1
|
Dawes IW, Perrone GG. Stress and ageing in yeast. FEMS Yeast Res 2021; 20:5670642. [PMID: 31816015 DOI: 10.1093/femsyr/foz085] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 12/05/2019] [Indexed: 02/06/2023] Open
Abstract
There has long been speculation about the role of various stresses in ageing. Some stresses have beneficial effects on ageing-dependent on duration and severity of the stress, others have negative effects and the question arises whether these negative effects are causative of ageing or the result of the ageing process. Cellular responses to many stresses are highly coordinated in a concerted way and hence there is a great deal of cross-talk between different stresses. Here the relevant aspects of the coordination of stress responses and the roles of different stresses on yeast cell ageing are discussed, together with the various functions that are involved. The cellular processes that are involved in alleviating the effects of stress on ageing are considered, together with the possible role of early stress events on subsequent ageing of cells.
Collapse
Affiliation(s)
- Ian W Dawes
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Gabriel G Perrone
- School of Science and Health, Western Sydney University, Campbelltown, NSW 2560, Australia
| |
Collapse
|
2
|
Tattini L, Tellini N, Mozzachiodi S, D'Angiolo M, Loeillet S, Nicolas A, Liti G. Accurate Tracking of the Mutational Landscape of Diploid Hybrid Genomes. Mol Biol Evol 2020; 36:2861-2877. [PMID: 31397846 PMCID: PMC6878955 DOI: 10.1093/molbev/msz177] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Mutations, recombinations, and genome duplications may promote genetic diversity and trigger evolutionary processes. However, quantifying these events in diploid hybrid genomes is challenging. Here, we present an integrated experimental and computational workflow to accurately track the mutational landscape of yeast diploid hybrids (MuLoYDH) in terms of single-nucleotide variants, small insertions/deletions, copy-number variants, aneuploidies, and loss-of-heterozygosity. Pairs of haploid Saccharomyces parents were combined to generate ancestor hybrids with phased genomes and varying levels of heterozygosity. These diploids were evolved under different laboratory protocols, in particular mutation accumulation experiments. Variant simulations enabled the efficient integration of competitive and standard mapping of short reads, depending on local levels of heterozygosity. Experimental validations proved the high accuracy and resolution of our computational approach. Finally, applying MuLoYDH to four different diploids revealed striking genetic background effects. Homozygous Saccharomyces cerevisiae showed a ∼4-fold higher mutation rate compared with its closely related species S. paradoxus. Intraspecies hybrids unveiled that a substantial fraction of the genome (∼250 bp per generation) was shaped by loss-of-heterozygosity, a process strongly inhibited in interspecies hybrids by high levels of sequence divergence between homologous chromosomes. In contrast, interspecies hybrids exhibited higher single-nucleotide mutation rates compared with intraspecies hybrids. MuLoYDH provided an unprecedented quantitative insight into the evolutionary processes that mold diploid yeast genomes and can be generalized to other genetic systems.
Collapse
Affiliation(s)
- Lorenzo Tattini
- CNRS UMR7284, INSERM, IRCAN, Université Côte d'Azur, Nice, France
| | - Nicolò Tellini
- CNRS UMR7284, INSERM, IRCAN, Université Côte d'Azur, Nice, France
| | | | | | - Sophie Loeillet
- CNRS UMR3244, Institut Curie, PSL Research University, Paris, France
| | - Alain Nicolas
- CNRS UMR3244, Institut Curie, PSL Research University, Paris, France
| | - Gianni Liti
- CNRS UMR7284, INSERM, IRCAN, Université Côte d'Azur, Nice, France
| |
Collapse
|
3
|
Todorova A, Pesheva M, Iliev I, Bardarov K, Todorova T. Antimutagenic, Antirecombinogenic, and Antitumor Effect of Amygdalin in a Yeast Cell–Based Test and Mammalian Cell Lines. J Med Food 2017; 20:360-366. [DOI: 10.1089/jmf.2016.0108] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Affiliation(s)
- Atanaska Todorova
- Sofia University “St. Kliment Ohridski,” Faculty of Biology, Sofia, Bulgaria
| | - Margarita Pesheva
- Sofia University “St. Kliment Ohridski,” Faculty of Biology, Sofia, Bulgaria
| | - Ivan Iliev
- Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | | | - Teodora Todorova
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, Sofia, Bulgaria
| |
Collapse
|
4
|
Increased genome instability is not accompanied by sensitivity to DNA damaging agents in aged yeast cells. DNA Repair (Amst) 2017; 54:1-7. [PMID: 28384494 DOI: 10.1016/j.dnarep.2017.03.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 03/17/2017] [Accepted: 03/21/2017] [Indexed: 11/21/2022]
Abstract
The budding yeast Saccharomyces cerevisiae divides asymmetrically, producing a new daughter cell from the original mother cell. While daughter cells are born with a full lifespan, a mother cell ages with each cell division and can only generate on average 25 daughter cells before dying. Aged yeast cells exhibit genomic instability, which is also a hallmark of human aging. However, it is unclear how this genomic instability contributes to aging. To shed light on this issue, we investigated endogenous DNA damage in S. cerevisiae during replicative aging and tested for age-dependent sensitivity to exogenous DNA damaging agents. Using live-cell imaging in a microfluidic device, we show that aging yeast cells display an increase in spontaneous Rad52 foci, a marker of endogenous DNA damage. Strikingly, this elevated DNA damage is not accompanied by increased sensitivity of aged yeast cells to genotoxic agents nor by global changes in the proteome or transcriptome that would indicate a specific "DNA damage signature". These results indicate that DNA repair proficiency is not compromised in aged yeast cells, suggesting that yeast replicative aging and age-associated genomic instability is likely not a consequence of an inability to repair DNA damage.
Collapse
|
5
|
Denoth Lippuner A, Julou T, Barral Y. Budding yeast as a model organism to study the effects of age. FEMS Microbiol Rev 2014; 38:300-25. [PMID: 24484434 DOI: 10.1111/1574-6976.12060] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 12/13/2013] [Accepted: 01/06/2014] [Indexed: 12/20/2022] Open
Abstract
Although a budding yeast culture can be propagated eternally, individual yeast cells age and eventually die. The detailed knowledge of this unicellular eukaryotic species as well as the powerful tools developed to study its physiology makes budding yeast an ideal model organism to study the mechanisms involved in aging. Considering both detrimental and positive aspects of age, we review changes occurring during aging both at the whole-cell level and at the intracellular level. The possible mechanisms allowing old cells to produce rejuvenated progeny are described in terms of accumulation and inheritance of aging factors. Based on the dynamic changes associated with age, we distinguish different stages of age: early age, during which changes do not impair cell growth; intermediate age, during which aging factors start to accumulate; and late age, which corresponds to the last divisions before death. For each aging factor, we examine its asymmetric segregation and whether it plays a causal role in aging. Using the example of caloric restriction, we describe how the aging process can be modulated at different levels and how changes in different organelles might interplay with each other. Finally, we discuss the beneficial aspects that might be associated with age.
Collapse
|
6
|
Pedersen BS, Konstantinopoulos PA, Spillman MA, De S. Copy neutral loss of heterozygosity is more frequent in older ovarian cancer patients. Genes Chromosomes Cancer 2013; 52:794-801. [PMID: 23716468 DOI: 10.1002/gcc.22075] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 04/24/2013] [Accepted: 04/24/2013] [Indexed: 12/20/2022] Open
Abstract
Loss of heterozygosity (LOH) is a common type of genomic alterations in ovarian cancer. Analyzing 74,415 copy neutral LOH events in 513 serous ovarian adenocarcinomas samples from the Cancer Genome Atlas, we report that the frequency of LOH events increases with age. Similar trend is observed for LOH involving chromosome 17, which is frequently implicated in ovarian cancer. The results are consistent when we analyze data from the Boston high-grade serous cancer cohort. We further show that germ line and somatic mutations in BRCA1 (in chromosome 17) and BRCA2 (in chromosome 13) loci are not necessary to establish the pattern. We also report significant age-related changes in expression patterns for several genes in the homologous recombination (HR) pathway, such as BRCA1, RAD50, RAD52, XRCC2, XRCC3, and MRE11A in these patient samples. Furthermore, we develop a metric for pathway-level imbalance, and show that increased imbalance in the HR pathway, i.e., increase in expression of some HR genes and decrease in expression of others, is common and correlates significantly with the frequency of LOH events in the patient samples. Taken together, it is highly likely that aging and deregulation of HR pathway contribute to the increased incidence of copy-neutral LOH in ovarian cancer patients.
Collapse
Affiliation(s)
- Brent S Pedersen
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | | | | | | |
Collapse
|
7
|
Screening of cerebral infarction-related genetic markers using a Cox regression analysis between onset age and heterozygosity at randomly selected short tandem repeat loci. J Thromb Thrombolysis 2012; 33:318-21. [PMID: 22476643 DOI: 10.1007/s11239-012-0724-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The aim of this paper is to explore whether the heterozygosity at the 9 CODIS short tandem repeats (STR) loci including D3S1358, vWA, FGA, D8S1179, D21S11, D18S51, D5S818, D13S317 and D7S820 is associated with the risk of atherosclerotic cerebral infarction (CI). The DNA samples were collected from patients with CI (n = 72) and people over the age of 90 years without CI (n = 59). Alleles of the STR loci were determined using the STR Profiler Plus PCR amplification kit. The relationship between the age of onset and heterozygosity was determined with the Cox regression method. A correlation between the age of onset and heterozygosity was observed for the D8S1179 locus (p < 0.05). It implied that regions in the vicinity of locus D8S1179 may harbor susceptibility genes for CI. The analysis of heterozygosity for particular loci as genetic markers using our new study design may be an efficient and reliable approach to estimate genetic predispositions.
Collapse
|
8
|
Ruan X, Kocher JPA, Pommier Y, Liu H, Reinhold WC. Mass homozygotes accumulation in the NCI-60 cancer cell lines as compared to HapMap Trios, and relation to fragile site location. PLoS One 2012; 7:e31628. [PMID: 22347499 PMCID: PMC3276511 DOI: 10.1371/journal.pone.0031628] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Accepted: 01/15/2012] [Indexed: 12/27/2022] Open
Abstract
Runs of homozygosity (ROH) represents extended length of homozygotes on a long genomic distance. In oncology, it is known as loss of heterozygosity (LOH) if identified exclusively in cancer cell rather than in matched control cell. Studies have identified several genomic regions which show consistent ROH in different kinds of carcinoma. To query whether this consistency can be observed on broader spectrum, both in more cancer types and in wider genomic regions, we investigated ROH patterns in the National Cancer Institute 60 cancer cell line panel (NCI-60) and HapMap Caucasian healthy trio families. Using results from Affymetrix 500 K SNP arrays, we report a genome wide significant association of ROH regions between the NCI-60 and HapMap samples, with much a higher level of ROH (11 fold) in the cancer cell lines. Analysis shows that more severe ROH found in cancer cells appears to be the extension of existing ROH in healthy state. In the HapMap trios, the adult subgroup had a slightly but significantly higher level (1.02 fold) of ROH than did the young subgroup. For several ROH regions we observed the co-occurrence of fragile sites (FRAs). However, FRA on the genome wide level does not show a clear relationship with ROH regions.
Collapse
Affiliation(s)
- Xiaoyang Ruan
- Department of Health Sciences Research, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
- Laboratory of Molecular Pharmacology, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Jean-Pierre A. Kocher
- Department of Health Sciences Research, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Yves Pommier
- Laboratory of Molecular Pharmacology, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Hongfang Liu
- Department of Health Sciences Research, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
- Laboratory of Molecular Pharmacology, National Cancer Institute, Bethesda, Maryland, United States of America
- * E-mail: (HL); (WCR)
| | - William C. Reinhold
- Laboratory of Molecular Pharmacology, National Cancer Institute, Bethesda, Maryland, United States of America
- * E-mail: (HL); (WCR)
| |
Collapse
|
9
|
Murgel de Castro Santos LE, Trindade Guilhen AC, Alves de Andrade R, Garcia Sumi L, Ward LS. The role of TP53 PRO47SER and ARG72PRO single nucleotide polymorphisms in the susceptibility to bladder cancer. Urol Oncol 2011; 29:291-4. [DOI: 10.1016/j.urolonc.2009.03.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2009] [Revised: 03/23/2009] [Accepted: 03/31/2009] [Indexed: 10/20/2022]
|
10
|
Lindstrom DL, Leverich CK, Henderson KA, Gottschling DE. Replicative age induces mitotic recombination in the ribosomal RNA gene cluster of Saccharomyces cerevisiae. PLoS Genet 2011; 7:e1002015. [PMID: 21436897 PMCID: PMC3060066 DOI: 10.1371/journal.pgen.1002015] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Accepted: 01/13/2011] [Indexed: 11/18/2022] Open
Abstract
Somatic mutations contribute to the development of age-associated disease. In earlier work, we found that, at high frequency, aging Saccharomyces cerevisiae diploid cells produce daughters without mitochondrial DNA, leading to loss of respiration competence and increased loss of heterozygosity (LOH) in the nuclear genome. Here we used the recently developed Mother Enrichment Program to ask whether aging cells that maintain the ability to produce respiration-competent daughters also experience increased genomic instability. We discovered that this population exhibits a distinct genomic instability phenotype that primarily affects the repeated ribosomal RNA gene array (rDNA array). As diploid cells passed their median replicative life span, recombination rates between rDNA arrays on homologous chromosomes progressively increased, resulting in mutational events that generated LOH at >300 contiguous open reading frames on the right arm of chromosome XII. We show that, while these recombination events were dependent on the replication fork block protein Fob1, the aging process that underlies this phenotype is Fob1-independent. Furthermore, we provide evidence that this aging process is not driven by mechanisms that modulate rDNA recombination in young cells, including loss of cohesion within the rDNA array or loss of Sir2 function. Instead, we suggest that the age-associated increase in rDNA recombination is a response to increasing DNA replication stress generated in aging cells.
Collapse
Affiliation(s)
- Derek L. Lindstrom
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Christina K. Leverich
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Kiersten A. Henderson
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Daniel E. Gottschling
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
11
|
Abstract
In the past several decades the budding yeast Saccharomyces cerevisiae has emerged as a prominent model for aging research. The creation of a single-gene deletion collection covering the majority of open reading frames in the yeast genome and advances in genomic technologies have opened yeast research to genome-scale screens for a variety of phenotypes. A number of screens have been performed looking for genes that modify secondary age-associated phenotypes such as stress resistance or growth rate. More recently, moderate-throughput methods for measuring replicative life span and high-throughput methods for measuring chronological life span have allowed for the first unbiased screens aimed at directly identifying genes involved in determining yeast longevity. In this chapter we discuss large-scale life span studies performed in yeast and their implications for research related to the basic biology of aging.
Collapse
Affiliation(s)
- George L Sutphin
- Department of Pathology and the Molecular and Cellular Biology Program, University of Washington, Seattle, WA, 98195-7470, USA,
| | | | | | | |
Collapse
|
12
|
Carotenuto W, Liberi G. Mitotic inter-homologue junctions accumulate at damaged DNA replication forks in recQ mutants. DNA Repair (Amst) 2010; 9:661-9. [PMID: 20346738 DOI: 10.1016/j.dnarep.2010.02.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Revised: 02/26/2010] [Accepted: 02/26/2010] [Indexed: 11/26/2022]
Abstract
Mitotic homologous recombination is utilised to repair DNA breaks using either sister chromatids or homologous chromosomes as templates. Because sister chromatids are identical, exchanges between sister chromatids have no consequences for the maintenance of genomic integrity unless they involve repetitive DNA sequences. Conversely, homologous chromosomes might differ in genetic content, and exchanges between homologues might lead to loss of heterozygosity and subsequent inactivation of functional genes. Genomic instability, caused by unscheduled recombination events between homologous chromosomes, is enhanced in the absence of RecQ DNA helicases, as observed in Bloom's cancer-prone syndrome. Here, we used two-dimensional gel electrophoresis to analyse budding yeast diploid cells that were modified to distinguish replication intermediates originating from each homologous chromosome. Therefore, these cells were suitable for analysing the formation of inter-homologue junctions. We found that Rad51-dependent DNA structures resembling inter-homologue junctions accumulate together with sister chromatid junctions at damaged DNA replication forks in recQ mutants, but not in the absence of Srs2 or Mph1 DNA recombination helicases. Inter-homologue joint molecules in recQ mutants are less abundant than sister chromatid junctions, but they accumulate with similar kinetics after origin firing under conditions of DNA damage. We propose that unscheduled accumulation of inter-homologue junctions during DNA replication might account for allelic recombination defects in recQ mutants.
Collapse
Affiliation(s)
- Walter Carotenuto
- The F.I.R.C. Institute of Molecular Oncology Foundation, D.S.B.B University of Milan, Via Adamello 16, 20139 Milan, Italy
| | | |
Collapse
|
13
|
Abstract
In diploid populations, indirect benefits of sex may stem from segregation and recombination. Although it has been recognized that finite population size is an important component of selection for recombination, its effects on selection for segregation have been somewhat less studied. In this article, we develop analytical two- and three-locus models to study the effect of recurrent deleterious mutations on a modifier gene increasing sex, in a finite diploid population. The model also incorporates effects of mitotic recombination, causing loss of heterozygosity (LOH). Predictions are tested using multilocus simulations representing deleterious mutations occurring at a large number of loci. The model and simulations show that excess of heterozygosity generated by finite population size is an important component of selection for sex, favoring segregation when deleterious alleles are nearly additive to dominant. Furthermore, sex tends to break correlations in homozygosity among selected loci, which disfavors sex when deleterious alleles are either recessive or dominant. As a result, we find that it is difficult to maintain costly sex when deleterious alleles are recessive. LOH tends to favor sex when deleterious mutations are recessive, but the effect is relatively weak for rates of LOH corresponding to current estimates (of the order 10(-4)-10(-5)).
Collapse
|
14
|
Abstract
Loss of heterozygosity (LOH) can be a driving force in the evolution of mitotic/somatic diploid cells, and cellular changes that increase the rate of LOH have been proposed to facilitate this process. In the yeast Saccharomyces cerevisiae, spontaneous LOH occurs by a number of mechanisms including chromosome loss and reciprocal and nonreciprocal recombination. We performed a screen in diploid yeast to identify mutants with increased rates of LOH using the collection of homozygous deletion alleles of nonessential genes. Increased LOH was quantified at three loci (MET15, SAM2, and MAT) on three different chromosomes, and the LOH events were analyzed as to whether they were reciprocal or nonreciprocal in nature. Nonreciprocal LOH was further characterized as chromosome loss or truncation, a local mutational event (gene conversion or point mutation), or break-induced replication (BIR). The 61 mutants identified could be divided into several groups, including ones that had locus-specific effects. Mutations in genes involved in DNA replication and chromatin assembly led to LOH predominantly via reciprocal recombination. In contrast, nonreciprocal LOH events with increased chromosome loss largely resulted from mutations in genes implicated in kinetochore function, sister chromatid cohesion, or relatively late steps of DNA recombination. Mutants of genes normally involved in early steps of DNA damage repair and signaling produced nonreciprocal LOH without an increased proportion of chromosome loss. Altogether, this study defines a genetic landscape for the basis of increased LOH and the processes by which it occurs.
Collapse
|