1
|
Qu R, Peng Y, Xu S, Zhou M, Yin X, Liu B, Bi H, Guo D. RBPJ Knockdown Promotes M2 Macrophage Polarization Through Mitochondrial ROS-mediated Notch1-Jagged1-Hes1 Signaling Pathway in Uveitis. Inflammation 2025; 48:133-150. [PMID: 38761249 DOI: 10.1007/s10753-024-02053-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/26/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024]
Abstract
Uveitis is an autoimmune eye disease that can be involved in the entire body and is one of the leading causes of blindness. Therefore, comprehending the mechanisms underlying the development and regulation of ocular immune responses in uveitis is crucial for designing effective therapeutic interventions. In this study, we investigated how RBPJ regulates macrophage polarization in uveitis. We demonstrated that targeted RBPJ knockdown (RBPJKD) promotes M2 macrophage polarization and ameliorates uveitis through the mtROS-mediated Notch1-Jagged1-Hes1 signaling pathway. Real-time quantitative (Q-PCR) analysis revealed that the Notch1-Jagged1-Hes1 signaling pathway was active in the eye tissues of experimental autoimmune uveitis (EAU) rats. Immunofluorescence double staining confirmed enhanced signaling primarily occurring in macrophages, establishing a correlation between the Notch1 signaling pathway and macrophages. Transmission electron microscopy evaluated the morphological and functional changes of mitochondria in each group's eye tissues. It demonstrated significant swelling and disorganization in the EAU group, which were effectively restored upon RBPJ knockdown intervention. Finally, by employing an antioxidant N-acetyl-L-cysteine (NAC) to eliminate mtROS in vivo, we observed a decrease in the M2 macrophage polarization level, which prevented the cytoprotective effect conferred by RBPJKD. These findings underscore the relevance of the Notch signaling pathway to the immune system while highlighting the potential role of mtROS as a therapeutic target for inflammation and other related diseases.
Collapse
Affiliation(s)
- Ruyi Qu
- Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| | - Yuan Peng
- Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| | - Shuqin Xu
- Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| | - Mengxian Zhou
- Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| | - Xuewei Yin
- Affiliated Eye Hospital of Shandong, University of Traditional Chinese Medicine, Jinan, 250002, China
| | - Bin Liu
- Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| | - Hongsheng Bi
- Affiliated Eye Hospital of Shandong, University of Traditional Chinese Medicine, Jinan, 250002, China
| | - Dadong Guo
- Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Shandong Academy of Eye Disease Prevention and Therapy, Medical College of Optometry and Ophthalmology, Shandong University of Traditional Chinese Medicine, No. 48#, Yingxiongshan Road, Jinan, 250002, China.
| |
Collapse
|
2
|
Böhm M, Robert C, Malhotra S, Clément K, Farooqi S. An overview of benefits and risks of chronic melanocortin-1 receptor activation. J Eur Acad Dermatol Venereol 2025; 39:39-51. [PMID: 39082868 PMCID: PMC11664455 DOI: 10.1111/jdv.20269] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 07/08/2024] [Indexed: 12/24/2024]
Abstract
The melanocortin-1 receptor (MC1R) is a G protein-coupled receptor that plays a pivotal role in human skin pigmentation, melanin synthesis, redox homeostasis and inflammation. Loss-of-function MC1R variants suppress G protein-coupled receptor coupling or cell surface expression leading to a decrease in adenyl cyclase activation and intracellular levels of cyclic adenosine monophosphate. Chronic activation of MC1R can occur in certain medical conditions such as Addison's disease and physiologic states such as pregnancy melasma. MC1R activation is more commonly caused by environmental exposure to ultraviolet (UV) radiation. Approved pharmacologic melanocortin agonists that activate MC1R signalling in a targeted manner or as a bystander effect have recently become available for erythropoietic protoporphyria, sexual desire disorders, monogenic obesity and syndromic obesity. Further, small peptide analogues of α-melanocortin-stimulating hormone, human MC1R selective agonists, are photoprotective, decreasing the adverse impact of UV radiation (a primary risk factor for skin cancer) and are being investigated as potential chemoprevention strategies. MC1R activation through induction of UV-protective skin pigmentation increased DNA repair, and control of aberrant cell growth may reduce the risk of melanoma but importantly does not prevent melanoma particularly in individuals with risk factors and regular skin examination remains critical in high-risk individuals.
Collapse
Affiliation(s)
- M. Böhm
- Department of DermatologyUniversity of MünsterMünsterGermany
| | - C. Robert
- Gustave RoussyVillejuifFrance
- Paris‐Saclay UniversityVillejuifFrance
| | - S. Malhotra
- Rhythm Pharmaceuticals, Inc.BostonMassachusettsUSA
- Harvard Medical SchoolBostonMassachusettsUSA
- Massachussetts General HospitalBostonMassachusettsUSA
| | - K. Clément
- Nutrition Department, Assistance Publique Hôpitaux de ParisPitié‐Salpêtrière HospitalParisFrance
- Inserm, Nutrition and Obesities, Systemic Approaches, NutriOmique Research GroupSorbonne UniversityParisFrance
| | - S. Farooqi
- Wellcome‐MRC Institute of Metabolic Science, Addenbrooke's HospitalUniversity of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research CentreCambridgeUK
| |
Collapse
|
3
|
Liu C, Wang X, Cao X. IL-10: A Key Regulator and potential therapeutic target in uveitis. Cell Immunol 2024; 405-406:104885. [PMID: 39447525 DOI: 10.1016/j.cellimm.2024.104885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/13/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024]
Abstract
Uveitis is a prevalent inflammatory eye disease that primarily affects working-age individuals and can lead to blindness if untreated. Interleukin-10 (IL-10) is a multifunctional cytokine with broad immunosuppressive properties and plays a significant role in various pathological and physiological processes. However, its specific role and underlying mechanisms in uveitis remain incompletely understood. This review aims to shed light on the biological characteristics of IL-10, its involvement in the uveitis pathophysiology, and its potential as a novel therapeutic target. By examining existing literature, the review analyzes IL-10 expression levels and regulatory mechanisms in different types of uveitis, discussing its role in immune regulation. Despite IL-10 being expressed variably across various forms of autoimmune uveitis, studies consistently highlight its protective role, prompting research into ways to enhance its bioavailability in the eye. IL-10 is often upregulated in infectious uveitis, contributing to pathogen immune evasion. Furthermore, primary intraocular lymphoma (PIOL), which shares clinical similarities with uveitis, also shows upregulated IL-10 levels, whereas IL-6 is more commonly elevated in uveitis. This differential expression suggests that IL-6 and IL-10 could be diagnostic markers to distinguish between PIOL and uveitis. Future research should continue to focus on elucidating the molecular mechanisms of IL-10 in uveitis, exploring its potential therapeutic applications, and developing targeted treatments that leverage the immunomodulatory effects of IL-10 to prevent and manage this sight-threatening condition.
Collapse
Affiliation(s)
- Chengzhi Liu
- Institution: Beijing Ophthalmology & Visual Science Key Lab, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Xinyu Wang
- Institution: Beijing Ophthalmology & Visual Science Key Lab, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Xusheng Cao
- Institution: Beijing Ophthalmology & Visual Science Key Lab, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China.
| |
Collapse
|
4
|
Abu SL, Hehar NK, Chigbu DI. Novel therapeutic receptor agonists and antagonists in allergic conjunctivitis. Curr Opin Allergy Clin Immunol 2024; 24:380-389. [PMID: 39079155 DOI: 10.1097/aci.0000000000001010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2024]
Abstract
PURPOSE OF REVIEW Allergic conjunctivitis is characterized by the development of pathophysiological changes to the ocular surface, which occurs when pro-allergic and pro-inflammatory mediators interact with their cognate receptors expressed on immune and nonimmune cells. Traditional treatments with antihistamines and corticosteroids provide relief, but there is a need for more efficacious and tolerable long-term therapy with a better safety profile. This article aims to provide an overview of the mode of action and clinical application of agonist therapies targeting glucocorticoid, melanocortin, and toll-like receptors, as well as antagonist therapies targeting cytokine, chemokine, integrin, and histamine receptors. RECENT FINDINGS There has been considerable advancement in immunology and pharmacology, as well as a greater understanding of the cellular and molecular mechanisms of allergic conjunctivitis. Recent research advancing therapy for allergic conjunctivitis has focused on developing synthetic molecules and biologics that can interfere with the process of the allergic immune reaction. SUMMARY This review discusses novel therapeutic receptors being explored agonistically or antagonistically to develop alternative treatment options for allergic conjunctivitis. These novel approaches hold promise for improving the management of allergic eye diseases, offering patients hope for more effective and safer treatment options in the future.
Collapse
Affiliation(s)
- Sampson L Abu
- Pennsylvania College of Optometry, Salus at Drexel University, Elkins Park, Pennsylvania, USA
| | | | | |
Collapse
|
5
|
Tang Y, Qu S, Ning Z, Wu H. Immunopeptides: immunomodulatory strategies and prospects for ocular immunity applications. Front Immunol 2024; 15:1406762. [PMID: 39076973 PMCID: PMC11284077 DOI: 10.3389/fimmu.2024.1406762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/01/2024] [Indexed: 07/31/2024] Open
Abstract
Immunopeptides have low toxicity, low immunogenicity and targeting, and broad application prospects in drug delivery and assembly, which are diverse in application strategies and drug combinations. Immunopeptides are particularly important for regulating ocular immune homeostasis, as the eye is an immune-privileged organ. Immunopeptides have advantages in adaptive immunity and innate immunity, treating eye immune-related diseases by regulating T cells, B cells, immune checkpoints, and cytokines. This article summarizes the application strategies of immunopeptides in innate immunity and adaptive immunity, including autoimmunity, infection, vaccine strategies, and tumors. Furthermore, it focuses on the mechanisms of immunopeptides in mediating ocular immunity (autoimmune diseases, inflammatory storms, and tumors). Moreover, it reviews immunopeptides' application strategies and the therapeutic potential of immunopeptides in the eye. We expect the immune peptide to get attention in treating eye diseases and to provide a direction for eye disease immune peptide research.
Collapse
Affiliation(s)
| | | | | | - Hong Wu
- Eye Center of Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
6
|
Yang SN, Shi Y, Berggren PO. The anterior chamber of the eye technology and its anatomical, optical, and immunological bases. Physiol Rev 2024; 104:881-929. [PMID: 38206586 PMCID: PMC11381035 DOI: 10.1152/physrev.00024.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 11/30/2023] [Accepted: 01/05/2024] [Indexed: 01/12/2024] Open
Abstract
The anterior chamber of the eye (ACE) is distinct in its anatomy, optics, and immunology. This guarantees that the eye perceives visual information in the context of physiology even when encountering adverse incidents like inflammation. In addition, this endows the ACE with the special nursery bed iris enriched in vasculatures and nerves. The ACE constitutes a confined space enclosing an oxygen/nutrient-rich, immune-privileged, and less stressful milieu as well as an optically transparent medium. Therefore, aside from visual perception, the ACE unexpectedly serves as an excellent transplantation site for different body parts and a unique platform for noninvasive, longitudinal, and intravital microimaging of different grafts. On the basis of these merits, the ACE technology has evolved from the prototypical through the conventional to the advanced version. Studies using this technology as a versatile biomedical research platform have led to a diverse range of basic knowledge and in-depth understanding of a variety of cells, tissues, and organs as well as artificial biomaterials, pharmaceuticals, and abiotic substances. Remarkably, the technology turns in vivo dynamic imaging of the morphological characteristics, organotypic features, developmental fates, and specific functions of intracameral grafts into reality under physiological and pathological conditions. Here we review the anatomical, optical, and immunological bases as well as technical details of the ACE technology. Moreover, we discuss major achievements obtained and potential prospective avenues for this technology.
Collapse
Affiliation(s)
- Shao-Nian Yang
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, Sweden
| | - Yue Shi
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, Sweden
| | - Per-Olof Berggren
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
7
|
Lazzara F, Conti F, Sasmal PK, Alikunju S, Rossi S, Drago F, Platania CBM, Bucolo C. Anti-angiogenic and antioxidant effects of axitinib in human retinal endothelial cells: implications in diabetic retinopathy. Front Pharmacol 2024; 15:1415846. [PMID: 38953109 PMCID: PMC11215076 DOI: 10.3389/fphar.2024.1415846] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/17/2024] [Indexed: 07/03/2024] Open
Abstract
Diabetic retinopathy is a secondary microvascular complication of diabetes mellitus. This disease progresses from two stages, non-proliferative and proliferative diabetic retinopathy, the latter characterized by retinal abnormal angiogenesis. Pharmacological management of retinal angiogenesis employs expensive and invasive intravitreal injections of biologic drugs (anti-vascular endothelial growth factor agents). To search small molecules able to act as anti-angiogenic agents, we focused our study on axitinib, which is a tyrosine kinase inhibitor and represents the second line treatment for renal cell carcinoma. Axitinib is an inhibitor of vascular endothelial growth factor receptors, and among the others tyrosine kinase inhibitors (sunitinib and sorafenib) is the most selective towards vascular endothelial growth factor receptors 1 and 2. Besides the well-known anti-angiogenic and immune-modulatory functions, we hereby explored the polypharmacological profile of axitinib, through a bioinformatic/molecular modeling approach and in vitro models of diabetic retinopathy. We showed the anti-angiogenic activity of axitinib in two different in vitro models of diabetic retinopathy, by challenging retinal endothelial cells with high glucose concentration (fluctuating and non-fluctuating). We found that axitinib, along with inhibition of vascular endothelial growth factor receptors 1 (1.82 ± 0.10; 0.54 ± 0.13, phosphorylated protein levels in fluctuating high glucose vs . axitinib 1 µM, respectively) and vascular endothelial growth factor receptors 2 (2.38 ± 0.21; 0.98 ± 0.20, phosphorylated protein levels in fluctuating high glucose vs . axitinib 1 µM, respectively), was able to significantly reduce (p < 0.05) the expression of Nrf2 (1.43 ± 0.04; 0.85 ± 0.01, protein levels in fluctuating high glucose vs . axitinib 1 µM, respectively) in retinal endothelial cells exposed to high glucose, through predicted Keap1 interaction and activation of melanocortin receptor 1. Furthermore, axitinib treatment significantly (p < 0.05) decreased reactive oxygen species production (0.90 ± 0.10; 0.44 ± 0.06, fluorescence units in high glucose vs . axitinib 1 µM, respectively) and inhibited ERK pathway (1.64 ± 0.09; 0.73 ± 0.06, phosphorylated protein levels in fluctuating high glucose vs . axitinib 1 µM, respectively) in HRECs exposed to high glucose. The obtained results about the emerging polypharmacological profile support the hypothesis that axitinib could be a valid candidate to handle diabetic retinopathy, with ancillary mechanisms of action.
Collapse
Affiliation(s)
- Francesca Lazzara
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - Federica Conti
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | | | | | - Settimio Rossi
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania “Luigi Vanvitelli”, Napoli, Italy
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
- Center for Research in Ocular Pharmacology-CERFO, University of Catania, Catania, Italy
| | - Chiara Bianca Maria Platania
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
- Center for Research in Ocular Pharmacology-CERFO, University of Catania, Catania, Italy
| | - Claudio Bucolo
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
- Center for Research in Ocular Pharmacology-CERFO, University of Catania, Catania, Italy
| |
Collapse
|
8
|
Wang S, Kahale F, Naderi A, Surico PL, Yin J, Dohlman T, Chen Y, Dana R. Therapeutic Effects of Stimulating the Melanocortin Pathway in Regulating Ocular Inflammation and Cell Death. Biomolecules 2024; 14:169. [PMID: 38397406 PMCID: PMC10886905 DOI: 10.3390/biom14020169] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 01/27/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024] Open
Abstract
Alpha-melanocyte-stimulating hormone (α-MSH) and its binding receptors (the melanocortin receptors) play important roles in maintaining ocular tissue integrity and immune homeostasis. Particularly extensive studies have demonstrated the biological functions of α-MSH in both immunoregulation and cyto-protection. This review summarizes the current knowledge of both the physiological and pathological roles of α-MSH and its receptors in the eye. We focus on recent developments in the biology of α-MSH and the relevant clinical implications in treating ocular diseases.
Collapse
Affiliation(s)
- Shudan Wang
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA; (S.W.); (F.K.); (A.N.); (P.L.S.); (J.Y.); (T.D.)
- Eye Hospital, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Francesca Kahale
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA; (S.W.); (F.K.); (A.N.); (P.L.S.); (J.Y.); (T.D.)
| | - Amirreza Naderi
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA; (S.W.); (F.K.); (A.N.); (P.L.S.); (J.Y.); (T.D.)
| | - Pier Luigi Surico
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA; (S.W.); (F.K.); (A.N.); (P.L.S.); (J.Y.); (T.D.)
| | - Jia Yin
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA; (S.W.); (F.K.); (A.N.); (P.L.S.); (J.Y.); (T.D.)
| | - Thomas Dohlman
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA; (S.W.); (F.K.); (A.N.); (P.L.S.); (J.Y.); (T.D.)
| | - Yihe Chen
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA; (S.W.); (F.K.); (A.N.); (P.L.S.); (J.Y.); (T.D.)
| | - Reza Dana
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA; (S.W.); (F.K.); (A.N.); (P.L.S.); (J.Y.); (T.D.)
| |
Collapse
|
9
|
Bennett JL, Grove NC, Johnson RK, Mizenko C, DuPont JC, Wagner BD, Lynch AM, Frohman TC, Shindler KS, Frohman EM. A Randomized Prospective Trial Comparing Repository Corticotropin Injection and Intravenous Methylprednisolone for Neuroprotection in Acute Optic Neuritis. J Neuroophthalmol 2023; 43:323-329. [PMID: 37261907 PMCID: PMC10414149 DOI: 10.1097/wno.0000000000001878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
BACKGROUND Repository corticotrophin injection (RCI, Acthar Gel) and intravenous methylprednisolone (IVMP) improve the rate but not the extent of visual recovery following acute optic neuritis. RCI has adrenal-stimulating and melanocortin receptor-stimulating properties that may endow it with unique anti-inflammatory properties relative to IVMP. METHODS Individuals with acute optic neuritis of less than 2 weeks duration were prospectively enrolled and randomized 1:1 to receive either RCI or IVMP. Peripapillary retinal nerve fiber layer (pRNFL) and ganglion cell plus inner plexiform layer thickness (GC + IPL) were serially evaluated by OCT. In addition, patient-reported outcomes (PROs) for changes in fatigue, mood, visual function, depression, and quality of life (QOL) were measured, and high and low contrast visual acuity were recorded. RESULTS Thirty-seven subjects were enrolled (19 RCI; 18 IVMP); the average time from symptom to treatment was 8.8 days. At 6 months, there was no difference in the primary outcome: loss of average pRNFL thickness in the affected eye (RCI vs IVMP: -13.1 vs -11.7 µm, P = 0.88) 6 months after randomization. Additional outcomes also showed no difference between treatment groups: 6-month attenuation of GC + IPL thickness (RCI vs IVMP: -13.8 vs -12.0 µm, P = 0.58) and frequency of pRNFL swelling at 1 month (RCI vs IVMP: 63% vs 72%, P = 0.73) and 3 months (RCI vs IVMP: 26% vs 31%, P = 0.99). Both treatments resulted in improvement in visual function and PROs. CONCLUSIONS Treatment of acute optic neuritis with RCI or IVMP produced no clinically meaningful differences in optic nerve structure or visual function.
Collapse
|
10
|
Wu CLS, Cioanca AV, Gelmi MC, Wen L, Di Girolamo N, Zhu L, Natoli R, Conway RM, Petsoglou C, Jager MJ, McCluskey PJ, Madigan MC. The multifunctional human ocular melanocortin system. Prog Retin Eye Res 2023; 95:101187. [PMID: 37217094 DOI: 10.1016/j.preteyeres.2023.101187] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/12/2023] [Accepted: 05/12/2023] [Indexed: 05/24/2023]
Abstract
Immune privilege in the eye involves physical barriers, immune regulation and secreted proteins that together limit the damaging effects of intraocular immune responses and inflammation. The neuropeptide alpha-melanocyte stimulating hormone (α-MSH) normally circulates in the aqueous humour of the anterior chamber and the vitreous fluid, secreted by iris and ciliary epithelium, and retinal pigment epithelium (RPE). α-MSH plays an important role in maintaining ocular immune privilege by helping the development of suppressor immune cells and by activating regulatory T-cells. α-MSH functions by binding to and activating melanocortin receptors (MC1R to MC5R) and receptor accessory proteins (MRAPs) that work in concert with antagonists, otherwise known as the melanocortin system. As well as controlling immune responses and inflammation, a broad range of biological functions is increasingly recognised to be orchestrated by the melanocortin system within ocular tissues. This includes maintaining corneal transparency and immune privilege by limiting corneal (lymph)angiogenesis, sustaining corneal epithelial integrity, protecting corneal endothelium and potentially enhancing corneal graft survival, regulating aqueous tear secretion with implications for dry eye disease, facilitating retinal homeostasis via maintaining blood-retinal barriers, providing neuroprotection in the retina, and controlling abnormal new vessel growth in the choroid and retina. The role of melanocortin signalling in uveal melanocyte melanogenesis however remains unclear compared to its established role in skin melanogenesis. The early application of a melanocortin agonist to downregulate systemic inflammation used adrenocorticotropic hormone (ACTH)-based repository cortisone injection (RCI), but adverse side effects including hypertension, edema, and weight gain, related to increased adrenal gland corticosteroid production, impacted clinical uptake. Compared to ACTH, melanocortin peptides that target MC1R, MC3R, MC4R and/or MC5R, but not adrenal gland MC2R, induce minimal corticosteroid production with fewer adverse systemic effects. Pharmacological advances in synthesising MCR-specific targeted peptides provide further opportunities for treating ocular (and systemic) inflammatory diseases. Following from these observations and a renewed clinical and pharmacological interest in the diverse biological roles of the melanocortin system, this review highlights the physiological and disease-related involvement of this system within human eye tissues. We also review the emerging benefits and versatility of melanocortin receptor targeted peptides as non-steroidal alternatives for inflammatory eye diseases such as non-infectious uveitis and dry eye disease, and translational applications in promoting ocular homeostasis, for example, in corneal transplantation and diabetic retinopathy.
Collapse
Affiliation(s)
- Chieh-Lin Stanley Wu
- School of Optometry and Vision Science, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia; Save Sight Institute and Ophthalmology, The Faculty of Medicine and Health, The University of Sydney, Sydney, Australia; Department of Optometry, Asia University, Taichung, Taiwan
| | - Adrian V Cioanca
- Save Sight Institute and Ophthalmology, The Faculty of Medicine and Health, The University of Sydney, Sydney, Australia; John Curtin School of Medical Research, The Australian National University, ACT, Australia; ANU Medical School, The Australian National University, ACT, Australia
| | - Maria C Gelmi
- Department of Ophthalmology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Li Wen
- New South Wales Organ and Tissue Donation Service, Sydney Hospital and Sydney Eye Hospital, NSW, 2000, Australia
| | - Nick Di Girolamo
- School of Biomedical Sciences, Mechanisms of Disease and Translational Research, University of New South Wales, Sydney, Australia
| | - Ling Zhu
- Save Sight Institute and Ophthalmology, The Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Riccardo Natoli
- Save Sight Institute and Ophthalmology, The Faculty of Medicine and Health, The University of Sydney, Sydney, Australia; John Curtin School of Medical Research, The Australian National University, ACT, Australia; ANU Medical School, The Australian National University, ACT, Australia
| | - R Max Conway
- Save Sight Institute and Ophthalmology, The Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Constantinos Petsoglou
- Save Sight Institute and Ophthalmology, The Faculty of Medicine and Health, The University of Sydney, Sydney, Australia; New South Wales Organ and Tissue Donation Service, Sydney Hospital and Sydney Eye Hospital, NSW, 2000, Australia
| | - Martine J Jager
- Department of Ophthalmology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Peter J McCluskey
- Save Sight Institute and Ophthalmology, The Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Michele C Madigan
- School of Optometry and Vision Science, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia; Save Sight Institute and Ophthalmology, The Faculty of Medicine and Health, The University of Sydney, Sydney, Australia.
| |
Collapse
|
11
|
Ng TF, Taylor AW. Stimulating the Melanocortin System in Uveitis and Diabetes Preserves the Structure and Anti-Inflammatory Activity of the Retina. Int J Mol Sci 2023; 24:ijms24086928. [PMID: 37108092 PMCID: PMC10138492 DOI: 10.3390/ijms24086928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/06/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
The endogenous neuropeptide α-Melanocyte Stimulating Hormone (α-MSH) is a potent suppressor of inflammation and has an essential role in maintaining the normal anti-inflammatory microenvironment of the retina. While the therapeutic use of α-MSH peptide in uveitis and diabetic retinopathy models has been demonstrated, its short half-life and instability limit its use as a therapeutic drug. A comparable analog, PL-8331, which has a stronger affinity to melanocortin receptors, longer half-life, and, so far, is functionally identical to α-MSH, has the potential to deliver melanocortin-based therapy. We examined the effects of PL-8331 on two mouse models of retinal disease, Experimental Autoimmune Uveoretinitis (EAU) and Diabetic Retinopathy (DR). PL-8331 therapy applied to mice with EAU suppressed EAU and preserved retinal structures. In diabetic mice, PL-8331 enhanced the survival of retinal cells and suppressed VEGF production in the retina. In addition, retinal pigment epithelial cells (RPE) from PL-8331-treated diabetic mice retained normal anti-inflammatory activity. The results demonstrated that the pan-melanocortin receptor agonist PL-8331 is a potent therapeutic drug to suppress inflammation, prevent retinal degeneration, and preserve the normal anti-inflammatory activity of RPE.
Collapse
Affiliation(s)
- Tat Fong Ng
- Department of Ophthalmology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA
| | - Andrew W Taylor
- Department of Ophthalmology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
12
|
Du Y, Yan B. Ocular immune privilege and retinal pigment epithelial cells. J Leukoc Biol 2023; 113:288-304. [PMID: 36805720 DOI: 10.1093/jleuko/qiac016] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Indexed: 02/04/2023] Open
Abstract
The ocular tissue microenvironment is immune-privileged and uses multiple immunosuppressive mechanisms to prevent the induction of inflammation. The retinal pigment epithelium plays an essential role in ocular immune privilege. In addition to serving as a blood barrier separating the fenestrated choriocapillaris from the retina, the retinal pigment epithelium is a source of immunosuppressive cytokines and membrane-bound negative regulators that modulate the activity of immune cells within the retina. This article reviews the current understanding of how retinal pigment epithelium cells mediate immune regulation, focusing on the changes under pathologic conditions.
Collapse
Affiliation(s)
- Yuxiang Du
- Institute of Precision Medicine, Jining Medical University, No. 133, Hehua Road, Taibaihu New District, Jining, Shandong 272067, People's Republic of China
| | - Bo Yan
- Institute of Precision Medicine, Jining Medical University, No. 133, Hehua Road, Taibaihu New District, Jining, Shandong 272067, People's Republic of China
| |
Collapse
|
13
|
Khodeneva N, Sugimoto MA, Davan-Wetton CSA, Montero-Melendez T. Melanocortin therapies to resolve fibroblast-mediated diseases. Front Immunol 2023; 13:1084394. [PMID: 36793548 PMCID: PMC9922712 DOI: 10.3389/fimmu.2022.1084394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 11/28/2022] [Indexed: 02/01/2023] Open
Abstract
Stromal cells have emerged as central drivers in multiple and diverse diseases, and consequently, as potential new cellular targets for the development of novel therapeutic strategies. In this review we revise the main roles of fibroblasts, not only as structural cells but also as players and regulators of immune responses. Important aspects like fibroblast heterogeneity, functional specialization and cellular plasticity are also discussed as well as the implications that these aspects may have in disease and in the design of novel therapeutics. An extensive revision of the actions of fibroblasts on different conditions uncovers the existence of numerous diseases in which this cell type plays a pathogenic role, either due to an exacerbation of their 'structural' side, or a dysregulation of their 'immune side'. In both cases, opportunities for the development of innovative therapeutic approaches exist. In this regard, here we revise the existing evidence pointing at the melanocortin pathway as a potential new strategy for the treatment and management of diseases mediated by aberrantly activated fibroblasts, including scleroderma or rheumatoid arthritis. This evidence derives from studies involving models of in vitro primary fibroblasts, in vivo models of disease as well as ongoing human clinical trials. Melanocortin drugs, which are pro-resolving mediators, have shown ability to reduce collagen deposition, activation of myofibroblasts, reduction of pro-inflammatory mediators and reduced scar formation. Here we also discuss existing challenges, both in approaching fibroblasts as therapeutic targets, and in the development of novel melanocortin drug candidates, that may help advance the field and deliver new medicines for the management of diseases with high medical needs.
Collapse
|
14
|
Perretti M, Dalli J. Resolution Pharmacology: Focus on Pro-Resolving Annexin A1 and Lipid Mediators for Therapeutic Innovation in Inflammation. Annu Rev Pharmacol Toxicol 2023; 63:449-469. [PMID: 36151051 DOI: 10.1146/annurev-pharmtox-051821-042743] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Chronic diseases that affect our society are made more complex by comorbidities and are poorly managed by the current pharmacology. While all present inflammatory etiopathogeneses, there is an unmet need for better clinical management of these diseases and their multiple symptoms. We discuss here an innovative approach based on the biology of the resolution of inflammation. Studying endogenous pro-resolving peptide and lipid mediators, how they are formed, and which target they interact with, can offer innovative options through augmenting the expression or function of pro-resolving pathways or mimicking their actions with novel targeted molecules. In all cases, resolution offers innovation for the treatment of the primary cause of a given disease and/or for the management of its comorbidities, ultimately improving patient quality of life. By implementing resolution pharmacology, we harness the whole physiology of inflammation, with the potential to bring a marked change in the management of inflammatory conditions.
Collapse
Affiliation(s)
- Mauro Perretti
- The William Harvey Research Institute, Faculty of Medicine and Dentistry, and Centre for Inflammation and Therapeutic Innovation, Queen Mary University of London, London, United Kingdom; ,
| | - Jesmond Dalli
- The William Harvey Research Institute, Faculty of Medicine and Dentistry, and Centre for Inflammation and Therapeutic Innovation, Queen Mary University of London, London, United Kingdom; ,
| |
Collapse
|
15
|
Garrido-Mesa J, Thomas BL, Dodd J, Spana C, Perretti M, Montero-Melendez T. Pro-resolving and anti-arthritic properties of the MC 1 selective agonist PL8177. Front Immunol 2022; 13:1078678. [PMID: 36505403 PMCID: PMC9730523 DOI: 10.3389/fimmu.2022.1078678] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 11/07/2022] [Indexed: 11/25/2022] Open
Abstract
Background Melanocortins are peptides endowed with anti-inflammatory and pro-resolving activities. Many of these effects are mediated by the Melanocortin receptor 1 (MC1) as reported in several experimental settings. As such, MC1 can be a viable target for the development of new therapies that mimic endogenous pro-resolving mediators. The aim of this study was to assess the immunopharmacology of a selective MC1 agonist (PL8177) in vitro and in a mouse model of inflammatory arthritis. Methods PL8177 and the natural agonist αMSH were tested for activation of mouse and human Melanocortin receptors (MC1,3,4,5), monitoring cAMP accumulation and ERK1/2 phosphorylation, using transiently transfected HEK293A cells. The anti-inflammatory and pro-resolving effects of PL8177 and αMSH were evaluated using mouse peritoneal Macrophages. Finally, a model of K/BxN serum transfer induced arthritis was used to determine the in vivo potential of PL8177. Results PL8177 activates mouse and human MC1 with apparent EC50 values of 0.01 and 1.49 nM, respectively, using the cAMP accumulation assay. Similar profiles were observed for the induction of ERK phosphorylation (EC50: 0.05 and 1.39 nM). PL8177 displays pro-resolving activity (enhanced Macrophage efferocytosis) and counteracts the inflammatory profile of zymosan-stimulated macrophages, reducing the release of IL-1β, IL-6, TNF-α and CCL-2. In the context of joint inflammation, PL8177 (3mg/kg i.p.) reduces clinical score, paw swelling and incidence of severe disease as well as the recruitment of immune cells into the arthritic joint. Conclusion These results demonstrate that the MC1 agonism with PL8177 affords therapeutic effects in inflammatory conditions including arthritis. Significance Drugs targeting the Melanocortin system have emerged as promising therapeutics for several conditions including inflammation or obesity. Multiple candidates are under clinical development, and some have already reached approval. Here we present the characterization of a novel drug candidate, PL8177, selective for the Melanocortin 1 receptor (MC1), demonstrating its selectivity profile on cAMP and ERK1/2 phosphorylation signaling pathways, of relevance as selective drugs will translate into lesser off-target effect. PL8177 also demonstrated, not only anti-inflammatory activity, but pro-resolving actions due to its ability to enhance efferocytosis (i.e. the phagocytosis of apoptotic cells), endowing this molecule with therapeutic advantages compared to classical anti-inflammatory drugs. Using a mouse model of inflammatory arthritis, the compound demonstrated in vivo efficacy by reducing clinical score, paw swelling and overall disease severity. Taken together, these results present Melanocortin-based therapies, and specifically targeting MC1 receptor, as a promising strategy to manage chronic inflammatory diseases.
Collapse
Affiliation(s)
- Jose Garrido-Mesa
- The William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Bethan Lynne Thomas
- The William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - John Dodd
- Palatin Technologies, Inc., Cranbury, NJ, United States
| | - Carl Spana
- Palatin Technologies, Inc., Cranbury, NJ, United States
| | - Mauro Perretti
- The William Harvey Research Institute, Queen Mary University of London, London, United Kingdom,Centre for inflammation and Therapeutic Innovation, Queen Mary University of London, London, United Kingdom
| | - Trinidad Montero-Melendez
- The William Harvey Research Institute, Queen Mary University of London, London, United Kingdom,Centre for inflammation and Therapeutic Innovation, Queen Mary University of London, London, United Kingdom,*Correspondence: Trinidad Montero-Melendez,
| |
Collapse
|