1
|
Formica ML, Paz MC, Vaglienti MV, Subirada PV, Fernández Y, Joray MB, Luna JD, Barcelona PF, Palma SD, Sánchez MC. Doxycycline inhibits MMP-2 retinal activity and modulates the angiogenic process in vitro and in vivo. Front Cell Dev Biol 2025; 13:1561250. [PMID: 40230413 PMCID: PMC11994896 DOI: 10.3389/fcell.2025.1561250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 03/18/2025] [Indexed: 04/16/2025] Open
Abstract
Introduction Vascular endothelial growth factor (VEGF) inhibition is currently the first-line therapy for various retinal vascular disorders, however there is a strong need to develop novel therapies to target other molecules involved in the angiogenic process. In addition to well-known antibiotic properties, Doxycycline (DXC) has versatile non-antibiotic properties, therefore, our goal was to evaluate the effect of DXC on matrix metalloproteinase-2 (MMP-2) as a potential therapeutic alternative for retinal neovascularization (NV), using vascular and glial cells and the oxygen-induced retinopathy (OIR) mouse model. Methods MGC and BAEC viability under DXC treatment was evaluated using an MTT assay. Changes of Pro MMP-2 and MMP-2 activity were measured by gelatin zymography assay in MIO-M1 cells incubated with DXC under normoxia and hypoxic conditions. VEGF-induced angiogenesis was assessed by tube formation assay in BAEC incubated with DXC for 24 h C57BL/6 mice exposed to OIR model, were intravitreally injected with a single dose of DXC at post-natal day (P)12 and retinas evaluated at P17. Results DXC significantly decreased pro MMP-2 and MMP-2 activity in MIO-M1 supernatants and increased hypoxic-induced mRNA expression of pigmentary epithelium-derived factor (PEDF). Moreover, DXC inhibited the VEGF-induced tube formation in endothelial cells. A single intraocular administration of DXC at postnatal day (P) 12 showed a significant decrease of pro MMP-2 and MMP-2 activity together with a reduced NV and vaso-obliteration in P17 mouse retinas of OIR eyes, while no significant difference was observed neither in MMP-2 nor in VEGF protein expression. Discussion Our results lead to propose a possible DXC mechanism for inhibition of angiogenesis through the modulation of MMPs involving the VEGF/PEDF balance. These findings underscore the potential repositioning of DXC as a new possibility for treating ocular proliferative diseases.
Collapse
Affiliation(s)
- María Lina Formica
- Conicet y Departamento de Ciencias Farmacéuticas, Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - María Constanza Paz
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Córdoba, Argentina
- Departamento de Bioquímica Clínica, Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Córdoba, Argentina
| | - María Victoria Vaglienti
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Córdoba, Argentina
- Departamento de Bioquímica Clínica, Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Córdoba, Argentina
| | - Paula Virginia Subirada
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Córdoba, Argentina
- Departamento de Bioquímica Clínica, Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Córdoba, Argentina
| | - Yamila Fernández
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Córdoba, Argentina
- Departamento de Bioquímica Clínica, Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Córdoba, Argentina
| | - Mariana Belén Joray
- Centro de Investigación y Desarrollo en Inmunología y Enfermedades Infecciosas (CIDIE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Católica de Córdoba (UCC), Córdoba, Argentina
| | - José Domingo Luna
- Departamento de Vitreo-Retina, Centro Privado de Ojos Romagosa S.A, Córdoba, Argentina
| | - Pablo Federico Barcelona
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Córdoba, Argentina
- Departamento de Bioquímica Clínica, Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Córdoba, Argentina
| | - Santiago Daniel Palma
- Conicet y Departamento de Ciencias Farmacéuticas, Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - María Cecilia Sánchez
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Córdoba, Argentina
- Departamento de Bioquímica Clínica, Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Córdoba, Argentina
| |
Collapse
|
2
|
Duman E, Müller-Deubert S, Pattappa G, Stratos I, Sieber SA, Clausen-Schaumann H, Sarafian V, Shukunami C, Rudert M, Docheva D. Fluoroquinolone-Mediated Tendinopathy and Tendon Rupture. Pharmaceuticals (Basel) 2025; 18:184. [PMID: 40005998 PMCID: PMC11858458 DOI: 10.3390/ph18020184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/23/2025] [Accepted: 01/25/2025] [Indexed: 02/27/2025] Open
Abstract
The fluoroquinolone (FQ) class of antibiotics includes the world's most prescribed antibiotics such as ciprofloxacin, levofloxacin, and ofloxacin that are known for their low bacterial resistance. This is despite their potential to trigger severe side effects, such as myopathy, hearing loss, tendinopathy, and tendon rupture. Thus, healthcare organizations around the world have recommended limiting the prescription of FQs. Tendinopathy is a common name for maladies that cause pain and degeneration in the tendon tissue, which can result in tendon rupture. Whilst there are several identified effects of FQ on tendons, the exact molecular mechanisms behind FQ-mediated tendon rupture are unclear. Previous research studies indicated that FQ-mediated tendinopathy and tendon rupture can be induced by changes in gene expression, metabolism, and function of tendon resident cells, thus leading to alterations in the extracellular matrix. Hence, this review begins with an update on FQs, their mode of action, and their known side effects, as well as summary information on tendon tissue structure and cellular content. Next, how FQs affect the tendon tissue and trigger tendinopathy and tendon rupture is explored in detail. Lastly, possible preventative measures and promising areas for future research are also discussed. Specifically, follow-up studies should focus on understanding the FQ-mediated tendon changes in a more complex manner and integrating in vitro with in vivo models. With respect to in vitro systems, the field should move towards three-dimensional models that reflect the cellular diversity found in the tissue.
Collapse
Affiliation(s)
- Ezgi Duman
- Department of Musculoskeletal Tissue Regeneration, Orthopaedic Hospital König-Ludwig-Haus, University of Würzburg, 97070 Würzburg, Germany; (S.M.-D.); (G.P.)
| | - Sigrid Müller-Deubert
- Department of Musculoskeletal Tissue Regeneration, Orthopaedic Hospital König-Ludwig-Haus, University of Würzburg, 97070 Würzburg, Germany; (S.M.-D.); (G.P.)
| | - Girish Pattappa
- Department of Musculoskeletal Tissue Regeneration, Orthopaedic Hospital König-Ludwig-Haus, University of Würzburg, 97070 Würzburg, Germany; (S.M.-D.); (G.P.)
| | - Ioannis Stratos
- Department of Orthopaedics, Orthopaedic Hospital König-Ludwig-Haus, University of Würzburg, 97070 Würzburg, Germany; (I.S.); (M.R.)
| | - Stephan A. Sieber
- Center for Functional Protein Assemblies, Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, 85748 Garching, Germany;
| | - Hauke Clausen-Schaumann
- Center for Applied Tissue Engineering and Regenerative Medicine (CANTER), University of Applied Sciences, 80335 Munich, Germany;
| | - Victoria Sarafian
- Department of Medical Biology, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria;
- Research Institute, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria
| | - Chisa Shukunami
- Department of Molecular Biology and Biochemistry, Division of Dental Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan;
| | - Maximilian Rudert
- Department of Orthopaedics, Orthopaedic Hospital König-Ludwig-Haus, University of Würzburg, 97070 Würzburg, Germany; (I.S.); (M.R.)
| | - Denitsa Docheva
- Department of Musculoskeletal Tissue Regeneration, Orthopaedic Hospital König-Ludwig-Haus, University of Würzburg, 97070 Würzburg, Germany; (S.M.-D.); (G.P.)
| |
Collapse
|
3
|
Chueh FS, Hsu SY, Lai KC, Liu YC, Lyu PC, Kuo YH, Huang YP, Hsieh WT. Physalin A induces apoptosis through conjugating with Fas-FADD cell death receptor in human oral squamous carcinoma cells and suppresses HSC-3 cell xenograft tumors in NOD/SCID mice. Hum Exp Toxicol 2025; 44:9603271251335220. [PMID: 40239116 DOI: 10.1177/09603271251335220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
IntroductionOral carcinoma cancer exhibits high global incidence and mortality. Physalin A (PA) was reported to induce programmed cell death in cancer cells. No study has yet investigated the influence of PA in oral squamous cell carcinoma. Herein, this study aims to explore PA-induced anti-cancer effects in human oral carcinoma.MethodsThis study used DNA gel electrophoresis and Annexin V/PI staining to detect DNA fragmentation and cell apoptosis. Western blotting and immunofluorescence analyzed protein expression. Flow cytometry measured Ca2+ release and mitochondrial membrane potential (∆Ψm). Moreover, molecular docking models predicted the molecular binding affinity.ResultsDNA gel electrophoresis and annexin V/PI staining confirmed PA-induced DNA fragmentation and apoptosis. Flow cytometry showed PA increased Ca2+ release and reduced ∆Ψm levels. PA activated cleaved caspase-3, -8, and -9, upregulated Bax and Bid, and downregulated Bcl-2. PA dose-dependently increased Fas (CD95/APO-1), apoptosis-inducing factor (AIF), and cytochrome c release in western blotting analysis. Confocal microscopy confirmed increased Bax, AIF, cleaved caspase-3, and Fas, with decreased Bcl-2. Molecular docking showed strong PA binding via hydrophobic interactions with the Fas-associated death domain (FADD). Compared with cisplatin, PA inhibited HSC-3 cell xenograft tumor growth in NOD/SCID mice.DiscussionWe reveal that PA binds to the Fas-FADD complex, inducing caspase-8 activation and triggering extrinsic and intrinsic mitochondria-dependent apoptosis in HSC-3 cells. It also suppresses HSC-3 cell xenograft tumors in NOD/SCID mice. These findings suggest PA as a potential anti-oral cancer agent in the future.
Collapse
Affiliation(s)
- Fu-Shin Chueh
- Department of Food Nutrition and Health Biotechnology, Asia University, Taichung, Taiwan
| | - Sheng-Yao Hsu
- Department of Ophthalmology, Kaohsiung Show Chwan Memorial Hospital, Taiwan
- Department of Optometry, Chung Hwa University of Medical Technology, Tainan, Taiwan
| | - Kuang-Chi Lai
- Department of Surgery, China Medical University Beigang Hospital, Yunlin, Taiwan
| | - Yi-Chung Liu
- Institute of Population Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Ping-Chiang Lyu
- Institute of Bioinformatics and Structural Biology, National Tsing-Hua University, Hsinchu, Taiwan
| | - Yueh-Hsiung Kuo
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung, Taiwan
- Chinese Medicine Research Center, China Medical University, Taichung, Taiwan
- Department of Biotechnology, Asia University, Taichung, Taiwan
| | - Yi-Ping Huang
- Department of Physiology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Wen-Tsong Hsieh
- Chinese Medicine Research Center, China Medical University, Taichung, Taiwan
- Department of Pharmacology, China Medical University, Taichung, Taiwan
| |
Collapse
|
4
|
Zuo M, Ye M, Lin H, Liao S, Xing X, Liu J, Wu D, Huang Z, Ren X. Mitochondrial Dysfunction in Environmental Toxicology: Mechanisms, Impacts, and Health Implications. Chem Res Toxicol 2024; 37:1794-1806. [PMID: 39485318 DOI: 10.1021/acs.chemrestox.4c00328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Mitochondria, pivotal to cellular metabolism, serve as the primary sources of biological energy and are key regulators of intracellular calcium ion storage, crucial for maintaining cellular calcium homeostasis. Dysfunction in these organelles impairs ATP synthesis, diminishing cellular functionality. Emerging evidence implicates mitochondrial dysfunction in the etiology and progression of diverse diseases. Environmental factors that induce mitochondrial dysregulation raise significant public health concerns, necessitating a nuanced comprehension and classification of mitochondrial-related hazards. This review systematically adopts a toxicological perspective to illuminate the biological functions of mitochondria, offering a comprehensive exploration of how toxicants instigate mitochondrial dysfunction. It delves into the disruption of energy metabolism, the initiation of mitochondrial fragility and autophagy, and the induction of mutations in mitochondrial DNA by mutagens. The overarching objective is to enhance our understanding of the repercussions of mitochondrial damage on human health.
Collapse
Affiliation(s)
- Mingyang Zuo
- School of Public Health, Southern Medical University, No. 1023 Shatai Nan Road, Baiyun District, Guangzhou 510515, China
| | - Mingqi Ye
- School of Public Health, Southern Medical University, No. 1023 Shatai Nan Road, Baiyun District, Guangzhou 510515, China
| | - Haofeng Lin
- School of Public Health, Southern Medical University, No. 1023 Shatai Nan Road, Baiyun District, Guangzhou 510515, China
| | - Shicheng Liao
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Xiumei Xing
- School of Public Health, Sun Yat-Sen University, No. 74 Zhongshan Road 2, Guangzhou 510080, China
| | - Jianjun Liu
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, No 8 Longyuan Road, Nanshan District, Shenzhen 518055, China
| | - Desheng Wu
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, No 8 Longyuan Road, Nanshan District, Shenzhen 518055, China
| | - Zhenlie Huang
- School of Public Health, Southern Medical University, No. 1023 Shatai Nan Road, Baiyun District, Guangzhou 510515, China
| | - Xiaohu Ren
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, No 8 Longyuan Road, Nanshan District, Shenzhen 518055, China
| |
Collapse
|
5
|
Zeng W, Liang Y, Huang S, Zhang J, Mai C, He B, Shi L, Liu B, Li W, Huang X, Li X. Ciprofloxacin Accelerates Angiotensin-II-Induced Vascular Smooth Muscle Cells Senescence Through Modulating AMPK/ROS pathway in Aortic Aneurysm and Dissection. Cardiovasc Toxicol 2024; 24:889-903. [PMID: 39138741 PMCID: PMC11335803 DOI: 10.1007/s12012-024-09892-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 07/03/2024] [Indexed: 08/15/2024]
Abstract
Aortic aneurysm and dissection (AAD) is a cardiovascular disease that poses a severe threat to life and has high morbidity and mortality rates. Clinical and animal-based studies have irrefutably shown that fluoroquinolones, a commonly prescribed antibiotic for treating infections, significantly increase the risk of AAD. Despite this, the precise mechanism by which fluoroquinolones cause AAD remains unclear. Therefore, this study aims to investigate the molecular mechanism and role of Ciprofloxacin definitively-a type of fluoroquinolone antibiotic-in the progression of AAD. Aortic transcriptome data were collected from GEO datasets to detect the genes and pathways expressed differently between healthy donors and AAD patients. Human primary Vascular Smooth Muscle Cells (VSMCs) were isolated from the aorta. After 72 h of exposure to 110ug/ml Ciprofloxacin or 100 nmol/L AngII, either or combined, the senescent cells were identified through SA-β-gal staining. MitoTracker staining was used to examine the morphology of mitochondria in each group. Cellular Reactive Oxygen Species (ROS) levels were measured using MitoSox and DCFH-DA staining. Western blot assay was performed to detect the protein expression level. We conducted an analysis of transcriptome data from both healthy donors and patients with AAD and found that there were significant changes in cellular senescence-related signaling pathways in the latter group. We then isolated and identified human primary VSMCs from healthy donors (control-VSMCs) and patients' (AAD-VSMCs) aortic tissue, respectively. We found that VSMCs from patients exhibited senescent phenotype as compared to control-VSMCs. The higher levels of p21 and p16 and elevated SA-β-gal activity demonstrated this. We also found that pretreatment with Ciprofloxacin promoted angiotensin-II-induced cellular senescence in control-VSMCs. This was evidenced by increased SA-β-gal activity, decreased cell proliferation, and elevation of p21 and p16 protein levels. Additionally, we found that Angiotensin-II (AngII) induced VSMC senescence by promoting ROS generation. We used DCFH-DA and mitoSOX staining to identify that Ciprofloxacin and AngII pretreatment further elevated ROS levels than the vehicle or alone group. Furthermore, JC-1 staining showed that mitochondrial membrane potential significantly declined in the Ciprofloxacin and AngII combination group compared to others. Compared to the other three groups, pretreatment of Ciprofloxacin plus AngII could further induce mitochondrial fission, demonstrated by mitoTracker staining and western blotting assay. Mechanistically, we found that Ciprofloxacin impaired the balance of mitochondrial fission and fusion dynamics in VSMCs by suppressing the phosphorylation of AMPK signaling. This caused mitochondrial dysfunction and ROS generation, thereby elevating AngII-induced cellular senescence. However, treatment with the AMPK activator partially alleviated those effects. Our data indicate that Ciprofloxacin may accelerate AngII-induced VSMC senescence through modulating AMPK/ROS signaling and, subsequently, hasten the progression of AAD.
Collapse
MESH Headings
- Humans
- Cellular Senescence/drug effects
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/enzymology
- Aortic Dissection/chemically induced
- Aortic Dissection/pathology
- Aortic Dissection/enzymology
- Aortic Dissection/metabolism
- Signal Transduction/drug effects
- Reactive Oxygen Species/metabolism
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/pathology
- Myocytes, Smooth Muscle/enzymology
- Myocytes, Smooth Muscle/metabolism
- Angiotensin II/toxicity
- Cells, Cultured
- Ciprofloxacin/pharmacology
- AMP-Activated Protein Kinases/metabolism
- Case-Control Studies
- Aortic Aneurysm/chemically induced
- Aortic Aneurysm/pathology
- Aortic Aneurysm/metabolism
- Aortic Aneurysm/enzymology
- Male
- Middle Aged
- Oxidative Stress/drug effects
Collapse
Affiliation(s)
- Weiyue Zeng
- School of Medicine, South China University of Technology, Guangzhou, China
- Department of Emergency Medicine, China-Algeria Joint Laboratory On Emergeney Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yaowen Liang
- Department of Emergency Medicine, China-Algeria Joint Laboratory On Emergeney Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
- Shantou University Medical College, Shantou, China
| | - Shangjun Huang
- School of Medicine, South China University of Technology, Guangzhou, China
- Department of Emergency Medicine, China-Algeria Joint Laboratory On Emergeney Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jiarui Zhang
- School of Medicine, South China University of Technology, Guangzhou, China
- Department of Emergency Medicine, China-Algeria Joint Laboratory On Emergeney Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Cong Mai
- School of Medicine, South China University of Technology, Guangzhou, China
- Department of Emergency Medicine, China-Algeria Joint Laboratory On Emergeney Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Binbin He
- Department of Emergency Medicine, China-Algeria Joint Laboratory On Emergeney Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Linli Shi
- Department of Emergency Medicine, China-Algeria Joint Laboratory On Emergeney Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Baojuan Liu
- Department of Emergency Medicine, China-Algeria Joint Laboratory On Emergeney Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Weifeng Li
- Department of Emergency Medicine, China-Algeria Joint Laboratory On Emergeney Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China.
| | - Xiaoran Huang
- Department of Emergency Medicine, China-Algeria Joint Laboratory On Emergeney Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China.
| | - Xin Li
- School of Medicine, South China University of Technology, Guangzhou, China.
- Department of Emergency Medicine, China-Algeria Joint Laboratory On Emergeney Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China.
| |
Collapse
|
6
|
Donato L, Scimone C, Alibrandi S, Scalinci SZ, Mordà D, Rinaldi C, D'Angelo R, Sidoti A. Human retinal secretome: A cross-link between mesenchymal and retinal cells. World J Stem Cells 2023; 15:665-686. [PMID: 37545752 PMCID: PMC10401416 DOI: 10.4252/wjsc.v15.i7.665] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/17/2023] [Accepted: 04/10/2023] [Indexed: 07/25/2023] Open
Abstract
In recent years, mesenchymal stem cells (MSC) have been considered the most effective source for regenerative medicine, especially due to released soluble paracrine bioactive components and extracellular vesicles. These factors, collectively called the secretome, play crucial roles in immunomodulation and in improving survival and regeneration capabilities of injured tissue. Recently, there has been a growing interest in the secretome released by retinal cytotypes, especially retinal pigment epithelium and Müller glia cells. The latter trophic factors represent the key to preserving morphofunctional integrity of the retina, regulating biological pathways involved in survival, function and responding to injury. Furthermore, these factors can play a pivotal role in onset and progression of retinal diseases after damage of cell secretory function. In this review, we delineated the importance of cross-talk between MSCs and retinal cells, focusing on common/induced secreted factors, during experimental therapy for retinal diseases. The cross-link between the MSC and retinal cell secretomes suggests that the MSC secretome can modulate the retinal cell secretome and vice versa. For example, the MSC secretome can protect retinal cells from degeneration by reducing oxidative stress, autophagy and programmed cell death. Conversely, the retinal cell secretome can influence the MSC secretome by inducing changes in MSC gene expression and phenotype.
Collapse
Affiliation(s)
- Luigi Donato
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina 98125, Italy
- Department of Biomolecular Strategies, Genetics and Cutting-Edge Therapies, Euro-Mediterranean Institute of Science and Technology, Palermo 90139, Italy
| | - Concetta Scimone
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina 98125, Italy
- Department of Biomolecular Strategies, Genetics and Cutting-Edge Therapies, Euro-Mediterranean Institute of Science and Technology, Palermo 90139, Italy
| | - Simona Alibrandi
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina 98125, Italy
- Department of Biomolecular Strategies, Genetics and Cutting-Edge Therapies, Euro-Mediterranean Institute of Science and Technology, Palermo 90139, Italy
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina 98125, Italy.
| | | | - Domenico Mordà
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina 98125, Italy
- Department of Biomolecular Strategies, Genetics and Cutting-Edge Therapies, Euro-Mediterranean Institute of Science and Technology, Palermo 90139, Italy
| | - Carmela Rinaldi
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina 98125, Italy
| | - Rosalia D'Angelo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina 98125, Italy
| | - Antonina Sidoti
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina 98125, Italy
| |
Collapse
|
7
|
Sivarajan D, Ramachandran B. Antibiotics modulate frequency and early generation of epileptic seizures in zebrafish. Exp Brain Res 2023; 241:571-583. [PMID: 36625966 DOI: 10.1007/s00221-023-06546-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 01/02/2023] [Indexed: 01/11/2023]
Abstract
Antibiotics have been used for decades to treat various bacterial infections. Apart from bactericidal activities, their potential side effects have not been much studied or evaluated. Neurotoxicity is a major concern in the case of β-lactam and fluoroquinolone families, which can result in convulsions or seizures. Here, we proposed a hypothesis to check whether antibiotic treatment can conclusively enhance anxiety-like behaviours and how seizure behavioural profile gets modulated in pentylenetetrazole (PTZ)-treated zebrafish. Zebrafish were treated with selected antibiotics such as 25 mg/L Penicillin G (PG) and Ciprofloxacin (CPFX), for 7 days and thereafter exposed to PTZ (7.5 mM) for 20 min. The data indicate that PG and CPFX-treated groups exhibited anxiety-like or stressed behavioural phenotypes in the novel tank test (6 min), and also, they were found to promote hyperactivity. Early onset of PTZ-induced seizure-like behavioural scores, the heightened intensity of seizure and reduced latency in different scores were found in PG and CPFX-administered groups. This study substantiates that PG and CPFX as potential seizure modulators in zebrafish. The zebrafish is a well-established and still expanding model organism in many fields. Here, we again reinforce zebrafish as a prominent model to investigate seizure-like neuro-behavioural entities and confirm that chronic antibiotic use has negative consequences that can exacerbate the circumstances of vertebrate species exhibiting seizure-related reactions.
Collapse
Affiliation(s)
- Dhanusha Sivarajan
- Department of Zoology, Christ College (Autonomous), Irinjalakuda, Thrissur, Kerala, 680125, India
| | - Binu Ramachandran
- Neuronal Plasticity Group, Department of Zoology, University of Calicut, Thenhipalam, Malappuram, Kerala, 673635, India.
| |
Collapse
|
8
|
Kataoka T. Biological properties of the BCL-2 family protein BCL-RAMBO, which regulates apoptosis, mitochondrial fragmentation, and mitophagy. Front Cell Dev Biol 2022; 10:1065702. [PMID: 36589739 PMCID: PMC9800997 DOI: 10.3389/fcell.2022.1065702] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Mitochondria play an essential role in the regulation of cellular stress responses, including cell death. Damaged mitochondria are removed by fission and fusion cycles and mitophagy, which counteract cell death. BCL-2 family proteins possess one to four BCL-2 homology domains and regulate apoptosis signaling at mitochondria. BCL-RAMBO, also known as BCL2-like 13 (BCL2L13), was initially identified as one of the BCL-2 family proteins inducing apoptosis. Mitophagy receptors recruit the ATG8 family proteins MAP1LC3/GABARAP via the MAP1LC3-interacting region (LIR) motif to initiate mitophagy. In addition to apoptosis, BCL-RAMBO has recently been identified as a mitophagy receptor that possesses the LIR motif and regulates mitochondrial fragmentation and mitophagy. In the 20 years since its discovery, many important findings on BCL-RAMBO have been increasingly reported. The biological properties of BCL-RAMBO are reviewed herein.
Collapse
Affiliation(s)
- Takao Kataoka
- Department of Applied Biology, Kyoto Institute of Technology, Kyoto, Japan,Biomedical Research Center, Kyoto Institute of Technology, Kyoto, Japan,*Correspondence: Takao Kataoka,
| |
Collapse
|
9
|
Salimiaghdam N, Singh L, Singh MK, Chwa M, Atilano SR, Mohtashami Z, Nesburn AB, Kuppermann BD, Lu SY, Kenney MC. Impacts of Bacteriostatic and Bactericidal Antibiotics on the Mitochondria of the Age-Related Macular Degeneration Cybrid Cell Lines. Biomolecules 2022; 12:675. [PMID: 35625603 PMCID: PMC9138285 DOI: 10.3390/biom12050675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/29/2022] [Accepted: 05/03/2022] [Indexed: 12/07/2022] Open
Abstract
We assessed the potential negative effects of bacteriostatic and bactericidal antibiotics on the AMD cybrid cell lines (K, U and J haplogroups). AMD cybrid cells were created and cultured in 96-well plates and treated with tetracycline (TETRA) and ciprofloxacin (CPFX) for 24 h. Reactive oxygen species (ROS) levels, mitochondrial membrane potential (ΔψM), cellular metabolism and ratio of apoptotic cells were measured using H2DCFDA, JC1, MTT and flow cytometry assays, respectively. Expression of genes of antioxidant enzymes, and pro-inflammatory and pro-apoptotic pathways were evaluated by quantitative real-time PCR (qRT-PCR). Higher ROS levels were found in U haplogroup cybrids when treated with CPFX 60 µg/mL concentrations, lower ΔψM of all haplogroups by CPFX 120 µg/mL, diminished cellular metabolism in all cybrids with CPFX 120 µg/mL, and higher ratio of dead cells in K and J cybrids. CPFX 120 µg/mL induced overexpression of IL-33, CASP-3 and CASP-9 in all cybrids, upregulation of TGF-β1 and SOD2 in U and J cybrids, respectively, along with decreased expression of IL-6 in J cybrids. TETRA 120 µg/mL induced decreased ROS levels in U and J cybrids, increased cellular metabolism of treated U cybrids, higher ratio of dead cells in K and J cybrids and declined ΔψM via all TETRA concentrations in all haplogroups. TETRA 120 µg/mL caused upregulation of IL-6 and CASP-3 genes in all cybrids, higher CASP-7 gene expression in K and U cybrids and downregulation of the SOD3 gene in K and U cybrids. Clinically relevant dosages of ciprofloxacin and tetracycline have potential adverse impacts on AMD cybrids possessing K, J and U mtDNA haplogroups in vitro.
Collapse
Affiliation(s)
- Nasim Salimiaghdam
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA 92697, USA; (N.S.); (L.S.); (M.K.S.); (M.C.); (S.R.A.); (Z.M.); (A.B.N.); (B.D.K.); (S.Y.L.)
| | - Lata Singh
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA 92697, USA; (N.S.); (L.S.); (M.K.S.); (M.C.); (S.R.A.); (Z.M.); (A.B.N.); (B.D.K.); (S.Y.L.)
| | - Mithalesh K. Singh
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA 92697, USA; (N.S.); (L.S.); (M.K.S.); (M.C.); (S.R.A.); (Z.M.); (A.B.N.); (B.D.K.); (S.Y.L.)
| | - Marilyn Chwa
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA 92697, USA; (N.S.); (L.S.); (M.K.S.); (M.C.); (S.R.A.); (Z.M.); (A.B.N.); (B.D.K.); (S.Y.L.)
| | - Shari R. Atilano
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA 92697, USA; (N.S.); (L.S.); (M.K.S.); (M.C.); (S.R.A.); (Z.M.); (A.B.N.); (B.D.K.); (S.Y.L.)
| | - Zahra Mohtashami
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA 92697, USA; (N.S.); (L.S.); (M.K.S.); (M.C.); (S.R.A.); (Z.M.); (A.B.N.); (B.D.K.); (S.Y.L.)
| | - Anthony B. Nesburn
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA 92697, USA; (N.S.); (L.S.); (M.K.S.); (M.C.); (S.R.A.); (Z.M.); (A.B.N.); (B.D.K.); (S.Y.L.)
- Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Baruch D. Kuppermann
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA 92697, USA; (N.S.); (L.S.); (M.K.S.); (M.C.); (S.R.A.); (Z.M.); (A.B.N.); (B.D.K.); (S.Y.L.)
| | - Stephanie Y. Lu
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA 92697, USA; (N.S.); (L.S.); (M.K.S.); (M.C.); (S.R.A.); (Z.M.); (A.B.N.); (B.D.K.); (S.Y.L.)
| | - M. Cristina Kenney
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA 92697, USA; (N.S.); (L.S.); (M.K.S.); (M.C.); (S.R.A.); (Z.M.); (A.B.N.); (B.D.K.); (S.Y.L.)
- Department of Pathology and Laboratory Medicine, University of California Irvine, Irvine, CA 92697, USA
| |
Collapse
|