1
|
Conover CA, Oxvig C. The IGF System and Aging. Endocr Rev 2025; 46:214-223. [PMID: 39418083 PMCID: PMC11894535 DOI: 10.1210/endrev/bnae029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/20/2024] [Accepted: 10/09/2024] [Indexed: 10/19/2024]
Abstract
There is strong evidence that IGF signaling is involved in fundamental aspects of the aging process. However, the extracellular part of the IGF system is complex with various receptors, ligand effectors, high-affinity IGF-binding proteins, proteinases, and endogenous inhibitors that all, along with their biological context, must be considered. The IGF system components are evolutionarily conserved, underscoring the importance of understanding this system in physiology and pathophysiology. This review will briefly describe the different components of the IGF system and then discuss past and current literature regarding IGF and aging, with a focus on cellular senescence, model organisms of aging, centenarian genetics, and 3 age-related diseases-pulmonary fibrosis, Alzheimer disease, and macular degeneration-in appropriate murine models and in humans. Commonalities in mechanism suggest conditions where IGF system components may be disease drivers and potential targets in promoting healthy aging in humans.
Collapse
Affiliation(s)
- Cheryl A Conover
- Division of Endocrinology, Mayo Clinic, Rochester, MN 55905, USA
| | - Claus Oxvig
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| |
Collapse
|
2
|
The potential roles of excitatory-inhibitory imbalances and the repressor element-1 silencing transcription factor in aging and aging-associated diseases. Mol Cell Neurosci 2021; 117:103683. [PMID: 34775008 DOI: 10.1016/j.mcn.2021.103683] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 11/02/2021] [Accepted: 11/06/2021] [Indexed: 12/28/2022] Open
Abstract
Disruptions to the central excitatory-inhibitory (E/I) balance are thought to be related to aging and underlie a host of neural pathologies, including Alzheimer's disease. Aging may induce an increase in excitatory signaling, causing an E/I imbalance, which has been linked to shorter lifespans in mice, flies, and worms. In humans, extended longevity correlates to greater repression of genes involved in excitatory neurotransmission. The repressor element-1 silencing transcription factor (REST) is a master regulator in neural cells and is believed to be upregulated with senescent stimuli, whereupon it counters hyperexcitability, insulin/insulin-like signaling pathway activity, oxidative stress, and neurodegeneration. This review examines the putative mechanisms that distort the E/I balance with aging and neurodegeneration, and the putative roles of REST in maintaining neuronal homeostasis.
Collapse
|
3
|
Chen Y, Onken B, Chen H, Zhang X, Driscoll M, Cao Y, Huang Q. Healthy lifespan extension mediated by oenothein B isolated from Eucalyptus grandis × Eucalyptus urophylla GL9 in Caenorhabditis elegans. Food Funct 2021; 11:2439-2450. [PMID: 32129349 DOI: 10.1039/c9fo02472g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Oenothein B (OEB) exhibits extensive biological activities, but few investigations have been carried out on the pharmacologic influence of OEB on longevity in any organism. To explore the potential pharmacological ability of OEB to postpone the progression of age-related degenerative processes and diseases, we monitored the effects of OEB isolated from Eucalyptus leaves on the lifespan of Caenorhabditis elegans (C. elegans) at four different concentrations. We found that OEB increased the median lifespan of worms by up to 22% in a dose-dependent manner. Further studies demonstrated that OEB significantly enhanced youthfulness (healthy lifespan) by increasing the whole adult life's locomotory mobility, reducing age pigment and reactive oxygen species (ROS) accumulation, and enhancing thermal stress resistance. Furthermore, the genes daf-16, age-1, eat-2, sir-2.1, and isp-1 were required for the healthy longevity benefits induced by OEB, but not the genes mev-1 and clk-1. Taken together, OEB might modulate multiple genetic pathways involved in insulin/IGF-1 signaling (IIS) via age-1 and daf-16, the dietary restriction (DR) pathway via eat-2 and sir-2.1, and the mitochondrial electron transport chain via isp-1 to promote healthy lifespan including the reduction of age pigment and ROS accumulation and the enhancement of locomotory mobility, thermal stress tolerance and lifespan. These findings indicated that OEB has the potential to be developed into the next generation of multi-target drugs for prolonging healthy lifespan and intervening in age-related diseases.
Collapse
Affiliation(s)
- Yunjiao Chen
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong, China. and Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, New Jersey 08901, USA.
| | - Brian Onken
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey 08854, USA.
| | | | - Xiaoying Zhang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong, China.
| | - Monica Driscoll
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey 08854, USA.
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong, China.
| | - Qingrong Huang
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, New Jersey 08901, USA.
| |
Collapse
|
4
|
Keowkase R, Kijmankongkul N, Sangtian W, Poomborplab S, Santa-ardharnpreecha C, Weerapreeyakul N, Sitthithaworn W. Protective Effect and Mechanism of Fruit Extract of Aegle marmelos Against Amyloid-β Toxicity in a Transgenic Caenorhabditis elegans. Nat Prod Commun 2020. [DOI: 10.1177/1934578x20933511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common form of dementia found in the elderly. AD is caused by the accumulation of toxic proteins including amyloid-β (Aβ). The purpose of this study was to investigate the effect of fruit extract of Aegle marmelos against Aβ toxicity in Caenorhabditis elegans. The fruit of A. marmelos has been used in a traditional Thai herb formula in fatigue patients recovering from illnesses such as fever and diarrhea. We used a transgenic C. elegans strain CL4176, which expresses the human Aβ42, to investigate the effects and the mechanisms of action of the extracts against Aβ toxicity. The extract of A. marmelos significantly delayed Aβ-induced paralysis. Aegle marmelos lost the ability to delay Aβ-induced paralysis in worms fed with daf-16 ribonucleic acid interference (RNAi) bacteria, but not in worms fed with hsf-1 and skin-1 RNAi bacteria. These results indicated that daf-16 transcription factor was required for A. marmelos-mediated delayed paralysis. Aegle marmelos enhanced the level of daf-16 gene. Taken together, these results indicated that A. marmelos reduced Aβ toxicity via the DAF-16-mediated cell signaling pathway. In addition, A. marmelos reduced toxic Aβ oligomers. Aegle marmelos also displayed antioxidative effect in in vivo as it enhanced resistance to paraquat-induced oxidative stress in wild type worms. All of the results suggested that A. marmelos can protect against Aβ-induced toxicity and can be a potential candidate for the prevention or treatment of AD.
Collapse
Affiliation(s)
- Roongpetch Keowkase
- Department of Biopharmacy, Faculty of Pharmacy, Srinakharinwirot University, Nakhonnayok, Thailand
| | - Nattanon Kijmankongkul
- Department of Biopharmacy, Faculty of Pharmacy, Srinakharinwirot University, Nakhonnayok, Thailand
| | - Wanapong Sangtian
- Department of Biopharmacy, Faculty of Pharmacy, Srinakharinwirot University, Nakhonnayok, Thailand
| | - Sireethorn Poomborplab
- Department of Biopharmacy, Faculty of Pharmacy, Srinakharinwirot University, Nakhonnayok, Thailand
| | | | - Natthida Weerapreeyakul
- Division of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, Thailand
- Human High Performance and Health Promotion (HHP&HP) Research Institute, Khon Kaen University, Thailand
| | - Worapan Sitthithaworn
- Department of Pharmacognosy, Faculty of Pharmacy, Srinakharinwirot University, Nakhonnayok, Thailand
| |
Collapse
|
5
|
Johnson SC. Nutrient Sensing, Signaling and Ageing: The Role of IGF-1 and mTOR in Ageing and Age-Related Disease. Subcell Biochem 2018; 90:49-97. [PMID: 30779006 DOI: 10.1007/978-981-13-2835-0_3] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Nutrient signaling through insulin/IGF-1 was the first pathway demonstrated to regulate ageing and age-related disease in model organisms. Pharmacological or dietary interventions targeting nutrient signaling pathways have been shown to robustly attenuate ageing in many organisms. Caloric restriction, the most widely studied longevity promoting intervention, works through multiple nutrient signaling pathways, while inhibition of mTOR through treatment with rapamycin reproducibly delays ageing and disease through specific inhibition of the mTOR complexes. Although the benefits of reduced insulin/IGF-1 in lifespan and health are well documented in model organisms, defining the precise role of the IGF-1 in human ageing and age-related disease has proven more difficult. Association studies provide some insight but also reveal paradoxes. Low serum IGF-1 predicts longevity, but IGF-1 decreases with age and IGF-1 therapy benefits some of age-related pathologies. Circulating IGF-1 has been associated both positively and negatively with risk of age-related diseases in humans, and in some cases both activation and inhibition of IGF-1 signaling have provided benefit in animal models of the same diseases. Interventions designed modulate the nutrient sensing signaling pathways positively or negatively are already available for clinical use, highlighting the need for a clear understanding of the role of nutrient signaling in ageing and age-related disease. This chapter examines data from model organisms and human genetic association studies, with a special emphasis on IGF-1 and mTOR, and discusses potential models for resolving the paradoxes surrounding IGF-1 data.
Collapse
Affiliation(s)
- Simon C Johnson
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA.
| |
Collapse
|
6
|
Copy number variability in Parkinson's disease: assembling the puzzle through a systems biology approach. Hum Genet 2016; 136:13-37. [PMID: 27896429 PMCID: PMC5214768 DOI: 10.1007/s00439-016-1749-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 11/16/2016] [Indexed: 01/01/2023]
Abstract
Parkinson’s disease (PD), the second most common progressive neurodegenerative disorder of aging, was long believed to be a non-genetic sporadic origin syndrome. The proof that several genetic loci are responsible for rare Mendelian forms has represented a revolutionary breakthrough, enabling to reveal molecular mechanisms underlying this debilitating still incurable condition. While single nucleotide polymorphisms (SNPs) and small indels constitute the most commonly investigated DNA variations accounting for only a limited number of PD cases, larger genomic molecular rearrangements have emerged as significant PD-causing mutations, including submicroscopic Copy Number Variations (CNVs). CNVs constitute a prevalent source of genomic variations and substantially participate in each individual’s genomic makeup and phenotypic outcome. However, the majority of genetic studies have focused their attention on single candidate-gene mutations or on common variants reaching a significant statistical level of acceptance. This gene-centric approach is insufficient to uncover the genetic background of polygenic multifactorial disorders like PD, and potentially masks rare individual CNVs that all together might contribute to disease development or progression. In this review, we will discuss literature and bioinformatic data describing the involvement of CNVs on PD pathobiology. We will analyze the most frequent copy number changes in familiar PD genes and provide a “systems biology” overview of rare individual rearrangements that could functionally act on commonly deregulated molecular pathways. Assessing the global genome-wide burden of CNVs in PD patients may reveal new disease-related molecular mechanisms, and open the window to a new possible genetic scenario in the unsolved PD puzzle.
Collapse
|
7
|
Conover CA. Discrepancies in insulin-like growth factor signaling? No, not really. Growth Horm IGF Res 2016; 30-31:42-44. [PMID: 27792888 DOI: 10.1016/j.ghir.2016.10.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 10/03/2016] [Accepted: 10/21/2016] [Indexed: 01/03/2023]
Abstract
Why do studies on insulin-like growth factors (IGFs) and IGF signaling seem so contradictory? The answer is "It depends". This mini- review will explore a few of the factors that are likely to contribute to a seemingly confusing message. Most of the evidence comes from experimental animal models.
Collapse
Affiliation(s)
- Cheryl A Conover
- Endocrine Research Unit, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, United States.
| |
Collapse
|
8
|
Abstract
This article covers some important concepts and controversies in modern nutritional science. It describes a diet style designed to maximize health, longevity, and disease reversal—foundationally structured on the quality and comprehensive adequacy of nutrients rather than the balance of macronutrients, as is more popular today. I call such a diet, which attempts to optimize micronutrients, a nutritarian diet. I will review a small case series demonstrating typical results in diabetics and some of my clinical observations over the last 25 years treating people with a nutritarian diet, which could be either vegan or flexitarian. I will also discuss health concerns observed from an unsupplemented vegan diet, specifically the risk of depression and later life dementia in individuals with enhanced need for long-chain omega-3 fatty acids.
Collapse
Affiliation(s)
- Joel Fuhrman
- Nutritional Research Foundation, Flemington, New Jersey (JF)
| |
Collapse
|
9
|
Chen Y, Onken B, Chen H, Xiao S, Liu X, Driscoll M, Cao Y, Huang Q. Mechanism of longevity extension of Caenorhabditis elegans induced by pentagalloyl glucose isolated from eucalyptus leaves. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:3422-3431. [PMID: 24701969 DOI: 10.1021/jf500210p] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The multicellular model organism Caenorhabditis elegans (C. elegans) was used to identify the anti-aging effect of pentagalloyl glucose (PGG) isolated from Eucalyptus leaves at four different concentrations. For 160 μM PGG, the median lifespan of C. elegans was found to increase by 18%, and the thermal stress resistance was also increased. The anti-aging effect of PGG did not cause side effects on the physiological functions including the reproduction, pharyngeal pumping rate, age pigments accumulation, and locomotion ability. The life extension induced by PGG was found to rely on genes daf-16, age-1, eat-2, sir-2.1, and isp-1 but did not rely on genes mev-1 and clk-1. These findings suggested that the insulin/IGF-1 signaling pathway, dietary restriction, Sir-2.1 signaling, and mitochondrial electron transport chain became partly involved with the mechanism of lifespan extension mediated by PGG. Our results provided an insight into the mechanism of longevity extension mediated by PGG in C. elegans, which might be developed into a new generation of multitarget drug to prolong lifespan.
Collapse
Affiliation(s)
- Yunjiao Chen
- Department of Food Science, College of Food Science, South China Agricultural University , Guangzhou 510642, China
| | | | | | | | | | | | | | | |
Collapse
|
10
|
El-Ami T, Moll L, Carvalhal Marques F, Volovik Y, Reuveni H, Cohen E. A novel inhibitor of the insulin/IGF signaling pathway protects from age-onset, neurodegeneration-linked proteotoxicity. Aging Cell 2014; 13:165-74. [PMID: 24261972 PMCID: PMC4326862 DOI: 10.1111/acel.12171] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2013] [Indexed: 12/31/2022] Open
Abstract
Aging manipulation is an emerging strategy aimed to postpone the manifestation of late-onset neurodegenerative disorders such as Alzheimer’s (AD) and Huntington’s diseases (HD) and to slow their progression once emerged. Reducing the activity of the insulin/IGF signaling cascade (IIS), a prominent aging-regulating pathway, protects worms from proteotoxicity of various aggregative proteins, including the AD-associated peptide, Aβ- and the HD-linked peptide, polyQ40. Similarly, IGF1 signaling reduction protects mice from AD-like disease. These discoveries suggest that IIS inhibitors can serve as new drugs for the treatment of neurodegenerative maladies including AD and HD. Here, we report that NT219, a novel IIS inhibitor, mediates a long-lasting, highly efficient inhibition of this signaling cascade by a dual mechanism; it reduces the autophosphorylation of the IGF1 receptor and directs the insulin receptor substrates 1 and 2 (IRS 1/2) for degradation. NT219 treatment promotes stress resistance and protects nematodes from AD- and HD-associated proteotoxicity without affecting lifespan. Our discoveries strengthen the theme that IIS inhibition has a therapeutic potential as a cure for neurodegenerative maladies and point at NT219 as a promising compound for the treatment of these disorders through a selective manipulation of aging.
Collapse
Affiliation(s)
- Tayir El-Ami
- Department of Biochemistry and Molecular Biology; The Institute for Medical Research Israel - Canada (IMRIC); The Hebrew University School of Medicine; Jerusalem Israel
| | - Lorna Moll
- Department of Biochemistry and Molecular Biology; The Institute for Medical Research Israel - Canada (IMRIC); The Hebrew University School of Medicine; Jerusalem Israel
| | - Filipa Carvalhal Marques
- Department of Biochemistry and Molecular Biology; The Institute for Medical Research Israel - Canada (IMRIC); The Hebrew University School of Medicine; Jerusalem Israel
- Faculty of Medicine; Center of Ophthalmology and Vision Sciences (COCV); Institute for Biomedical Research in Light and Image (IBILI); University of Coimbra; Coimbra Portugal
| | - Yuli Volovik
- Department of Biochemistry and Molecular Biology; The Institute for Medical Research Israel - Canada (IMRIC); The Hebrew University School of Medicine; Jerusalem Israel
| | | | - Ehud Cohen
- Department of Biochemistry and Molecular Biology; The Institute for Medical Research Israel - Canada (IMRIC); The Hebrew University School of Medicine; Jerusalem Israel
| |
Collapse
|
11
|
Current World Literature. Curr Opin Nephrol Hypertens 2012; 21:106-18. [DOI: 10.1097/mnh.0b013e32834ee42b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|