtDNA) into the cytosol. Sulindac, a nonsteroidal anti-inflammatory agent, mitigates the adverse effects associated with increased VDAC1 level under pathophysiological conditions, by suppressing VDAC1 expression. The effect of sulindac on restoring cell viability could be comparably achieved only with VDAC1 inhibitor (VBIT-4) or VDAC1-specific antibody and not with the iNOS inhibitor aminoguanidine. Our findings suggest that sulindac's beneficial effects on ARPE-19 cell function are mediated by prevention of increased VDAC1 expression under pathological conditions, thus preventing mtDNA leakage and ATP loss, which are the key steps in induction of cellular inflammatory responses involved in the development of DR.
Collapse
Affiliation(s)
- Mohammad Tariq
- Department of Clinical Science, SUS, Division of Islet Cell Physiology, Lund University, Malmö, Sweden
| | - Marie Sjögren
- Department of Clinical Science, SUS, Division of Islet Cell Physiology, Lund University, Malmö, Sweden
| | - Albert Salehi
- Department of Clinical Science, SUS, Division of Islet Cell Physiology, Lund University, Malmö, Sweden.
| |
Collapse
|
6
|
Xu S, Gao Z, Jiang L, Li J, Qin Y, Zhang D, Tian P, Wang W, Zhang N, Zhang R, Xu S. High glucose- or AGE-induced oxidative stress inhibits hippocampal neuronal mitophagy through the Keap1-Nrf2-PHB2 pathway in diabetic encephalopathy. Sci Rep 2024; 14:24044. [PMID: 39402106 PMCID: PMC11473637 DOI: 10.1038/s41598-024-70584-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/19/2024] [Indexed: 10/17/2024] Open
Abstract
Diabetic encephalopathy (DE) is a severe complication of diabetes, but its pathogenesis remains unclear. This study aimed to investigate the roles and underlying mechanisms of high glucose (HG)- and advanced glycosylation end product (AGE)-induced oxidative stress (OS) in the cognitive decline in DE. The DE mouse model was established using a high-fat diet and streptozotocin, and its cognitive functions were evaluated using the Morris Water Maze, novel object recognition, and Y-maze test. The results revealed increased reactive oxygen species (ROS) generation, mitophagy inhibition, and decreased prohibitin 2 (PHB2) expression in the hippocampal neurons of DE mice and HG- or AGE-treated HT-22 cells. However, overexpression of PHB2 reduced ROS generation, reversed mitophagy inhibition, and improved mitochondrial function in the HG- or AGE-treated HT-22 cells and ameliorated cognitive decline, improved mitochondrial structural damage, and reversed mitophagy inhibition of hippocampal neurons in DE mice. Further analysis revealed that the Kelch-like ECH-associated protein 1 (Keap1)-nuclear factor erythroid 2-related factor 2 (Nrf2) pathway was involved in the HG- or AGE-mediated downregulation of PHB2 in HT-22 cells. These results demonstrate that HG- or AGE-induced OS inhibits the mitophagy of hippocampal neurons via the Keap1-Nrf2-PHB2 pathway, thereby contributing to the cognitive decline in DE.
Collapse
Affiliation(s)
- Shan Xu
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, 050031, People's Republic of China
- Central Laboratory, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, People's Republic of China
| | - Zhaoyu Gao
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, 050031, People's Republic of China
- Hebei International Joint Research Center for Brain Science, Shijiazhuang, 050031, People's Republic of China
- Hebei Key Laboratory of Brain Science and Psychiatric-Psychologic Disease, Shijiazhuang, 050031, People's Republic of China
| | - Lei Jiang
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, 050031, People's Republic of China
- Hebei International Joint Research Center for Brain Science, Shijiazhuang, 050031, People's Republic of China
- Hebei Key Laboratory of Brain Science and Psychiatric-Psychologic Disease, Shijiazhuang, 050031, People's Republic of China
| | - Jiazheng Li
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, 050031, People's Republic of China
| | - Yushi Qin
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, 050031, People's Republic of China
| | - Di Zhang
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, 050031, People's Republic of China
| | - Pei Tian
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, 050031, People's Republic of China
| | - Wanchang Wang
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, 050031, People's Republic of China
| | - Nan Zhang
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, 050031, People's Republic of China
- Hebei International Joint Research Center for Brain Science, Shijiazhuang, 050031, People's Republic of China
- Hebei Key Laboratory of Brain Science and Psychiatric-Psychologic Disease, Shijiazhuang, 050031, People's Republic of China
| | - Rui Zhang
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, 050031, People's Republic of China.
- Hebei International Joint Research Center for Brain Science, Shijiazhuang, 050031, People's Republic of China.
- Hebei Key Laboratory of Brain Science and Psychiatric-Psychologic Disease, Shijiazhuang, 050031, People's Republic of China.
| | - Shunjiang Xu
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, 050031, People's Republic of China.
- Hebei International Joint Research Center for Brain Science, Shijiazhuang, 050031, People's Republic of China.
- Hebei Key Laboratory of Brain Science and Psychiatric-Psychologic Disease, Shijiazhuang, 050031, People's Republic of China.
| |
Collapse
|
7
|
D'Amico AG, Maugeri G, Magrì B, Bucolo C, D'Agata V. Targeting the PINK1/Parkin pathway: A new perspective in the prevention and therapy of diabetic retinopathy. Exp Eye Res 2024; 247:110024. [PMID: 39117133 DOI: 10.1016/j.exer.2024.110024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/17/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Diabetic retinopathy (DR) is a microvascular complication of diabetes characterized by neurovascular impairment of the retina. The dysregulation of the mitophagy process occurs before apoptotic cell death and the appearance of vascular damage. In particular, mitochondrial alterations happen during DR development, supporting the hypothesis that mitophagy is negatively correlated to disease progression. This process is mainly regulated by the PTEN-induced putative kinase protein 1 (PINK1)/Parkin pathway whose activation promotes mitophagy. In this review, we will summarize the evidence reported in the literature demonstrating the involvement of the PINK1/Parkin pathway in diabetic retinopathy-induced retinal degeneration.
Collapse
Affiliation(s)
- Agata Grazia D'Amico
- Department of Drug and Health Sciences, University of Catania, 95125, Catania, Italy
| | - Grazia Maugeri
- Department of Biomedical and Biotechnological Sciences, Section of Anatomy, Histology and Movement Sciences, University of Catania, 95100, Catania, Italy
| | - Benedetta Magrì
- Department of Biomedical and Biotechnological Sciences, Section of Anatomy, Histology and Movement Sciences, University of Catania, 95100, Catania, Italy
| | - Claudio Bucolo
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, 95100, Catania, Italy
| | - Velia D'Agata
- Department of Biomedical and Biotechnological Sciences, Section of Anatomy, Histology and Movement Sciences, University of Catania, 95100, Catania, Italy.
| |
Collapse
|
8
|
Yu S, Zhu W, Yu L. The role of rapamycin in the PINK1/Parkin signaling pathway in mitophagy in podocytes. Open Life Sci 2024; 19:20220958. [PMID: 39290494 PMCID: PMC11406223 DOI: 10.1515/biol-2022-0958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 08/05/2024] [Accepted: 08/09/2024] [Indexed: 09/19/2024] Open
Abstract
This study aimed to clarify the role of rapamycin in the PINK1/Parkin signaling pathway in mitophagy in podocytes and the role of voltage-dependent anion channel 1 (VDAC1) in the PINK1/Parkin signaling pathway in mouse glomerular podocytes. For this purpose, podocytes were cultured with rapamycin and observed using microscopy. The apoptosis rate of podocytes was detected by flow cytometry. Changes in the mitochondrial membrane potential were measured. The autophagy-related proteins VDAC1, PINK1, Parkin, and LC3 were detected, and mitochondrial autophagosomes were observed via transmission electron microscopy. In the present study, we demonstrated that the number of podocytes treated with rapamycin was significantly reduced. Compared with those in the control group, the apoptosis rate of podocytes and the degree of mitochondrial membrane potential depolarization were significantly higher. We also found the expression levels of VDAC1, PINK1, Parkin, and LC3 were significantly increased. In the rapamycin-treated group, the numbers of swollen mitochondria and mitochondrial autophagosomes were significantly higher. Finally, we showed that rapamycin can upregulate the expression of VDAC1, PINK1, Parkin, and LC3 in glomerular podocytes, which is correlated with mitophagy. VDAC1 is involved in mitophagy and is related to the PINK1/Parkin signaling pathway, serving as an indicator of mitophagy in podocytes.
Collapse
Affiliation(s)
- Shengyou Yu
- Department of Pediatrics, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510180, Guangdong Province, China
- Department of Pediatrics, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong Province, P. R. China
| | - Weixue Zhu
- Department of Pediatrics, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510180, Guangdong Province, China
| | - Li Yu
- Department of Pediatrics, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510180, Guangdong Province, China
- Department of Pediatrics, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong Province, P. R. China
| |
Collapse
|
9
|
Ma Y, Sun X, Yao X. The role and mechanism of VDAC1 in type 2 diabetes: An underestimated target of environmental pollutants. Mitochondrion 2024; 78:101929. [PMID: 38986923 DOI: 10.1016/j.mito.2024.101929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/08/2024] [Accepted: 07/07/2024] [Indexed: 07/12/2024]
Abstract
Type 2 diabetes (T2D) is a chronic metabolic disease that accounts for more than 90% of diabetic patients. Its main feature is hyperglycemia due to insulin resistance or insulin deficiency. With changes in diet and lifestyle habits, the incidence of T2D in adolescents has burst in recent decades. The deterioration in the exposure to the environmental pollutants further aggravates the prevalence of T2D, and consequently, it imposes a significant economic burden. Therefore, early prevention and symptomatic treatment are essential to prevent diabetic complications. Mitochondrial number and electron transport chain activity are decreased in the patients with T2D. Voltage-Dependent Anion Channel 1 (VDAC1), as a crucial channel protein on the outer membrane of mitochondria, regulates signal transduction between mitochondria and other cellular components, participating in various biological processes. When VDAC1 exists in oligomeric form, it additionally facilitates the entry and exit of macromolecules into and from mitochondria, modulating insulin secretion. We summarize and highlight the interplay between VDAC1 and T2D, especially in the environmental pollutants-related T2D, shed light on the potential therapeutic implications of targeting VDAC1 monomers and oligomers, providing a new possible target for the treatment of T2D.
Collapse
Affiliation(s)
- Yu Ma
- Environmental and Occupational Health Department, Dalian Medical University, 9 West Lushun South Road, Dalian, China
| | - Xiance Sun
- Environmental and Occupational Health Department, Dalian Medical University, 9 West Lushun South Road, Dalian, China
| | - Xiaofeng Yao
- Environmental and Occupational Health Department, Dalian Medical University, 9 West Lushun South Road, Dalian, China.
| |
Collapse
|
10
|
Liu JC, Zhao XY, Wu ML, Shi YF, Huang ZP, Fang LP, Zhu C, Peng X, Shi ZL, Lan LJ, Ji WL, Luo L, Feng L, Zhang ZL, Xu DE, Li S, Qin ZH, Sun YY, Schachner M, Ma QH. GPR50 regulates neuronal development as a mitophagy receptor. Cell Death Dis 2024; 15:591. [PMID: 39143050 PMCID: PMC11324738 DOI: 10.1038/s41419-024-06978-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/26/2024] [Accepted: 08/05/2024] [Indexed: 08/16/2024]
Abstract
Neurons rely heavily on high mitochondrial metabolism to provide sufficient energy for proper development. However, it remains unclear how neurons maintain high oxidative phosphorylation (OXPHOS) during development. Mitophagy plays a pivotal role in maintaining mitochondrial quality and quantity. We herein describe that G protein-coupled receptor 50 (GPR50) is a novel mitophagy receptor, which harbors the LC3-interacting region (LIR) and is required in mitophagy under stress conditions. Although it does not localize in mitochondria under normal culturing conditions, GPR50 is recruited to the depolarized mitochondrial membrane upon mitophagy stress, which marks the mitochondrial portion and recruits the assembling autophagosomes, eventually facilitating the mitochondrial fragments to be engulfed by the autophagosomes. Mutations Δ502-505 and T532A attenuate GPR50-mediated mitophagy by disrupting the binding of GPR50 to LC3 and the mitochondrial recruitment of GPR50. Deficiency of GPR50 causes the accumulation of damaged mitochondria and disrupts OXPHOS, resulting in insufficient ATP production and excessive ROS generation, eventually impairing neuronal development. GPR50-deficient mice exhibit impaired social recognition, which is rescued by prenatal treatment with mitoQ, a mitochondrially antioxidant. The present study identifies GPR50 as a novel mitophagy receptor that is required to maintain mitochondrial OXPHOS in developing neurons.
Collapse
Affiliation(s)
- Ji-Chuan Liu
- Department of Neurology and Clinical Research Center of Neurological Disease, the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215021, China
- Institute of Neuroscience & Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-psycho-Diseases, Soochow University, Suzhou, Jiangsu, 215021, China
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, 116044, China
| | - Xiu-Yun Zhao
- Department of Neurology and Clinical Research Center of Neurological Disease, the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215021, China
- Institute of Neuroscience & Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-psycho-Diseases, Soochow University, Suzhou, Jiangsu, 215021, China
| | - Ming-Lei Wu
- Department of Neurology and Clinical Research Center of Neurological Disease, the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215021, China
- Institute of Neuroscience & Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-psycho-Diseases, Soochow University, Suzhou, Jiangsu, 215021, China
| | - Yi-Fan Shi
- Department of Neurology and Clinical Research Center of Neurological Disease, the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215021, China
- Institute of Neuroscience & Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-psycho-Diseases, Soochow University, Suzhou, Jiangsu, 215021, China
| | - Ze-Ping Huang
- Department of Neurology and Clinical Research Center of Neurological Disease, the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215021, China
- Institute of Neuroscience & Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-psycho-Diseases, Soochow University, Suzhou, Jiangsu, 215021, China
| | - Li-Pao Fang
- Department of Neurology and Clinical Research Center of Neurological Disease, the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215021, China
- Institute of Neuroscience & Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-psycho-Diseases, Soochow University, Suzhou, Jiangsu, 215021, China
| | - Chao Zhu
- Department of Neurology and Clinical Research Center of Neurological Disease, the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215021, China
- Institute of Neuroscience & Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-psycho-Diseases, Soochow University, Suzhou, Jiangsu, 215021, China
| | - Xuan Peng
- Department of Neurology and Clinical Research Center of Neurological Disease, the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215021, China
- Institute of Neuroscience & Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-psycho-Diseases, Soochow University, Suzhou, Jiangsu, 215021, China
- School of Public Health, Soochow University, Suzhou, Jiangsu, 215021, China
| | - Zi-Ling Shi
- Department of Neurology and Clinical Research Center of Neurological Disease, the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215021, China
- Institute of Neuroscience & Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-psycho-Diseases, Soochow University, Suzhou, Jiangsu, 215021, China
| | - Li-Jun Lan
- Department of Neurology and Clinical Research Center of Neurological Disease, the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215021, China
- Institute of Neuroscience & Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-psycho-Diseases, Soochow University, Suzhou, Jiangsu, 215021, China
| | - Wen-Li Ji
- Department of Neurology and Clinical Research Center of Neurological Disease, the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215021, China
- Institute of Neuroscience & Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-psycho-Diseases, Soochow University, Suzhou, Jiangsu, 215021, China
| | - Li Luo
- School of Physical Education and Sports Science, Soochow University, Suzhou, 215021, China
| | - Lei Feng
- Monash Suzhou Research Institute, Suzhou, 215000, China
| | - Zeng-Li Zhang
- School of Public Health, Soochow University, Suzhou, Jiangsu, 215021, China
| | - De-En Xu
- The Wuxi No.2 People Hospital, Wuxi, 214002, Jiangsu, China
| | - Shao Li
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, 116044, China
| | - Zheng-Hong Qin
- Institute of Health Technology, Suzhou Gaobo Vocational College, Suzhou High-Technology District, Science & Technology Town, 5 Qingshan Road, Suzhou, Jiangsu, 215163, PR China
| | - Yan-Yun Sun
- Department of Neurology and Clinical Research Center of Neurological Disease, the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215021, China
- Institute of Neuroscience & Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-psycho-Diseases, Soochow University, Suzhou, Jiangsu, 215021, China
| | - Melitta Schachner
- Center for Neuroscience, Shantou University Medical College, Shantou, Guangdong, 515041, China
- Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, 08854, USA
| | - Quan-Hong Ma
- Department of Neurology and Clinical Research Center of Neurological Disease, the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215021, China.
- Institute of Neuroscience & Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-psycho-Diseases, Soochow University, Suzhou, Jiangsu, 215021, China.
| |
Collapse
|
11
|
Serikbaeva A, Li Y, Ma S, Yi D, Kazlauskas A. Resilience to diabetic retinopathy. Prog Retin Eye Res 2024; 101:101271. [PMID: 38740254 PMCID: PMC11262066 DOI: 10.1016/j.preteyeres.2024.101271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 05/03/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
Chronic elevation of blood glucose at first causes relatively minor changes to the neural and vascular components of the retina. As the duration of hyperglycemia persists, the nature and extent of damage increases and becomes readily detectable. While this second, overt manifestation of diabetic retinopathy (DR) has been studied extensively, what prevents maximal damage from the very start of hyperglycemia remains largely unexplored. Recent studies indicate that diabetes (DM) engages mitochondria-based defense during the retinopathy-resistant phase, and thereby enables the retina to remain healthy in the face of hyperglycemia. Such resilience is transient, and its deterioration results in progressive accumulation of retinal damage. The concepts that co-emerge with these discoveries set the stage for novel intellectual and therapeutic opportunities within the DR field. Identification of biomarkers and mediators of protection from DM-mediated damage will enable development of resilience-based therapies that will indefinitely delay the onset of DR.
Collapse
Affiliation(s)
- Anara Serikbaeva
- Department of Physiology and Biophysics, University of Illinois at Chicago, 1905 W Taylor St, Chicago, IL 60612, USA
| | - Yanliang Li
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, 1905 W Taylor St, Chicago, IL 60612, USA
| | - Simon Ma
- Department of Bioengineering, University of Illinois at Chicago, 1905 W Taylor St, Chicago, IL 60612, USA
| | - Darvin Yi
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, 1905 W Taylor St, Chicago, IL 60612, USA; Department of Bioengineering, University of Illinois at Chicago, 1905 W Taylor St, Chicago, IL 60612, USA
| | - Andrius Kazlauskas
- Department of Physiology and Biophysics, University of Illinois at Chicago, 1905 W Taylor St, Chicago, IL 60612, USA; Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, 1905 W Taylor St, Chicago, IL 60612, USA.
| |
Collapse
|
12
|
Xu Y, Yu J. Allicin Mitigates Diabetic Retinopathy in Rats by Activating Phosphatase and Tensin Homolog-induced Kinase 1/Parkin-mitophagy and Inhibiting Oxidative Stress-mediated NOD-like Receptor Family Pyrin Domain Containing 3 Inflammasome. JOURNAL OF PHYSIOLOGICAL INVESTIGATION 2024; 67:215-224. [PMID: 39206781 DOI: 10.4103/ejpi.ejpi-d-24-00039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/25/2024] [Indexed: 09/04/2024]
Abstract
ABSTRACT Diabetic retinopathy (DR) is one of the significant disabling outcomes of diabetes mellitus characterized by retinal microvascular damage, inflammation, and neuronal dysfunction. Allicin (Alc), a natural compound found in garlic, has garnered attention for its antioxidant and anti-inflammatory properties, positioning it as a potential therapeutic agent for DR. The aim of the present study was to investigate the therapeutic efficacy of Alc in DR management and elucidate its underlying mechanisms of action. We established a DR model in male Sprague-Dawley rats (n = 50, 200-250 g, 12 weeks old) using a high-fat diet for 8 weeks plus a low dose of streptozotocin administered at the start of the 4th week. The diabetic (Diab) animals were administered Alc (16 mg/kg/day, orally), either alone or in combination with mitochondrial division inhibitor-1 (Mdivi-1) as a mitophagy inhibitor, starting 28 days before tissue sampling. We evaluated histopathological changes, metabolic abnormalities associated with type 2 diabetes mellitus (T2DM), the expression of proteins regulating pyroptosis (NOD-like receptor family pyrin domain containing 3, cleaved-caspase 1, and gasdermin D-N terminal) and mitophagy (phosphatase and tensin homolog-induced kinase 1 [PINK1] and Parkin), as well as the levels of oxidative stress mediators and proinflammatory cytokines. Alc treatment effectively ameliorated histopathological changes and metabolic abnormalities associated with T2DM. It downregulated pyroptosis-related proteins, upregulated mitophagy-related proteins, reduced proinflammatory cytokine levels, and attenuated oxidative stress. Treatment with Mdivi-1 suppressed the beneficial effects of Alc. Our findings highlight the therapeutic potential of Alc in managing DR by targeting multiple pathophysiological pathways, including pyroptosis, inflammation, and oxidative stress. The observed antipyroptotic effects of Alc were partially mediated by the activation of the PINK1/parkin-mediated mitophagy pathway. Additional studies are necessary to thoroughly understand the therapeutic mechanisms of Alc and its viability as a treatment choice for DR.
Collapse
Affiliation(s)
- Yuanyuan Xu
- Ophthalmology and ENT Teaching & Research Office, Jiangxi Medical College, Shangrao, 334000, China
| | - Jia Yu
- Pediatric Teaching & Research Office, Jiangxi Medical College, Shangrao, 334000, China
| |
Collapse
|
13
|
Chang X, Zhou S, Liu J, Wang Y, Guan X, Wu Q, Zhang Q, Liu Z, Liu R. Zishen Tongyang Huoxue decoction (TYHX) alleviates sinoatrial node cell ischemia/reperfusion injury by directing mitochondrial quality control via the VDAC1-β-tubulin signaling axis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 320:117371. [PMID: 37981118 DOI: 10.1016/j.jep.2023.117371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/22/2023] [Accepted: 10/28/2023] [Indexed: 11/21/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Zishen Tongyang Huoxue decoction (TYHX) has been used clinically for nearly 40 years to treat sick sinus syndrome. Previous reports showed that TYHX can inhibit calcium flux by regulating mitochondrial homeostasis via β-tubulin and increase sinoatrial node cell (SNC) activity. However, the underlying mechanisms remain unclear. AIM OF THE STUDY We aimed to verify the protective effect of TYHX against SNC ischemia by regulating mitochondrial quality control (MQC) through β-tubulin and voltage-dependent anion-selective channel 1 (VDAC1) silencing. MATERIALS AND METHODS We established an in vitro model of SNC ischemia/reperfusion (I/R) injury and performed rescue experiments by silencing β-tubulin and VDAC1 expression. Cell-Counting Kit 8 assays were performed to detect cell viabilities, and terminal deoxynucleotidyl transferase dUTP nick-end labeling assays (paired with confocal microscopy) were performed to detect fragmentation. Mitochondrial-energy metabolism was detected using the Seahorse assay system. Reverse transcription-quantitative polymerase chain reaction analysis was performed to detect the mRNA-expression levels of MQC-related genes. RESULTS TYHX inhibited SNC mitochondrial injury. During I/R simulation, TYHX maintained β-tubulin stability, regulated synergy between mitophagy and the mitochondrial unfolded-protein response (UPRmt), and inhibited mitochondrial oxidative stress and overactive SNC fission. Next-generation sequencing suggested that mitochondrial-membrane injury caused SNC apoptosis. We also found that TYHX regulated β-tubulin expression through VDAC1 and inhibited dynamin-related protein 1 migration to mitochondria from the nucleus. After preventing excessive mitochondrial fission, the mitophagy-UPRmt pathway, mitochondrial-membrane potential, and mitochondrial energy were restored. VDAC1 silencing affected the regulatory mechanism of MQC in a β-tubulin-dependent manner via TYHX. CONCLUSION TYHX regulated mitochondrial membrane-permeability through VDAC1, which affected MQC through β-tubulin and inhibited mitochondrial apoptosis. Our findings may help in developing drugs to protect the sinoatrial node.
Collapse
Affiliation(s)
- Xing Chang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| | - Siyuan Zhou
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| | - Jinfeng Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| | - Yanli Wang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| | - Xuanke Guan
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| | - Qiaomin Wu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| | - Qin Zhang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| | - Zhiming Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| | - Ruxiu Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| |
Collapse
|
14
|
Brooks CD, Kodati B, Stankowska DL, Krishnamoorthy RR. Role of mitophagy in ocular neurodegeneration. Front Neurosci 2023; 17:1299552. [PMID: 37965225 PMCID: PMC10641468 DOI: 10.3389/fnins.2023.1299552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 10/12/2023] [Indexed: 11/16/2023] Open
Abstract
Neurons in the central nervous system are among the most metabolically active cells in the body, characterized by high oxygen consumption utilizing glucose both aerobically and anaerobically. Neurons have an abundance of mitochondria which generate adequate ATP to keep up with the high metabolic demand. One consequence of the oxidative phosphorylation mechanism of ATP synthesis, is the generation of reactive oxygen species which produces cellular injury as well as damage to mitochondria. Mitochondria respond to injury by fusion which serves to ameliorate the damage through genetic complementation. Mitochondria also undergo fission to meet an increased energy demand. Loss of mitochondria is also compensated by increased biogenesis to generate new mitochondria. Damaged mitochondria are removed by mitophagy, an autophagic process, in which damaged mitochondria are surrounded by a membrane to form an autophagosome which ultimately fuses with the lysosome resulting in degradation of faulty mitochondria. Dysregulation of mitophagy has been reported in several central nervous system disorders, including, Alzheimer's disease and Parkinson's disease. Recent studies point to aberrant mitophagy in ocular neurodegenerative disorders which could be an important contributor to the disease etiology/pathology. This review article highlights some of the recent findings that point to dysregulation of mitophagy and it's underlying mechanisms in ocular neurodegenerative diseases, including, glaucoma, age-related macular degeneration and diabetic retinopathy.
Collapse
Affiliation(s)
- Calvin D. Brooks
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, United States
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Bindu Kodati
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, United States
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Dorota L. Stankowska
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, United States
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Raghu R. Krishnamoorthy
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, United States
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX, United States
| |
Collapse
|
15
|
Trishna S, Lavon A, Shteinfer-Kuzmine A, Dafa-Berger A, Shoshan-Barmatz V. Overexpression of the mitochondrial anti-viral signaling protein, MAVS, in cancers is associated with cell survival and inflammation. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 33:713-732. [PMID: 37662967 PMCID: PMC10468804 DOI: 10.1016/j.omtn.2023.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 07/11/2023] [Indexed: 09/05/2023]
Abstract
Mitochondrial anti-viral signaling protein (MAVS) plays an important role in host defense against viral infection via coordinating the activation of NF-κB and interferon regulatory factors. The mitochondrial-bound form of MAVS is essential for its anti-viral innate immunity. Recently, tumor cells were proposed to mimic a viral infection by activating RNA-sensing pattern recognition receptors. Here, we demonstrate that MAVS is overexpressed in a panel of viral non-infected cancer cell lines and patient-derived tumors, including lung, liver, bladder, and cervical cancers, and we studied its role in cancer. Silencing MAVS expression reduced cell proliferation and the expression and nuclear translocation of proteins associated with transcriptional regulation, inflammation, and immunity. MAVS depletion reduced expression of the inflammasome components and inhibited its activation/assembly. Moreover, MAVS directly interacts with the mitochondrial protein VDAC1, decreasing its conductance, and we identified the VDAC1 binding site in MAVS. Our findings suggest that MAVS depletion, by reducing cancer cell proliferation and inflammation, represents a new target for cancer therapy.
Collapse
Affiliation(s)
- Sweta Trishna
- Department of Life Sciences, University of the Negev, Beer Sheva 84105, Israel
| | - Avia Lavon
- Department of Life Sciences, University of the Negev, Beer Sheva 84105, Israel
| | - Anna Shteinfer-Kuzmine
- National Institute for Biotechnology in the Negev Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Avis Dafa-Berger
- Department of Life Sciences, University of the Negev, Beer Sheva 84105, Israel
| | - Varda Shoshan-Barmatz
- Department of Life Sciences, University of the Negev, Beer Sheva 84105, Israel
- National Institute for Biotechnology in the Negev Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| |
Collapse
|
16
|
Ma W, Su Y, Zhang P, Wan G, Cheng X, Lu C, Gu X. Identification of mitochondrial-related genes as potential biomarkers for the subtyping and prediction of Alzheimer's disease. Front Mol Neurosci 2023; 16:1205541. [PMID: 37470054 PMCID: PMC10352499 DOI: 10.3389/fnmol.2023.1205541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/19/2023] [Indexed: 07/21/2023] Open
Abstract
Introduction Alzheimer's disease (AD) is a progressive and debilitating neurodegenerative disorder prevalent among older adults. Although AD symptoms can be managed through certain treatments, advancing the understanding of underlying disease mechanisms and developing effective therapies is critical. Methods In this study, we systematically analyzed transcriptome data from temporal lobes of healthy individuals and patients with AD to investigate the relationship between AD and mitochondrial autophagy. Machine learning algorithms were used to identify six genes-FUNDC1, MAP1LC3A, CSNK2A1, VDAC1, CSNK2B, and ATG5-for the construction of an AD prediction model. Furthermore, AD was categorized into three subtypes through consensus clustering analysis. Results The identified genes are closely linked to the onset and progression of AD and can serve as reliable biomarkers. The differences in gene expression, clinical features, immune infiltration, and pathway enrichment were examined among the three AD subtypes. Potential drugs for the treatment of each subtype were also identified. Discussion The findings observed in the present study can help to deepen the understanding of the underlying disease mechanisms of AD and enable the development of precision medicine and personalized treatment approaches.
Collapse
Affiliation(s)
- Wenhao Ma
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Yuelin Su
- Department of Ultrasound Medicine, Huashan Hospital Affiliated to Fudan University, Shanghai, China
| | - Peng Zhang
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Guoqing Wan
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Xiaoqin Cheng
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Changlian Lu
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Xuefeng Gu
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| |
Collapse
|
17
|
Luan Y, Jiang L, Luan Y, Xie Y, Yang Y, Ren KD. Mitophagy and Traumatic Brain Injury: Regulatory Mechanisms and Therapeutic Potentials. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:1649842. [PMID: 36846712 PMCID: PMC9957633 DOI: 10.1155/2023/1649842] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/25/2022] [Accepted: 01/21/2023] [Indexed: 02/19/2023]
Abstract
Traumatic brain injury (TBI), a kind of external trauma-induced brain function alteration, has posed a financial burden on the public health system. TBI pathogenesis involves a complicated set of events, including primary and secondary injuries that can cause mitochondrial damage. Mitophagy, a process in which defective mitochondria are specifically degraded, segregates and degrades defective mitochondria allowing a healthier mitochondrial network. Mitophagy ensures that mitochondria remain healthy during TBI, determining whether neurons live or die. Mitophagy acts as a critical regulator in maintaining neuronal survival and healthy. This review will discuss the TBI pathophysiology and the consequences of the damage it causes to mitochondria. This review article will explore the mitophagy process, its key factors, and pathways and reveal the role of mitophagy in TBI. Mitophagy will be further recognized as a therapeutic approach in TBI. This review will offer new insights into mitophagy's role in TBI progression.
Collapse
Affiliation(s)
- Yi Luan
- Clinical Systems Biology Research Laboratories, Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Lulu Jiang
- Department of Anesthesiology and Perioperative Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 463599, China
| | - Ying Luan
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yi Xie
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yang Yang
- Clinical Systems Biology Research Laboratories, Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Kai-Di Ren
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
18
|
Qu K, Yan F, Qin X, Zhang K, He W, Dong M, Wu G. Mitochondrial dysfunction in vascular endothelial cells and its role in atherosclerosis. Front Physiol 2022; 13:1084604. [PMID: 36605901 PMCID: PMC9807884 DOI: 10.3389/fphys.2022.1084604] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
The mitochondria are essential organelles that generate large amounts of ATP via the electron transport chain (ECT). Mitochondrial dysfunction causes reactive oxygen species accumulation, energy stress, and cell death. Endothelial mitochondrial dysfunction is an important factor causing abnormal function of the endothelium, which plays a central role during atherosclerosis development. Atherosclerosis-related risk factors, including high glucose levels, hypertension, ischemia, hypoxia, and diabetes, promote mitochondrial dysfunction in endothelial cells. This review summarizes the physiological and pathophysiological roles of endothelial mitochondria in endothelial function and atherosclerosis.
Collapse
Affiliation(s)
- Kai Qu
- Clinical Research Center for Endocrinology and Metabolic Diseases, Chongqing University Three Gorges Hospital, Chongqing, China
- College of Bioengineering Chongqing University, Chongqing, China
| | - Fang Yan
- Department of Geriatrics, Geriatric Diseases Institute of Chengdu, Chengdu Fifth People’s Hospital, Chengdu, Sichuan, China
- Center for Medicine Research and Translation, Chengdu Fifth People’s Hospital, Chengdu, Sichuan, China
| | - Xian Qin
- Clinical Research Center for Endocrinology and Metabolic Diseases, Chongqing University Three Gorges Hospital, Chongqing, China
- College of Bioengineering Chongqing University, Chongqing, China
| | - Kun Zhang
- Clinical Research Center for Endocrinology and Metabolic Diseases, Chongqing University Three Gorges Hospital, Chongqing, China
- College of Bioengineering Chongqing University, Chongqing, China
| | - Wen He
- Department of Geriatrics, Clinical trial center, Chengdu Fifth People’s Hospital, Chengdu, Sichuan, China
| | - Mingqing Dong
- Center for Medicine Research and Translation, Chengdu Fifth People’s Hospital, Chengdu, Sichuan, China
| | - Guicheng Wu
- Clinical Research Center for Endocrinology and Metabolic Diseases, Chongqing University Three Gorges Hospital, Chongqing, China
| |
Collapse
|
19
|
Effects of glucose on the proliferation of human umbilical cord blood hematopoietic stem cells. Cell Tissue Bank 2022; 24:485-494. [DOI: 10.1007/s10561-022-10048-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/28/2022] [Indexed: 11/27/2022]
|
20
|
Wu Y, Zou H. Research Progress on Mitochondrial Dysfunction in Diabetic Retinopathy. Antioxidants (Basel) 2022; 11:2250. [PMID: 36421435 PMCID: PMC9686704 DOI: 10.3390/antiox11112250] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/07/2022] [Accepted: 11/12/2022] [Indexed: 09/07/2023] Open
Abstract
Diabetic Retinopathy (DR) is one of the most important microvascular complications of diabetes mellitus, which can lead to blindness in severe cases. Mitochondria are energy-producing organelles in eukaryotic cells, which participate in metabolism and signal transduction, and regulate cell growth, differentiation, aging, and death. Metabolic changes of retinal cells and epigenetic changes of mitochondria-related genes under high glucose can lead to mitochondrial dysfunction and induce mitochondrial pathway apoptosis. In addition, mitophagy and mitochondrial dynamics also change adaptively. These mechanisms may be related to the occurrence and progression of DR, and also provide valuable clues for the prevention and treatment of DR. This article reviews the mechanism of DR induced by mitochondrial dysfunction, and the prospects for related treatment.
Collapse
Affiliation(s)
- Yiwei Wu
- Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Haidong Zou
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| |
Collapse
|
21
|
Sekiya FS, Silva CPND, Oba-Shinjo SM, Santos-Bezerra DP, Ravagnani FG, Pasqualucci CA, Gil S, Gualano B, Baptista MDS, Correa-Giannella ML, Marie SKN. Identification of two patterns of mitochondrial DNA-copy number variation in postcentral gyrus during aging, influenced by body mass index and type 2 diabetes. Exp Gerontol 2022; 168:111932. [PMID: 35995312 DOI: 10.1016/j.exger.2022.111932] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022]
Abstract
AIMS Mitochondrial (mt) DNA replication is strongly associated with oxidative stress, a condition triggered by aging and hyperglycemia, both of which contribute to mitophagy disruption and inflammation. This observational exploratory study evaluated mtDNA-copy number (mtDNA-CN) and expression of genes involved in mitochondriogenesis (PPARGC1A, TFAM, TFB1M, TFB2M), mitophagy (PINK1, PRKN), and inflammatory pathways triggered by hyperglycemia (TXNIP, NLRP3, NFKB1), in the postcentral gyrus of adults and older individuals with and without type 2 diabetes mellitus (T2D). MAIN METHODS Quantitative real-time PCR was employed to evaluate mtDNA-CN and gene expression; tissue autofluorescence, a marker of aging and of cells with damaged organelles, was also quantified. KEY FINDINGS No correlation was found between age and mtDNA-CN, but a direct correlation was observed for cases with mtDNA-CN >1000 (r = 0.41). The mtDNA-CN >1000 group had greater tissue autofluorescence and higher body mass index compared to the mtDNA-CN <1000 group (BMI; 25.7 vs 22.0 kg/m2, respectively). mtDNA-CN correlated with tissue autofluorescence in the overall sample (r = 0.55) and in the T2D group (r = 0.64). PINK and PRKN expressions were inversely correlated with age. Mitochondriogenesis genes and TXNIP expressions were higher in the T2D group, and correlations among the mitochondriogenesis genes were also stronger in this group, relative to the subgroup with mtDNA-CN >1000.
Collapse
Affiliation(s)
- Felipe Seiti Sekiya
- Laboratório de Biologia Celular e Molecular, LIM 15, Departamento de Neurologia, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Clarisse Pereira Nunes da Silva
- Laboratório de Biologia Celular e Molecular, LIM 15, Departamento de Neurologia, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Sueli Mieko Oba-Shinjo
- Laboratório de Biologia Celular e Molecular, LIM 15, Departamento de Neurologia, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Daniele Pereira Santos-Bezerra
- Laboratório de Carboidratos e Radioimunoensaio (LIM-18) do Hospital das Clinicas HCFMUSP, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | | | - Carlos Augusto Pasqualucci
- Departamento de Patologia, Grupo Brasileiro de Estudo de Envelhecimento Cerebral, Faculdade de Medicina FMUSP, Sao Paulo, Brazil
| | - Saulo Gil
- Applied Physiology & Nutrition Research Group, Division of Rheumatology, Faculdade de Medicina FMUSP, School of Physical Education and Sport, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Bruno Gualano
- Applied Physiology & Nutrition Research Group, Division of Rheumatology, Faculdade de Medicina FMUSP, School of Physical Education and Sport, Universidade de Sao Paulo, Sao Paulo, Brazil; Food Research Center, University of São Paulo, Sao Paulo, Brazil
| | | | - Maria Lucia Correa-Giannella
- Laboratório de Carboidratos e Radioimunoensaio (LIM-18) do Hospital das Clinicas HCFMUSP, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Suely Kazue Nagahashi Marie
- Laboratório de Biologia Celular e Molecular, LIM 15, Departamento de Neurologia, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil.
| |
Collapse
|
22
|
Chen M, Rong R, Xia X. Spotlight on pyroptosis: role in pathogenesis and therapeutic potential of ocular diseases. J Neuroinflammation 2022; 19:183. [PMID: 35836195 PMCID: PMC9281180 DOI: 10.1186/s12974-022-02547-2] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 07/05/2022] [Indexed: 11/10/2022] Open
Abstract
Pyroptosis is a programmed cell death characterized by swift plasma membrane disruption and subsequent release of cellular contents and pro-inflammatory mediators (cytokines), including IL‐1β and IL‐18. It differs from other types of programmed cell death such as apoptosis, autophagy, necroptosis, ferroptosis, and NETosis in terms of its morphology and mechanism. As a recently discovered form of cell death, pyroptosis has been demonstrated to be involved in the progression of multiple diseases. Recent studies have also suggested that pyroptosis is linked to various ocular diseases. In this review, we systematically summarized and discussed recent scientific discoveries of the involvement of pyroptosis in common ocular diseases, including diabetic retinopathy, age-related macular degeneration, AIDS-related human cytomegalovirus retinitis, glaucoma, dry eye disease, keratitis, uveitis, and cataract. We also organized new and emerging evidence suggesting that pyroptosis signaling pathways may be potential therapeutic targets in ocular diseases, hoping to provide a summary of overall intervention strategies and relevant multi-dimensional evaluations for various ocular diseases, as well as offer valuable ideas for further research and development from the perspective of pyroptosis.
Collapse
Affiliation(s)
- Meini Chen
- Eye Center of Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.,Hunan Key Laboratory of Ophthalmology, Changsha, 410008, Hunan, People's Republic of China.,National Clinical Research Center for Geriatric Diseases (Xiangya Hospital), Changsha, 410008, Hunan, People's Republic of China
| | - Rong Rong
- Eye Center of Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.,Hunan Key Laboratory of Ophthalmology, Changsha, 410008, Hunan, People's Republic of China.,National Clinical Research Center for Geriatric Diseases (Xiangya Hospital), Changsha, 410008, Hunan, People's Republic of China
| | - Xiaobo Xia
- Eye Center of Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China. .,Hunan Key Laboratory of Ophthalmology, Changsha, 410008, Hunan, People's Republic of China. .,National Clinical Research Center for Geriatric Diseases (Xiangya Hospital), Changsha, 410008, Hunan, People's Republic of China.
| |
Collapse
|
23
|
Wang F, Fan X, Kong J, Wang C, Ma B, Sun W, Ye Z, Liu P, Wen J. Inhibition of mitochondrial fission alters neo-intimal hyperplasia via PI3K/Akt signaling in arteriovenous fistulas. Vascular 2022; 31:533-543. [PMID: 35130772 DOI: 10.1177/17085381211068685] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND/OBJECTIVE Arteriovenous fistulas (AVFs) are the preferred vascular access for hemodialysis of patients with end-stage renal disease. However, there is a high incidence of AVF failures caused by insufficient outward remodeling or venous neo-intimal hyperplasia formation. Abnormal proliferation and migration of vascular smooth muscle cells (VSMCs) play an important role in many cardiovascular diseases. Abnormal VSMC proliferation and migration could be abolished by inhibition of mitochondrial division. METHOD We found that abnormal proliferation and migration of VSMCs and increased mitochondrial fission were associated with AVF stenosis in patients. We also investigated the mechanisms, particularly the role of mitochondrial dynamics, underlying these VSMC behaviors. In vitro, we observed that inhibition of mitochondrial fission and Akt phosphorylation can diminish proliferation and migration of VSMCs induced by platelet-derived growth factor-BB (PDGF-BB). In vivo, daily intraperitoneal injections of mitochondrial division inhibitor 1 (Mdivi-1) decreased VSMC proliferation and reduced AVF wall thickness in a rat AVF model. CONCLUSION AND RESULT Our results suggest that inhibition of mitochondrial fission improves AVF patency by reducing wall thickening through the PI3K/Akt signaling pathway. Therefore, inhibition of mitochondrial fission has the clinical potential to improve AVF patency.
Collapse
Affiliation(s)
- Feng Wang
- Department of Cardiovascular Surgery, 36635China-Japan Friendship Hospital, Beijing, China.,Graduate School of Peking Union Medical College, Beijing, China
| | - Xueqiang Fan
- Department of Cardiovascular Surgery, 36635China-Japan Friendship Hospital, Beijing, China
| | - Jie Kong
- Department of Interventional Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Cheng Wang
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Bo Ma
- Department of Cardiovascular Surgery, 36635China-Japan Friendship Hospital, Beijing, China
| | - Weiliang Sun
- 36635Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Zhidong Ye
- Department of Cardiovascular Surgery, 36635China-Japan Friendship Hospital, Beijing, China
| | - Peng Liu
- Department of Cardiovascular Surgery, 36635China-Japan Friendship Hospital, Beijing, China.,Graduate School of Peking Union Medical College, Beijing, China
| | - Jianyan Wen
- Department of Cardiovascular Surgery, 36635China-Japan Friendship Hospital, Beijing, China.,Graduate School of Peking Union Medical College, Beijing, China
| |
Collapse
|