1
|
Zhang Y, Zhang Z, Tu C, Chen X, He R. Advanced Glycation End Products in Disease Development and Potential Interventions. Antioxidants (Basel) 2025; 14:492. [PMID: 40298887 PMCID: PMC12024296 DOI: 10.3390/antiox14040492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 04/09/2025] [Accepted: 04/16/2025] [Indexed: 04/30/2025] Open
Abstract
Advanced glycation end products (AGEs) are a group of compounds formed through non-enzymatic reactions between reducing sugars and proteins, lipids, or nucleic acids. AGEs can be generated in the body or introduced through dietary sources and smoking. Recent clinical and animal studies have highlighted the significant role of AGEs in various health conditions. These compounds accumulate in nearly all mammalian tissues and are associated with a range of diseases, including diabetes and its complications, cardiovascular disease, and neurodegeneration. This review summarizes the major diseases linked to AGE accumulation, presenting both clinical and experimental evidence. The pathologies induced by AGEs share common mechanisms across different organs, primarily involving oxidative stress, chronic inflammation, and direct protein cross-linking. Interventions targeting AGE-related diseases focus on inhibiting AGE formation using synthetic or natural antioxidants, as well as reducing dietary AGE intake through lifestyle modifications. AGEs are recognized as significant risk factors that impact health and accelerate aging, particularly in individuals with hyperglycemia. Monitoring AGE level and implementing nutritional interventions can help maintain overall health and reduce the risk of AGE-related complications.
Collapse
Affiliation(s)
- Yihan Zhang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou 510006, China; (Y.Z.); (Z.Z.)
- BYHEALTH Institute of Nutrition & Health, No. 916, Huangpu Avenue East, Huangpu District, Guangzhou 510799, China; (C.T.); (X.C.)
| | - Zhen Zhang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou 510006, China; (Y.Z.); (Z.Z.)
- BYHEALTH Institute of Nutrition & Health, No. 916, Huangpu Avenue East, Huangpu District, Guangzhou 510799, China; (C.T.); (X.C.)
| | - Chuyue Tu
- BYHEALTH Institute of Nutrition & Health, No. 916, Huangpu Avenue East, Huangpu District, Guangzhou 510799, China; (C.T.); (X.C.)
| | - Xu Chen
- BYHEALTH Institute of Nutrition & Health, No. 916, Huangpu Avenue East, Huangpu District, Guangzhou 510799, China; (C.T.); (X.C.)
| | - Ruikun He
- BYHEALTH Institute of Nutrition & Health, No. 916, Huangpu Avenue East, Huangpu District, Guangzhou 510799, China; (C.T.); (X.C.)
| |
Collapse
|
2
|
Zuo X, Wang X, Xie J, Jia Y. Emodin alleviates the damage to lens epithelial cells in diabetic cataract by repressing the p53-mediated ferroptosis pathway. Int Ophthalmol 2025; 45:141. [PMID: 40175804 DOI: 10.1007/s10792-025-03513-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Accepted: 03/12/2025] [Indexed: 04/04/2025]
Abstract
BACKGROUND Diabetic cataract (DC) is an ocular complication caused by diabetes. Currently, the main treatments for DC include pharmacological therapy and surgical intervention. The core objective of this study is to elucidate the specific mechanism of action of emodin in the treatment of DC, thereby providing potential targets for the treatment of DC. METHODS CCK-8 kit was used to detect the effect of emodin on the activity of lens epithelial cells (LECs). The impact of emodin on the expression of inflammatory factors and apoptosis in high glucose-induced LECs were evaluated by utilizing ELISA and flow cytometry. Then, commercial kits were performed to detect the regulatory effects of emodin on oxidative stress and ferroptosis in high glucose LECs. The potential mechanism of emodin in combating DC by inhibiting ferroptosis was analyzed by network pharmacology methods, and protein binding activity to emodin was measured by molecular docking. Besides, western blot (WB) assay was used to detect the effect of emodin on p53. RESULTS Firstly, the results of CCK-8 showed that emodin could effectively alleviate the decrease of LECs cell activity and Lactate dehydrogenase (LDH) release induced by high glucose. Emodin suppressed high glucose-induced apoptosis of LECs, reduced the release of inflammatory factors, and alleviated oxidative stress and ferroptosis. GO and KEGG analyses confirmed the involvement of oxidative stress (OS), inflammatory response, and ferroptosis in the process of emodin treatment for DC. Molecular docking studies showed that emodin stably bound to proteins such as TP53, TNF, IL-6, and IL-1β. Additionally, WB results indicated that emodin alleviated high glucose-induced ferroptosis by binding to p53. CONCLUSION Collectively, these data suggest that emodin alleviates damage to LECs by interfering with the p53-mediated ferroptosis pathway, thereby attenuating DC disease, which offered new directions for the development of new drugs.
Collapse
Affiliation(s)
- Xiangrong Zuo
- Department of Ophthalmology, Xingtai People's Hospital, No.818 Xiangdu North Road, Xingtai City, 054000, Hebei, China.
| | - Xiuxian Wang
- Department of Ophthalmology, Xingtai People's Hospital, No.818 Xiangdu North Road, Xingtai City, 054000, Hebei, China
| | - Jing Xie
- Department of Ophthalmology, Xingtai People's Hospital, No.818 Xiangdu North Road, Xingtai City, 054000, Hebei, China
| | - Yuhong Jia
- Department of Ophthalmology, Xingtai People's Hospital, No.818 Xiangdu North Road, Xingtai City, 054000, Hebei, China
| |
Collapse
|
3
|
Panja S, Rankenberg J, Michel C, Cooksley G, Glomb MA, Nagaraj RH. Proximal cysteine residues in proteins promote N ε-carboxyalkylation of lysine residues by α-dicarbonyl compounds. J Biol Chem 2025; 301:108377. [PMID: 40049410 PMCID: PMC11994404 DOI: 10.1016/j.jbc.2025.108377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 02/12/2025] [Accepted: 02/26/2025] [Indexed: 04/01/2025] Open
Abstract
Advanced glycation end products (AGEs) are protein modifications resulting from the chemical reaction between lysine and arginine residues in proteins, and carbonyl compounds, including glyoxal (GO) and methylglyoxal (MGO). Nε-carboxymethyllysine (CML) and Nε-carboxyethyllysine (CEL), formed by glycation from GO and MGO, are among the major AGEs in tissue proteins. Incubation with GO or MGO resulted in higher CML and CEL formation in the two cysteine residues containing αA-crystallin (αAC) than in the cysteine lacking αB-crystallin (αBC). Mass spectrometric data showed K70 and K166 to be heavily modified with CML and CEL in GO- and MGO-modified αAC. In silico analysis of the structure of αAC showed K70 and K166 to be proximal to C142. Mutation or reductive alkylation of cysteine residues in αAC significantly reduced CML and CEL formation. The addition of GSH or N-acetylcysteine enhanced CML and CEL formation in αBC. The introduction of a cysteine residue proximal to a lysine residue in αBC increased the CML and CEL accumulation. Our data showed that CML and CEL formation occurs through a hemithioacetal intermediate formed from the reaction between thiols and GO or MGO. Together, these results highlight a mechanism by which thiols influence protein AGE levels. In addition, CML and CEL are ligands for RAGE, a receptor for AGEs, which has been implicated in several aging and diabetes-associated diseases. Therefore, further understanding of the biosynthesis of CML and CEL could lead to the development of new therapies against those diseases.
Collapse
Affiliation(s)
- Sudipta Panja
- Department of Ophthalmology, School of Medicine, University of Colorado, Aurora, Colorado, USA.
| | - Johanna Rankenberg
- Department of Ophthalmology, School of Medicine, University of Colorado, Aurora, Colorado, USA
| | - Cole Michel
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, Colorado, USA
| | - Grace Cooksley
- Department of Ophthalmology, School of Medicine, University of Colorado, Aurora, Colorado, USA
| | - Marcus A Glomb
- Institute of Chemistry, Food Chemistry, Martin-Luther-University Halle-Wittenberg, Halle(Saale), Germany
| | - Ram H Nagaraj
- Department of Ophthalmology, School of Medicine, University of Colorado, Aurora, Colorado, USA; Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, Colorado, USA.
| |
Collapse
|
4
|
Yang Y, Fan C, Zhang Y, Kang T, Jiang J. Untargeted Metabolomics Reveals the Role of Lipocalin-2 in the Pathological Changes of Lens and Retina in Diabetic Mice. Invest Ophthalmol Vis Sci 2024; 65:19. [PMID: 39656472 PMCID: PMC11636665 DOI: 10.1167/iovs.65.14.19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 11/07/2024] [Indexed: 12/14/2024] Open
Abstract
Purpose To identify the role of lipocalin-2 (LCN2) in diabetic cataract (DC) and diabetic retinopathy (DR), diabetes models were established in wild-type (WT) and LCN2 gene knockout (LCN2-/-) mice by streptozotocin (STZ), this study aimed to investigate the metabolic alterations and underlying pathways in the lens and retina. Methods Untargeted metabolomic analysis was performed on the lenses and retinas of WT and LCN2-/- diabetic mice, and relevant pathways were predicted through bioinformatics analysis. Results LCN2 was notably elevated in the anterior capsules of DC and the vitreous humor of DR. Metabolic profiling of the lenses and retinas of diabetic mice indicated that the differential metabolites were mostly amino acids, fatty acids, carbohydrates, and their derivatives. In the lenses of STZ-induced WT mice, the differential abundance score (DA-score) revealed an increase in metabolites associated with the citrate (or TCA) cycle and glucagon signaling pathway, whereas a decrease was observed in metabolites related to cholesterol metabolism. After the knockout of LCN2, the DA-score indicated that the majority of metabolites involved in cholesterol metabolism, cysteine and methionine metabolism, and tryptophan metabolism were diminished. In the STZ-induced retina, there was an increase in metabolites associated with the mTOR signaling pathway, and this increase was inhibited by the knockout of LCN2. Conclusions Numerous metabolites exhibited substantial alterations in the lenses and retinas of diabetic mice. Untargeted metabolomics has provided insights into the function of LCN2 in DC and DR. These changes in metabolites, along with their related pathways, could be the mechanisms by which LCN2 modulated DC and DR.
Collapse
Affiliation(s)
- Yu Yang
- Eye Center of Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Cong Fan
- Eye Center of Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yue Zhang
- Eye Center of Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Tianyi Kang
- Eye Center of Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jian Jiang
- Eye Center of Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
5
|
Antonietti M, Kim CK, Djulbegovic MB, Gonzalez DJT, Greenfield JA, Uversky VN, Gibbons AG, Karp CL. Effects of Aging on Intrinsic Protein Disorder in Human Lenses and Zonules. Cell Biochem Biophys 2024; 82:3667-3679. [PMID: 39117985 PMCID: PMC11576620 DOI: 10.1007/s12013-024-01455-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2024] [Indexed: 08/10/2024]
Abstract
This study aims to compare the levels of intrinsic protein disorder within the human lens and zonule proteomes and investigate the role of aging as a potential influencing factor on disorder levels. A cross-sectional proteomic analysis was employed, utilizing a dataset of 1466 proteins derived from the lens and zonule proteomes previously published by Wang et al. and De Maria et al. Bioinformatics tools, including a composition profiler and a rapid intrinsic disorder analysis online tool, were used to conduct a comparative analysis of protein disorder. Statistical tests such as ANOVA, Tukey's HSD, and chi-squared tests were applied to evaluate differences between groups. The study revealed distinct amino acid compositions for each proteome, showing a direct correlation between aging and increased protein disorder in the zonular proteomes, whereas the lens proteomes exhibited the opposite trend. Findings suggest that age-related changes in intrinsic protein disorder within the lens and zonule proteomes may be linked to structural transformations in these tissues. Understanding how protein disorder evolves with age could enhance knowledge of the molecular basis for age-related conditions such as cataracts and pseudoexfoliation, potentially leading to better therapeutic strategies.
Collapse
Affiliation(s)
| | - Colin K Kim
- Bascom Palmer Eye Institute, University of Miami, Miami, FL, USA
| | - Mak B Djulbegovic
- Wills Eye Hospital, Thomas Jefferson University Hospital, Philadelphia, PA, USA
| | | | | | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | | | - Carol L Karp
- Bascom Palmer Eye Institute, University of Miami, Miami, FL, USA.
| |
Collapse
|
6
|
Cunha M, Elhaddad O, Yahalomi T, Avadhanam V, Tole D, Darcy K, Levinger E, Tuuminen R, Achiron A. Type 1 and type 2 diabetes predisposed to higher Nd:YAG capsulotomy rates following cataract surgery: analysis of 53,471 consecutive cases. CANADIAN JOURNAL OF OPHTHALMOLOGY 2024; 59:380-385. [PMID: 38513717 DOI: 10.1016/j.jcjo.2024.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/01/2024] [Accepted: 02/25/2024] [Indexed: 03/23/2024]
Abstract
OBJECTIVE To assess the effect of diabetes type on Nd:YAG capsulotomy rates following cataract surgery. DESIGN A retrospective cohort study. METHODS All patients who underwent cataract extraction at the Department of Ophthalmology, Bristol Eye Hospital, Bristol, UK, between 2003 and 2017 were included. The Nd:YAG capsulotomy rate following cataract surgery was assessed and compared between nondiabetic, type 1 diabetes (T1D), and type 2 diabetes (T2D) patients. Multivariate Cox regression analysis controlling for age and sex was used to estimate hazard ratios for Nd:YAG laser capsulotomies. RESULTS Included were 53,471 consecutive cataract surgeries. Overall, 42,651 eyes (79.8%) were in nondiabetic patients, 823 eyes (1.5%) were in T1D patients, and 9,997 eyes (18.7%) were in T2D patients. The mean follow-up time was 6.8 ± 4.2 years. In univariate analysis, the eyes of T1D patients (p < 0.001) and T2D patients (p = 0.003) had significantly higher Nd:YAG laser capsulotomy rates than the eyes of nondiabetic patients. In Cox regression analysis adjusted for the patient's age and sex, DM1 (HR 1.692, 95%CI 1.390-2.059, P<0.001) and DM2 (HR 1.157, 95%CI 1.075-1.244, P<0.001) remained significantly predictive for higher Nd:YAG laser capsulotomy rates. CONCLUSION In our large cohort study, patients with T1D and T2D were predisposed to high risk for Nd:YAG capsulotomy following cataract surgery. This study may be beneficial and raise awareness regarding the assessment of posterior capsular opacification development in pseudophakic diabetic patients, particularly those with T1D. The significance of ophthalmology screening for diabetes individuals is further supported by this issue.
Collapse
Affiliation(s)
- Mariana Cunha
- Helsinki Retina Research Group, University of Helsinki, Helsinki, Finland; Medical School, São Paulo State University (UNESP), São Paulo, Brazil
| | - Omar Elhaddad
- Bristol Eye Hospital, University Hospitals Bristol NHS Foundation Trust, Bristol, United Kingdom; Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Tal Yahalomi
- Department of Ophthalmology, Samson Assuta Ashdod Hospital and Faculty of Health Sciences, Ben-Gurion University of the Negev, Negev, Israel.
| | - Venkata Avadhanam
- Bristol Eye Hospital, University Hospitals Bristol NHS Foundation Trust, Bristol, United Kingdom
| | - Derek Tole
- Bristol Eye Hospital, University Hospitals Bristol NHS Foundation Trust, Bristol, United Kingdom
| | - Kieran Darcy
- Bristol Eye Hospital, University Hospitals Bristol NHS Foundation Trust, Bristol, United Kingdom
| | - Eliya Levinger
- Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Raimo Tuuminen
- Helsinki Retina Research Group, University of Helsinki, Helsinki, Finland; Department of Ophthalmology, Kymenlaakso Central Hospital, Kotka, Finland
| | - Asaf Achiron
- Tel-Aviv Sourasky Medical Center and Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
7
|
Barone V, Surico PL, Cutrupi F, Mori T, Gallo Afflitto G, Di Zazzo A, Coassin M. The Role of Immune Cells and Signaling Pathways in Diabetic Eye Disease: A Comprehensive Review. Biomedicines 2024; 12:2346. [PMID: 39457658 PMCID: PMC11505591 DOI: 10.3390/biomedicines12102346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/02/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Diabetic eye disease (DED) encompasses a range of ocular complications arising from diabetes mellitus, including diabetic retinopathy, diabetic macular edema, diabetic keratopathy, diabetic cataract, and glaucoma. These conditions are leading causes of visual impairments and blindness, especially among working-age adults. Despite advancements in our understanding of DED, its underlying pathophysiological mechanisms remain incompletely understood. Chronic hyperglycemia, oxidative stress, inflammation, and neurodegeneration play central roles in the development and progression of DED, with immune-mediated processes increasingly recognized as key contributors. This review provides a comprehensive examination of the complex interactions between immune cells, inflammatory mediators, and signaling pathways implicated in the pathogenesis of DED. By delving in current research, this review aims to identify potential therapeutic targets, suggesting directions of research for future studies to address the immunopathological aspects of DED.
Collapse
Affiliation(s)
- Vincenzo Barone
- Department of Ophthalmology, Campus Bio-Medico University, 00128 Rome, Italy; (V.B.); (F.C.); (T.M.); (A.D.Z.); (M.C.)
- Ophthalmology Operative Complex Unit, Campus Bio-Medico University Hospital Foundation, 00128 Rome, Italy
| | - Pier Luigi Surico
- Department of Ophthalmology, Campus Bio-Medico University, 00128 Rome, Italy; (V.B.); (F.C.); (T.M.); (A.D.Z.); (M.C.)
- Ophthalmology Operative Complex Unit, Campus Bio-Medico University Hospital Foundation, 00128 Rome, Italy
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Francesco Cutrupi
- Department of Ophthalmology, Campus Bio-Medico University, 00128 Rome, Italy; (V.B.); (F.C.); (T.M.); (A.D.Z.); (M.C.)
- Ophthalmology Operative Complex Unit, Campus Bio-Medico University Hospital Foundation, 00128 Rome, Italy
| | - Tommaso Mori
- Department of Ophthalmology, Campus Bio-Medico University, 00128 Rome, Italy; (V.B.); (F.C.); (T.M.); (A.D.Z.); (M.C.)
- Ophthalmology Operative Complex Unit, Campus Bio-Medico University Hospital Foundation, 00128 Rome, Italy
- Department of Ophthalmology, University of California San Diego, La Jolla, CA 92122, USA
| | - Gabriele Gallo Afflitto
- Ophthalmology Unit, Department of Experimental Medicine, University of Rome “Tor Vergata”, 00128 Rome, Italy;
- Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, UK
| | - Antonio Di Zazzo
- Department of Ophthalmology, Campus Bio-Medico University, 00128 Rome, Italy; (V.B.); (F.C.); (T.M.); (A.D.Z.); (M.C.)
- Ophthalmology Operative Complex Unit, Campus Bio-Medico University Hospital Foundation, 00128 Rome, Italy
| | - Marco Coassin
- Department of Ophthalmology, Campus Bio-Medico University, 00128 Rome, Italy; (V.B.); (F.C.); (T.M.); (A.D.Z.); (M.C.)
- Ophthalmology Operative Complex Unit, Campus Bio-Medico University Hospital Foundation, 00128 Rome, Italy
| |
Collapse
|
8
|
Thorne CA, Grey AC, Lim JC, Donaldson PJ. The Synergistic Effects of Polyol Pathway-Induced Oxidative and Osmotic Stress in the Aetiology of Diabetic Cataracts. Int J Mol Sci 2024; 25:9042. [PMID: 39201727 PMCID: PMC11354722 DOI: 10.3390/ijms25169042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/13/2024] [Accepted: 08/16/2024] [Indexed: 09/03/2024] Open
Abstract
Cataracts are the world's leading cause of blindness, and diabetes is the second leading risk factor for cataracts after old age. Despite this, no preventative treatment exists for cataracts. The altered metabolism of excess glucose during hyperglycaemia is known to be the underlying cause of diabetic cataractogenesis, resulting in localised disruptions to fibre cell morphology and cell swelling in the outer cortex of the lens. In rat models of diabetic cataracts, this damage has been shown to result from osmotic stress and oxidative stress due to the accumulation of intracellular sorbitol, the depletion of NADPH which is used to regenerate glutathione, and the generation of fructose metabolites via the polyol pathway. However, differences in lens physiology and the metabolism of glucose in the lenses of different species have prevented the translation of successful treatments in animal models into effective treatments in humans. Here, we review the stresses that arise from hyperglycaemic glucose metabolism and link these to the regionally distinct metabolic and physiological adaptations in the lens that are vulnerable to these stressors, highlighting the evidence that chronic oxidative stress together with osmotic stress underlies the aetiology of human diabetic cortical cataracts. With this information, we also highlight fundamental gaps in the knowledge that could help to inform new avenues of research if effective anti-diabetic cataract therapies are to be developed in the future.
Collapse
Affiliation(s)
- Courtney A. Thorne
- Department of Physiology, School of Medical Sciences, University of Auckland, Auckland 1023, New Zealand; (C.A.T.); (A.C.G.); (P.J.D.)
- New Zealand National Eye Centre, University of Auckland, Auckland 1023, New Zealand
| | - Angus C. Grey
- Department of Physiology, School of Medical Sciences, University of Auckland, Auckland 1023, New Zealand; (C.A.T.); (A.C.G.); (P.J.D.)
- New Zealand National Eye Centre, University of Auckland, Auckland 1023, New Zealand
| | - Julie C. Lim
- Department of Physiology, School of Medical Sciences, University of Auckland, Auckland 1023, New Zealand; (C.A.T.); (A.C.G.); (P.J.D.)
- New Zealand National Eye Centre, University of Auckland, Auckland 1023, New Zealand
| | - Paul J. Donaldson
- Department of Physiology, School of Medical Sciences, University of Auckland, Auckland 1023, New Zealand; (C.A.T.); (A.C.G.); (P.J.D.)
- New Zealand National Eye Centre, University of Auckland, Auckland 1023, New Zealand
| |
Collapse
|
9
|
Cheng C. Tissue, cellular, and molecular level determinants for eye lens stiffness and elasticity. FRONTIERS IN OPHTHALMOLOGY 2024; 4:1456474. [PMID: 39176256 PMCID: PMC11339033 DOI: 10.3389/fopht.2024.1456474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 07/26/2024] [Indexed: 08/24/2024]
Abstract
The eye lens is a transparent, ellipsoid tissue in the anterior chamber that is required for the fine focusing of light onto the retina to transmit a clear image. The focusing function of the lens is tied to tissue transparency, refractive index, and biomechanical properties. The stiffness and elasticity or resilience of the human lens allows for shape changes during accommodation to focus light from objects near and far. It has long been hypothesized that changes in lens biomechanical properties with age lead to the loss of accommodative ability and the need for reading glasses with age. However, the cellular and molecular mechanisms that influence lens biomechanical properties and/or change with age remain unclear. Studies of lens stiffness and resilience in mouse models with genetic defects or at advanced age inform us of the cytoskeletal, structural, and morphometric parameters that are important for biomechanical stability. In this review, we will explore whether: 1) tissue level changes, including the capsule, lens volume, and nucleus volume, 2) cellular level alterations, including cell packing, suture organization, and complex membrane interdigitations, and 3) molecular scale modifications, including the F-actin and intermediate filament networks, protein modifications, lipids in the cell membrane, and hydrostatic pressure, influence overall lens biomechanical properties.
Collapse
Affiliation(s)
- Catherine Cheng
- School of Optometry and Vision Science Program, Indiana University, Bloomington, IN, United States
| |
Collapse
|
10
|
Zhang X, Dou S, Huang Y. Comprehensive landscape of RNA N6-methyladenosine modification in lens epithelial cells from normal and diabetic cataract. Exp Eye Res 2023; 237:109702. [PMID: 39492543 DOI: 10.1016/j.exer.2023.109702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/22/2023] [Accepted: 10/27/2023] [Indexed: 11/05/2024]
Abstract
To gain more insight into the mechanism of cataract formation from the perspective of epigenetics in the diabetic population, lens epithelium from diabetic cataract patients and health individuals were collected separately and analyzed for N6-methyladenosine (m6A)-modified RNA using methylated RNA immunoprecipitation sequencing (MeRIP-Seq). Subsequently, differential expression analysis was performed on m6A-regulated messenger RNA (mRNA), circular RNA (circRNA), and long non-coding RNA (lncRNA), followed by functional annotation using the Gene Ontology (GO) database. Furthermore, analysis of single-cell data of lens complemented the intrinsic association and cellular heterogeneity of cataract and m6A regulators. In this study, both the global expression levels and peak intensity of m6A-tagged RNAs were increased in patients with diabetic cataract. And we noted multiple core enzymes were upregulated in the diabetic cataract (DC) samples. Besides, single-cell RNA sequencing analysis of the lens revealed the heterogeneous expression of RNA m6A regulators across different cell types, and we noted that the early fiber cell cluster was also closely associated with the onset of cataract and m6A modification. The results comprehensively revealed the dynamic modification landscape of m6A on mRNA, circRNA, and lncRNA, which might provide valuable resources for future studies of the pathogenesis of DCs.
Collapse
Affiliation(s)
- Xiaowen Zhang
- Eye Institute of Shandong First Medical University, Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China; State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, China; School of Ophthalmology, Shandong First Medical University, Jinan, China
| | - Shengqian Dou
- Eye Institute of Shandong First Medical University, Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China; State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, China.
| | - Yusen Huang
- Eye Institute of Shandong First Medical University, Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China; State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, China.
| |
Collapse
|
11
|
Guo C, Zhang J, Wang J, Su L, Ning X, Guo Y, Han J, Ma N. Vascular endothelial cell-derived exosomal miR-1246 facilitates posterior capsule opacification development by targeting GSK-3β in diabetes mellitus. Exp Eye Res 2023; 231:109463. [PMID: 37044287 DOI: 10.1016/j.exer.2023.109463] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/22/2023] [Accepted: 03/30/2023] [Indexed: 04/14/2023]
Abstract
Posterior capsule opacification (PCO) is a serious complication after cataract surgery. Diabetes could increase the occurrence of PCO, but the mechanism is still unclear. The purpose of this study is to investigate the role of small extracellular vesicles (sEVs) derived from diabetic aqueous humor in PCO process. Intraoperatively-derived aqueous humor sEVs from patients with diabetic related cataract (DRC) promoted the epithelial-mesenchymal transition (EMT) and metastasis of human lens epithelial cells (LECs). Via mouse PCO surgical model and DiI labeled fluorescence detection of sEVs, the sEVs derived from vascular endothelium were discovered directly contacting with LECs. Furthermore, we demonstrated that high-glucose-cultured human umbilical vein endothelial cells (HUVEC) -derived sEVs facilitated EMT process of HLE-B3 using co-culture model in vitro. MiRNA-seq data and GEO datasets analysis revealed that miR-1246 was essential in EMT process with diabetes. The miR-1246 was highly expressed in diabetic aqueous humor sEVs and high-glucose-treated vascular-endothelial-cell-derived sEVs. Moreover, miR-1246 promoted the metastasis and EMT process of HLE-B3 cells by directly targeting GSK-3β. Inhibiting miR-1246 could negatively regulated EMT. This finding might serve as a potential therapy for diabetic PCO.
Collapse
Affiliation(s)
- Chenjun Guo
- Department of Ophthalmology, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Jie Zhang
- Department of Ophthalmology, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Jue Wang
- Department of Ophthalmology, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Liping Su
- Department of Ophthalmology, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Xiaona Ning
- Department of Ophthalmology, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Yong Guo
- Xi'an Purui Eye Hospital, Xi'an, 710068, China
| | - Jing Han
- Department of Ophthalmology, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China.
| | - Nan Ma
- Department of Ophthalmology, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China.
| |
Collapse
|
12
|
Mrugacz M, Pony-Uram M, Bryl A, Zorena K. Current Approach to the Pathogenesis of Diabetic Cataracts. Int J Mol Sci 2023; 24:ijms24076317. [PMID: 37047290 PMCID: PMC10094546 DOI: 10.3390/ijms24076317] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/13/2023] [Accepted: 03/25/2023] [Indexed: 03/30/2023] Open
Abstract
Cataracts remain the first or second leading cause of blindness in all world regions. In the diabetic population, cataracts not only have a 3–5 times higher incidence than in the healthy population but also affect people at a younger age. In patients with type 1 diabetes, cataracts occur on average 20 years earlier than in the non-diabetic population. In addition, the risk of developing cataracts increases with the duration of diabetes and poor metabolic control. A better understanding of the mechanisms leading to the formation of diabetic cataracts enables more effective treatment and a holistic approach to the patient.
Collapse
|
13
|
Liu Z, Huang S, Zheng Y, Zhou T, Hu L, Xiong L, Li DWC, Liu Y. The lens epithelium as a major determinant in the development, maintenance, and regeneration of the crystalline lens. Prog Retin Eye Res 2023; 92:101112. [PMID: 36055924 DOI: 10.1016/j.preteyeres.2022.101112] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/28/2022] [Accepted: 08/02/2022] [Indexed: 02/01/2023]
Abstract
The crystalline lens is a transparent and refractive biconvex structure formed by lens epithelial cells (LECs) and lens fibers. Lens opacity, also known as cataracts, is the leading cause of blindness in the world. LECs are the principal cells of lens throughout human life, exhibiting different physiological properties and functions. During the embryonic stage, LECs proliferate and differentiate into lens fibers, which form the crystalline lens. Genetics and environment are vital factors that influence normal lens development. During maturation, LECs help maintain lens homeostasis through material transport, synthesis and metabolism as well as mitosis and proliferation. If disturbed, this will result in loss of lens transparency. After cataract surgery, the repair potential of LECs is activated and the structure and transparency of the regenerative tissue depends on postoperative microenvironment. This review summarizes recent research advances on the role of LECs in lens development, homeostasis, and regeneration, with a particular focus on the role of cholesterol synthesis (eg., lanosterol synthase) in lens development and homeostasis maintenance, and how the regenerative potential of LECs can be harnessed to develop surgical strategies and improve the outcomes of cataract surgery (Fig. 1). These new insights suggest that LECs are a major determinant of the physiological and pathological state of the lens. Further studies on their molecular biology will offer possibility to explore new approaches for cataract prevention and treatment.
Collapse
Affiliation(s)
- Zhenzhen Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Shan Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Yingfeng Zheng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Tian Zhou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Leyi Hu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Lang Xiong
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - David Wan-Cheng Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Yizhi Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China; Research Unit of Ocular Development and Regeneration, Chinese Academy of Medical Sciences, Beijing, 100085, China.
| |
Collapse
|
14
|
Zhou W, Duan Z, Zhao J, Fu R, Zhu C, Fan D. Glucose and MMP-9 dual-responsive hydrogel with temperature sensitive self-adaptive shape and controlled drug release accelerates diabetic wound healing. Bioact Mater 2022; 17:1-17. [PMID: 35386439 PMCID: PMC8958327 DOI: 10.1016/j.bioactmat.2022.01.004] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 12/15/2021] [Accepted: 01/04/2022] [Indexed: 12/11/2022] Open
Abstract
Chronic diabetic wounds are an important healthcare challenge. High concentration glucose, high level of matrix metalloproteinase-9 (MMP-9), and long-term inflammation constitute the special wound environment of diabetic wounds. Tissue necrosis aggravates the formation of irregular wounds. All the above factors hinder the healing of chronic diabetic wounds. To solve these issues, a glucose and MMP-9 dual-response temperature-sensitive shape self-adaptive hydrogel (CBP/GMs@Cel&INS) was designed and constructed with polyvinyl alcohol (PVA) and chitosan grafted with phenylboric acid (CS-BA) by encapsulating insulin (INS) and gelatin microspheres containing celecoxib (GMs@Cel). Temperature-sensitive self-adaptive CBP/GMs@Cel&INS provides a new way to balance the fluid-like mobility (self-adapt to deep wounds quickly, approximately 37 °C) and solid-like elasticity (protect wounds against external forces, approximately 25 °C) of self-adaptive hydrogels, while simultaneously releasing insulin and celecoxib on-demand in the environment of high-level glucose and MMP-9. Moreover, CBP/GMs@Cel&INS exhibits remodeling and self-healing properties, enhanced adhesion strength (39.65 ± 6.58 kPa), down-regulates MMP-9, and promotes cell proliferation, migration, and glucose consumption. In diabetic full-thickness skin defect models, CBP/GMs@Cel&INS significantly alleviates inflammation and regulates the local high-level glucose and MMP-9 in the wounds, and promotes wound healing effectively through the synergistic effect of temperature-sensitive shape-adaptive character and the dual-responsive system. The hydrogel with temperature-sensitive adaptive shape can fill irregular wounds. The hydrogel on-demand releases drugs responding to diabetic wound environment. The hydrogel significantly accelerated diabetic wound healing.
Collapse
|
15
|
Abdelkader H, Mustafa WW, Alqahtani AM, Alsharani S, Al Fatease A, Alany RG. Glycation-induced age-related illnesses, antiglycation and drug delivery strategies. J Pharm Pharmacol 2022; 74:1546-1567. [PMID: 35972442 DOI: 10.1093/jpp/rgac051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 06/15/2022] [Indexed: 02/06/2023]
Abstract
OBJECTIVES Ageing is a major cause of multiple age-related diseases. Several mechanisms have been reported to contribute to these abnormalities including glycation, oxidative stress, the polyol pathway and osmotic stress. Glycation, unlike glycosylation, is an irregular biochemical reaction to the formation of active advanced glycation end-products (AGEs), which are considered to be one of the causes of these chronic diseases. This study provides a recent and comprehensive review on the possible causes, mechanisms, types, analytical techniques, diseases and treatments of the toxic glycation end products. KEY FINDINGS Several mechanisms have been found to play a role in generating hyperglycaemia-induced oxidative stress including an increase in the levels of reactive oxygen species (ROS), increase in the levels of AGEs, binding of AGEs and their receptors (RAGE) and the polyol pathway and thus have been investigated as promising novel targets. SUMMARY This review focuses on the key mechanisms attributed to cumulative increases of glycation and pathological RAGE expression as a significant cause of multiple age-related diseases, and reporting on different aspects of antiglycation therapy as a novel approach to managing/treating age-related diseases. Additionally, historical, current and possible future antiglycation approaches will be presented focussing on novel drug delivery methods.
Collapse
Affiliation(s)
- Hamdy Abdelkader
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha, Kingdom of Saudi Arabia.,Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Wesam W Mustafa
- Department of Chemical and Pharmaceutical Sciences, School of Life Sciences, Pharmacy and Chemistry, Kingston University London, Kingston upon Thames, UK.,Department of Pharmacy, Al-Mustafa University College, Baghdad, Iraq
| | - Ali M Alqahtani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, Kingdom of Saudi Arabia
| | - Sultan Alsharani
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, Abha, Kingdom of Saudi Arabia
| | - Adel Al Fatease
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha, Kingdom of Saudi Arabia
| | - Raid G Alany
- Drug Discovery, Delivery and Patient Care Theme, Faculty of Science, Engineering and Computing, Kingston University London, Kingston upon Thames, UK.,School of Pharmacy, The University of Auckland, Auckland, New Zealand
| |
Collapse
|