1
|
Tufail P, Anjum S, Siddiqui BS, Pizzi M, Jahan H, Choudhary MI. Nitrovanillin derivative ameliorates AGE-RAGE nexus associated inflammation: A step towards the amelioration of vascular complications under diabetic environment. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167784. [PMID: 40058471 DOI: 10.1016/j.bbadis.2025.167784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 02/28/2025] [Accepted: 03/04/2025] [Indexed: 03/20/2025]
Abstract
INTRODUCTION Advanced glycation endproducts (AGEs) are implicated in various pathological conditions, including diabetes, inflammation, and cardiovascular diseases. Methylglyoxal (MGO), a potent glycation agent, leads to the formation of MGO-derived AGEs, which promote structural and functional anomalies in various cellular and tissues proteins. AGEs stimulate the proliferation of monocytes, and induce a pro-inflammatory state through AGE-RAGE interactions, triggering oxidative stress, and inflammatory condition that contribute to the progression of atherosclerosis, and other diabetic complications. OBJECTIVE The current study was aimed to explore the antioxidant and anti-inflammatory properties of a series of novel antiglycation compounds, nitrovanillin derivatives, by modulating the AGEs-stimulated intracellular signaling pathways involved in inflammation. METHODS The preliminary safety profile of nitrovanillin derivatives was assessed by using human hepatocytes (HepG2), and monocytes (THP-1) cell lines via MTT, and WST-1 assays, respectively. Antioxidant activity of the compounds was determined by using DCFH-DA technique. Western blotting, immunocytochemistry, and ELISA methods were employed to assess the levels of pro-inflammatory markers (RAGE, COX-1, COX-2, NF-κB, and PGE2) in MGO-AGEs stimulated THP-1 monocytes. RESULT Among the nitrovanillin derivatives 1-11, only compound 2, ((E)-2-methoxy-6-nitro-4-(((2-(trifluoromethyl)phenyl)imino)methyl)phenol), was found non-toxic to HepG2, and THP-1 cells. Compound 2 lowered the MGO-AGEs-induced reactive oxygen species (ROS) production by inhibiting the upstream signaling of NADPH oxidase and MAPK-p38, which subsequently inhibited the NF-κB activation in THP-1 monocytes. Compound 2 also reversed the AGEs-mediated COX-1 suppression, COX-2 upregulation, and PGE2 production by blocking the AGE-RAGE ligation in THP-1 monocytes. CONCLUSION In conclusion, nitrovanillin 2 ((E)-2-methoxy-6-nitro-4-(((2-(trifluoromethyl)phenyl)imino)methyl)phenol) is a potential candidate for mitigating MGO-AGEs mediated vasculopathy by the inhibition of AGE-RAGE-p38/NF-κB nexus in THP-1 monocytes. It may offer a therapeutic option for the patients with diabetes and chronic inflammatory vascular complications, and thus offering new avenues for treatment development.
Collapse
Affiliation(s)
- Priya Tufail
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Sajjad Anjum
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Bina Shaheen Siddiqui
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Marina Pizzi
- Department of Molecular and Translational Medicine, University of Brescia, Brescia 25123, Italy
| | - Humera Jahan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga, Komplek Kampus C, JI. Mulyorejo, Surabaya 60115, Indonesia.
| | - M Iqbal Choudhary
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga, Komplek Kampus C, JI. Mulyorejo, Surabaya 60115, Indonesia.
| |
Collapse
|
2
|
Pierce GL. De-Stiffening the Aged Aorta with Regular Aerobic Exercise in Humans: Fact or Fallacy? Pulse (Basel) 2025; 13:22-30. [PMID: 40330439 PMCID: PMC12052302 DOI: 10.1159/000542610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 11/09/2024] [Indexed: 05/08/2025] Open
Abstract
Background Aortic stiffness, quantified by carotid-femoral pulse wave velocity (PWV), is a strong predictor of cardiovascular disease events. In general, dynamic "aerobic" exercise training performed regularly for many years in middle and older age is associated with an attenuated or absence of an age-related increase in aortic stiffness without hypertension. However, cross-sectional studies can be confounded by physiological or lifestyle factors that may contribute in part to the lower aortic stiffness observed, and prospective interventions are often limited by short duration and inadequate exercise frequency to have clinical benefit. Therefore, this review will discuss the evidence for the de-stiffening effects of regular, dynamic aerobic exercise training on aortic stiffness in the presence or absence of hypertension with some discussion on high-intensity interval training (HIIT). Summary Short-term (3-12 months) aerobic exercise interventions, 2-3 days per week initiated in middle age or older age without hypertension, result in small decreases in carotid-femoral PWV that is likely the result of reductions in distending pressure (i.e., mean arterial pressure) rather than an alteration in structural wall properties. However, cross-sectional data indicate that 4-5 days/week appears to be the minimal frequency that is obligatory for de-stiffening of the aorta among adults who perform regular exercise in middle age and continue into older age. Despite greater improvements in aerobic fitness by high-intensity interval training (HIIT), short-term HIIT 4 days/week does not provide any benefit over moderate-intensity continuous training for de-stiffening the aorta among older adults with or without hypertension. Key Messages Short-term aerobic exercise interventions 2-3 days/week at moderate intensity initiated in middle age or older age have small or no favorable blood pressure-independent effect on aortic wall stiffness. In contrast, 4-5 days/week appears to be the minimal obligatory dose of aerobic exercise to have some de-stiffening effects if performed during middle age and continuing into older age. Short-term HIIT provides no greater de-stiffening effects on the aged aorta than continuous aerobic exercise training.
Collapse
Affiliation(s)
- Gary L. Pierce
- Department of Health and Human Physiology, University of Iowa, Iowa City, IA, USA
- Department of Internal Medicine, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
3
|
da Silva RSN, da Silva DS, de Oliveira PC, Waclawovsky G, Schaun MI. Effects of aerobic, resistance and combined training on endothelial function and arterial stiffness in older adults: A systematic review and meta-analysis. PLoS One 2024; 19:e0308600. [PMID: 39621701 PMCID: PMC11611152 DOI: 10.1371/journal.pone.0308600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/26/2024] [Indexed: 12/11/2024] Open
Abstract
We conducted a systematic review of randomized clinical trials evaluating the effects of aerobic, resistance and/or combined training on flow-mediated dilation (FMD) and/or pulse wave velocity (PWV) in older adults. The studies were selected from the electronic databases PubMed, Cochrane, LILACS, EMBASE, Web of Science, and the gray literature. We assessed the studies using Cochrane risk of bias (RoB2) tool and the GRADE tool. The GRADE assessment showed moderate quality of evidence for aerobic training and resistance training and very low for combined training. The measures of effects are presented as mean differences of the intervention group versus the control group and related 95% confidence intervals (95% CIs) pooled by a random-effects model using an inverse variance method. Our analysis of 24 RCTs (Intervention group [n = 251]: 67.7 ± 5.6 years old; control group [n = 228]: 68.7 ± 5.9 years old) showed that aerobic training was effective to improve FMD (0.64% [95% CI 0.24 to 1.03], p = 0.002) and PWV (-1.21 m/s [95% CI -1.37 to -1.05], p< 0.001) by compared to the control group. The subgroup analyses showed no FMD differences following aerobic training in healthy adults when compared to those with any health condition. Combined training was effective in improving FMD (0.60% [95% CI 0.50 to 0.71], p< 0.001) and PWV (-0.79 m/s [95% CI -1.23 to -0.35], p = 0.002). But these same parameters did not show any improvement in response to resistance training. A major limitation of this study is that the analysis to evaluate the effect of resistance training on PWV include only one study, and no inferences could be made from the data. Aerobic and combined training, but not resistant training, improve flow-mediated dilation and pulse wave velocity in the elderly. PROSPERO: CRD42021275282.
Collapse
Affiliation(s)
| | - Diego Silveira da Silva
- Instituto de Cardiologia do Rio Grande do Sul/Fundação Universitária de Cardiologia, Porto Alegre, Brasil
| | | | - Gustavo Waclawovsky
- Instituto de Cardiologia do Rio Grande do Sul/Fundação Universitária de Cardiologia, Porto Alegre, Brasil
| | - Maximiliano Isoppo Schaun
- Instituto de Cardiologia do Rio Grande do Sul/Fundação Universitária de Cardiologia, Porto Alegre, Brasil
| |
Collapse
|
4
|
Zhukovskaya ON, Kolodina AA, Litvinov R, Ibragimova U, Valuisky N, Sorokina S, Zhukova X, Pobedinskaya DY, Borisov A, Babkov DA, Spasov AA. Directed Design, Screening and Antiglycation Activity for 3-Substituted Thiazolium Derivatives, New Analogs of Alagebrium. Chem Biol Drug Des 2024; 104:e14630. [PMID: 39424374 DOI: 10.1111/cbdd.14630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/17/2024] [Accepted: 09/09/2024] [Indexed: 10/21/2024]
Abstract
Preliminary ab initio calculations led to the synthesis of novel substituted thiazolium salts, analogs of Alagebrium, which were further explored in vitro for their potential as inhibitors of the glycation reaction utilizing three distinct assays: inhibition of fluorescent AGEs formation, anticrosslinking, and deglycation. Despite the unidirectionality of the assays, distinct differences were observed in the mechanisms of interference and activity manifestation by the compounds. The gathered data permitted the formation of hypotheses about the molecular fragments of the studied antiglycators that are of utmost significance in each assay, thereby guiding future design endeavors. Potential mechanisms of actions are discussed therein. The compound 4-meth-yl-3-[2-(4-methylbiphenyl-4-yl)-2-oxoethyl] thiazolium bromide displayed high activity across all three assays, establishing it as a lead compound. The cytotoxicological properties of the compounds were evaluated using LDH and MTT assays. However, the lead compound exhibited cytotoxicity, indicating the need for additional investigations aimed at decreasing toxicity while maintaining activity. The targeted thiazolium salts were synthesized through an N-alkylation reaction between the corresponding thiazoles and phenacyl bromides.
Collapse
Affiliation(s)
- Olga N Zhukovskaya
- Institute of Physical and Organic Chemistry, Southern Federal University, Russian Federation, Rostov-on-Don, Russia
| | - Alexandra A Kolodina
- Institute of Physical and Organic Chemistry, Southern Federal University, Russian Federation, Rostov-on-Don, Russia
| | - Roman Litvinov
- Volgograd State Medical University, Scientific Center for Innovative Drugs, Volgograd, Russia
| | - Umida Ibragimova
- Volgograd State Medical University, Scientific Center for Innovative Drugs, Volgograd, Russia
| | - Nikita Valuisky
- Volgograd State Medical University, Scientific Center for Innovative Drugs, Volgograd, Russia
| | - Svetlana Sorokina
- Volgograd State Medical University, Scientific Center for Innovative Drugs, Volgograd, Russia
| | - Xenia Zhukova
- Volgograd State Medical University, Scientific Center for Innovative Drugs, Volgograd, Russia
| | - Diana Yu Pobedinskaya
- Department of Organic Chemistry, North Caucasus Federal University, Stavropol, Russia
| | - Alexander Borisov
- Volgograd State Medical University, Scientific Center for Innovative Drugs, Volgograd, Russia
| | - Denis A Babkov
- Volgograd State Medical University, Scientific Center for Innovative Drugs, Volgograd, Russia
| | - Alexander A Spasov
- Volgograd State Medical University, Scientific Center for Innovative Drugs, Volgograd, Russia
| |
Collapse
|
5
|
Delligatti CE, Kirk JA. Glycation in the cardiomyocyte. VITAMINS AND HORMONES 2024; 125:47-88. [PMID: 38997172 PMCID: PMC11578284 DOI: 10.1016/bs.vh.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
Glycation is a protein post-translational modification that can occur on lysine and arginine residues as a result of a non-enzymatic process known as the Maillard reaction. This modification is irreversible, so the only way it can be removed is by protein degradation and replacement. Small reactive carbonyl species, glyoxal and methylglyoxal, are the primary glycating agents and are elevated in several conditions associated with an increased risk of cardiovascular disease, including diabetes, rheumatoid arthritis, smoking, and aging. Thus, how protein glycation impacts the cardiomyocyte is of particular interest, to both understand how these conditions increase the risk of cardiovascular disease and how glycation might be targeted therapeutically. Glycation can affect the cardiomyocyte through extracellular mechanisms, including RAGE-based signaling, glycation of the extracellular matrix that modifies the mechanical environment, and signaling from the vasculature. Intracellular glycation of the cardiomyocyte can impact calcium handling, protein quality control and cell death pathways, as well as the cytoskeleton, resulting in a blunted contractility. While reducing protein glycation and its impact on the heart has been an active area of drug development, multiple clinical trials have had mixed results and these compounds have not been translated to the clinic-highlighting the challenges of modulating myocyte glycation. Here we will review protein glycation and its effects on the cardiomyocyte, therapeutic attempts to reverse these, and offer insight as to the future of glycation studies and patient treatment.
Collapse
Affiliation(s)
- Christine E Delligatti
- Department of Cell and Molecular Physiology, Loyola University Chicago Stritch School of Medicine, Maywood, IL, United States
| | - Jonathan A Kirk
- Department of Cell and Molecular Physiology, Loyola University Chicago Stritch School of Medicine, Maywood, IL, United States.
| |
Collapse
|
6
|
Weijs RWJ, Oudegeest-Sander MH, Hopman MTE, Thijssen DHJ, Claassen JAHR. Cerebrovascular CO 2 reactivity and dynamic cerebral autoregulation through the eighth decade of life and their implications for cognitive decline. J Cereb Blood Flow Metab 2024; 44:712-725. [PMID: 38064286 PMCID: PMC11197147 DOI: 10.1177/0271678x231219568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 11/09/2023] [Accepted: 11/16/2023] [Indexed: 04/26/2024]
Abstract
Aging is accompanied by a decrease in cerebral blood flow (CBF), especially in the presence of preclinical cognitive decline. The role of cerebrovascular physiology including regulatory mechanisms of CBF in processes underlying aging and subclinical cognitive decline is, however, not fully understood. We explored changes in cerebrovascular CO2 reactivity and dynamic cerebral autoregulation (dCA) through the eighth decade of life, and their relation with early cognitive decline. After 10.9 years, twenty-eight (age, 80.0 ± 3.5 years; 46% female) out of forty-eight healthy older adults who had participated in a previous study (age at baseline, 70 ± 4 years; 42% female), underwent repeated transcranial Doppler assessments. Linear mixed-model analyses revealed small reductions in cerebrovascular CO2 reactivity with aging (-0.37%/mmHg, P = 0.041), whereas dCA was modestly enhanced (gain: -0.009 cm/s/mmHg, P = 0.038; phase: +8.9 degrees, P = 0.004). These changes were more pronounced in participants who had developed subjective memory complaints at follow-up. Our observations confirm that dCA is not impaired in aging, despite lower cerebral perfusion and cerebrovascular reactivity. Altogether, this unique longitudinal study highlights the involvement of cerebrovascular health in preclinical cognitive decline, which is of clinical relevance in the development of dementia management strategies.
Collapse
Affiliation(s)
- Ralf WJ Weijs
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Madelijn H Oudegeest-Sander
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Geriatric Medicine, Radboudumc Alzheimer Center, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Maria TE Hopman
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Dick HJ Thijssen
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, The Netherlands
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - Jurgen AHR Claassen
- Department of Geriatric Medicine, Radboudumc Alzheimer Center, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| |
Collapse
|
7
|
Bakali M, Ward TC, Daynes E, Jones AV, Hawthorne GM, Latimer L, Divall P, Graham-Brown M, McCann GP, Yates T, Steiner MC, Evans RA. Effect of aerobic exercise training on pulse wave velocity in adults with and without long-term conditions: a systematic review and meta-analysis. Open Heart 2023; 10:e002384. [PMID: 38101857 PMCID: PMC10729135 DOI: 10.1136/openhrt-2023-002384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 10/11/2023] [Indexed: 12/17/2023] Open
Abstract
RATIONALE There is conflicting evidence whether aerobic exercise training (AET) reduces pulse wave velocity (PWV) in adults with and without long-term conditions (LTCs). OBJECTIVE To explore whether PWV improves with AET in adults with and without LTC, to quantify the magnitude of any effect and understand the influence of the exercise prescription. DATA SOURCES CENTRAL, MEDLINE and EMBASE were among the databases searched. ELIGIBILITY CRITERIA We included studies with a PWV measurement before and after supervised AET of at least 3 weeks duration. Exclusion criteria included resistance exercise and alternative measures of arterial stiffness. DESIGN Controlled trials were included in a random effects meta-analysis to explore the effect of AET on PWV. Uncontrolled studies were included in a secondary meta-analysis and meta-regression exploring the effect of patient and programme factors on change in PWV. The relevant risk of bias tool was used for each study design. RESULTS 79 studies (n=3729) were included: 35 controlled studies (21 randomised control trials (RCT) (n=1240) and 12 non-RCT (n=463)) and 44 uncontrolled (n=2026). In the controlled meta- analysis, PWV was significantly reduced following AET (mean (SD) 11 (7) weeks) in adults with and without LTC (mean difference -0.63; 95% CI -0.82 to -0.44; p<0.0001). PWV was similarly reduced between adults with and without LTC (p<0.001). Age, but not specific programme factors, was inversely associated with a reduction in PWV -0.010 (-0.020 to -0.010) m/s, p<0.001. DISCUSSION Short-term AET similarly reduces PWV in adults with and without LTC. Whether this effect is sustained and the clinical implications require further investigation.
Collapse
Affiliation(s)
- Majda Bakali
- NIHR Leicester Biomedical Research Centre -Respiratory, Department of Respiratory Sciences, College of Life Sciences, University of Leicester, Leicester, UK
| | - Thomas Cj Ward
- NIHR Leicester Biomedical Research Centre -Respiratory, Department of Respiratory Sciences, College of Life Sciences, University of Leicester, Leicester, UK
| | - Enya Daynes
- Centre of Exercise and Reshabilitaiton Sciences, NIHR Leicester Biomedical Research Centre, Leicester, UK
| | - Amy V Jones
- Centre of Exercise and Reshabilitaiton Sciences, NIHR Leicester Biomedical Research Centre, Leicester, UK
| | - Grace M Hawthorne
- Centre of Exercise and Reshabilitaiton Sciences, NIHR Leicester Biomedical Research Centre, Leicester, UK
| | - Lorna Latimer
- NIHR Leicester Biomedical Research Centre -Respiratory, Department of Respiratory Sciences, College of Life Sciences, University of Leicester, Leicester, UK
- Centre of Exercise and Reshabilitaiton Sciences, NIHR Leicester Biomedical Research Centre, Leicester, UK
| | - Pip Divall
- Education Centre Library, University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Matt Graham-Brown
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Gerry P McCann
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Thomas Yates
- Diabetes Research Centre, University of Leicester, Leicester, UK
| | - Michael C Steiner
- NIHR Leicester Biomedical Research Centre -Respiratory, Department of Respiratory Sciences, College of Life Sciences, University of Leicester, Leicester, UK
| | - Rachael Andrea Evans
- NIHR Leicester Biomedical Research Centre -Respiratory, Department of Respiratory Sciences, College of Life Sciences, University of Leicester, Leicester, UK
- Centre of Exercise and Reshabilitaiton Sciences, NIHR Leicester Biomedical Research Centre, Leicester, UK
| |
Collapse
|
8
|
Roth L, Dogan S, Tuna BG, Aranyi T, Benitez S, Borrell-Pages M, Bozaykut P, De Meyer GRY, Duca L, Durmus N, Fonseca D, Fraenkel E, Gillery P, Giudici A, Jaisson S, Johansson M, Julve J, Lucas-Herald AK, Martinet W, Maurice P, McDonnell BJ, Ozbek EN, Pucci G, Pugh CJA, Rochfort KD, Roks AJM, Rotllan N, Shadiow J, Sohrabi Y, Spronck B, Szeri F, Terentes-Printzios D, Tunc Aydin E, Tura-Ceide O, Ucar E, Yetik-Anacak G. Pharmacological modulation of vascular ageing: A review from VascAgeNet. Ageing Res Rev 2023; 92:102122. [PMID: 37956927 DOI: 10.1016/j.arr.2023.102122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/27/2023] [Accepted: 11/09/2023] [Indexed: 11/20/2023]
Abstract
Vascular ageing, characterized by structural and functional changes in blood vessels of which arterial stiffness and endothelial dysfunction are key components, is associated with increased risk of cardiovascular and other age-related diseases. As the global population continues to age, understanding the underlying mechanisms and developing effective therapeutic interventions to mitigate vascular ageing becomes crucial for improving cardiovascular health outcomes. Therefore, this review provides an overview of the current knowledge on pharmacological modulation of vascular ageing, highlighting key strategies and promising therapeutic targets. Several molecular pathways have been identified as central players in vascular ageing, including oxidative stress and inflammation, the renin-angiotensin-aldosterone system, cellular senescence, macroautophagy, extracellular matrix remodelling, calcification, and gasotransmitter-related signalling. Pharmacological and dietary interventions targeting these pathways have shown potential in ameliorating age-related vascular changes. Nevertheless, the development and application of drugs targeting vascular ageing is complicated by various inherent challenges and limitations, such as certain preclinical methodological considerations, interactions with exercise training and sex/gender-related differences, which should be taken into account. Overall, pharmacological modulation of endothelial dysfunction and arterial stiffness as hallmarks of vascular ageing, holds great promise for improving cardiovascular health in the ageing population. Nonetheless, further research is needed to fully elucidate the underlying mechanisms and optimize the efficacy and safety of these interventions for clinical translation.
Collapse
Affiliation(s)
- Lynn Roth
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium.
| | - Soner Dogan
- Department of Medical Biology, School of Medicine, Yeditepe University, Istanbul, Turkiye
| | - Bilge Guvenc Tuna
- Department of Biophysics, School of Medicine, Yeditepe University, Istanbul, Turkiye
| | - Tamas Aranyi
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary; Department of Molecular Biology, Semmelweis University, Budapest, Hungary
| | - Sonia Benitez
- CIBER de Diabetes y enfermedades Metabólicas asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain; Cardiovascular Biochemistry, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain
| | - Maria Borrell-Pages
- Cardiovascular Program ICCC, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain; Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBER-CV), Instituto de Salud Carlos III, Madrid, Spain
| | - Perinur Bozaykut
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkiye
| | - Guido R Y De Meyer
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| | - Laurent Duca
- UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Team 2 "Matrix Aging and Vascular Remodelling", Université de Reims Champagne Ardenne (URCA), Reims, France
| | - Nergiz Durmus
- Department of Pharmacology, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkiye
| | - Diogo Fonseca
- Laboratory of Pharmacology and Pharmaceutical Care, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Emil Fraenkel
- 1st Department of Internal Medicine, University Hospital, Pavol Jozef Šafárik University of Košice, Košice, Slovakia
| | - Philippe Gillery
- UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Team 2 "Matrix Aging and Vascular Remodelling", Université de Reims Champagne Ardenne (URCA), Reims, France; Laboratoire de Biochimie-Pharmacologie-Toxicologie, Centre Hospitalier et Universitaire de Reims, Reims, France
| | - Alessandro Giudici
- Department of Biomedical Engineering, CARIM School for Cardiovascular Diseases, Maastricht University, the Netherlands; GROW School for Oncology and Reproduction, Maastricht University, the Netherlands
| | - Stéphane Jaisson
- UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Team 2 "Matrix Aging and Vascular Remodelling", Université de Reims Champagne Ardenne (URCA), Reims, France; Laboratoire de Biochimie-Pharmacologie-Toxicologie, Centre Hospitalier et Universitaire de Reims, Reims, France
| | | | - Josep Julve
- CIBER de Diabetes y enfermedades Metabólicas asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain; Endocrinology, Diabetes and Nutrition group, Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
| | | | - Wim Martinet
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| | - Pascal Maurice
- UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Team 2 "Matrix Aging and Vascular Remodelling", Université de Reims Champagne Ardenne (URCA), Reims, France
| | - Barry J McDonnell
- Centre for Cardiovascular Health and Ageing, Cardiff Metropolitan University, Cardiff, UK
| | - Emine Nur Ozbek
- Department of Pharmacology, Faculty of Pharmacy, Ege University, Izmir, Turkiye
| | - Giacomo Pucci
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Christopher J A Pugh
- Centre for Cardiovascular Health and Ageing, Cardiff Metropolitan University, Cardiff, UK
| | - Keith D Rochfort
- School of Nursing, Psychotherapy, and Community Health, Dublin City University, Dublin, Ireland
| | - Anton J M Roks
- Department of Internal Medicine, Division of Vascular Disease and Pharmacology, Erasmus Medical Center, Erasmus University, Rotterdam, the Netherlands
| | - Noemi Rotllan
- CIBER de Diabetes y enfermedades Metabólicas asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain; Pathophysiology of lipid-related diseases, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain
| | - James Shadiow
- School of Kinesiology, University of Michigan, Ann Arbor, MI, USA
| | - Yahya Sohrabi
- Molecular Cardiology, Dept. of Cardiology I - Coronary and Peripheral Vascular Disease, University Hospital Münster, Westfälische Wilhelms-Universität, 48149 Münster, Germany; Department of Medical Genetics, Third Faculty of Medicine, Charles University, 100 00 Prague, Czechia
| | - Bart Spronck
- Department of Biomedical Engineering, CARIM School for Cardiovascular Diseases, Maastricht University, the Netherlands; Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Australia
| | - Flora Szeri
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Dimitrios Terentes-Printzios
- First Department of Cardiology, Hippokration Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Elif Tunc Aydin
- Department of Cardiology, Hospital of Ataturk Training and Research Hospital, Katip Celebi University, Izmir, Turkiye
| | - Olga Tura-Ceide
- Biomedical Research Institute-IDIBGI, Girona, Spain; Department of Pulmonary Medicine, Hospital Clínic-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS); University of Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Respiratorias, Madrid, Spain
| | - Eda Ucar
- Department of Biophysics, School of Medicine, Yeditepe University, Istanbul, Turkiye
| | - Gunay Yetik-Anacak
- Department of Pharmacology, Faculty of Pharmacy, Ege University, Izmir, Turkiye; Department of Pharmacology, Faculty of Pharmacy, Acıbadem Mehmet Aydinlar University, Istanbul, Turkiye.
| |
Collapse
|
9
|
Königstein K, Dipla K, Zafeiridis A. Training the Vessels: Molecular and Clinical Effects of Exercise on Vascular Health-A Narrative Review. Cells 2023; 12:2544. [PMID: 37947622 PMCID: PMC10649652 DOI: 10.3390/cells12212544] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/27/2023] [Accepted: 10/28/2023] [Indexed: 11/12/2023] Open
Abstract
Accelerated biological vascular ageing is still a major driver of the increasing burden of cardiovascular disease and mortality. Exercise training delays this process, known as early vascular ageing, but often lacks effectiveness due to a lack of understanding of molecular and clinical adaptations to specific stimuli. This narrative review summarizes the current knowledge about the molecular and clinical vascular adaptations to acute and chronic exercise. It further addresses how training characteristics (frequency, intensity, volume, and type) may influence these processes. Finally, practical recommendations are given for exercise training to maintain and improve vascular health. Exercise increases shear stress on the vascular wall and stimulates the endothelial release of circulating growth factors and of exerkines from the skeletal muscle and other organs. As a result, remodeling within the vascular walls leads to a better vasodilator and -constrictor responsiveness, reduced arterial stiffness, arterio- and angiogenesis, higher antioxidative capacities, and reduced oxidative stress. Although current evidence about specific aspects of exercise training, such as F-I-T-T, is limited, and exact training recommendations cannot be given, some practical implications can be extracted. As such, repeated stimuli 5-7 days per week might be necessary to use the full potential of these favorable physiological alterations, and the cumulative volume of mechanical shear stress seems more important than peak shear stress. Because of distinct short- and long-term effects of resistance and aerobic exercise, including higher and moderate intensities, both types of exercise should be implemented in a comprehensive training regimen. As vascular adaptability towards exercise remains high at any age in both healthy individuals and patients with cardiovascular diseases, individualized exercise-based vascular health prevention should be implemented in any age group from children to centenarians.
Collapse
Affiliation(s)
- Karsten Königstein
- Department of Sport, Exercise and Health, Division Sports and Exercise Medicine, University of Basel, 4052 Basel, Switzerland
| | - Konstantina Dipla
- Laboratory of Exercise Physiology and Biochemistry, Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, 62100 Serres, Greece;
| | - Andreas Zafeiridis
- Laboratory of Exercise Physiology and Biochemistry, Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, 62100 Serres, Greece;
| |
Collapse
|
10
|
Li P, Liu Z, Wan K, Wang K, Zheng C, Huang J. Effects of regular aerobic exercise on vascular function in overweight or obese older adults: A systematic review and meta-analysis. J Exerc Sci Fit 2023; 21:313-325. [PMID: 37520931 PMCID: PMC10372915 DOI: 10.1016/j.jesf.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 04/16/2023] [Accepted: 06/21/2023] [Indexed: 08/01/2023] Open
Abstract
Background Overweight and obese older adults have a high risk for developing cardiovascular disease. Aerobic exercise is a valuable strategy to improve vascular health, but the effects of aerobic exercise on vascular endothelial function in obese and overweight older adults remain controversial. The purpose of this meta-analysis was to investigate the effects of aerobic exercise on vascular function in obese and overweight older adults with or without comorbidity. Methods A systematic literature search for related studies published in English was conducted between January 1989 and October 30, 2022, in the PubMed, Embase, and Cochrane Library databases. A random effects model was chosen for meta-analysis, which calculated the effect sizes of control and intervention groups after exercise intervention using standardized mean differences (SMDs) corrected for Hedges' g bias and 95% confidence intervals (95% CIs). Results Twenty-six studies containing 1418 participants were included in the study. After excluding three studies contributing to higher heterogeneity by sensitivity analysis, there are small effects of regular aerobic exercise on vascular function of obese and overweight older adults, including flow-mediated dilation (FMD) [SMD = 0.21, 95% CI (0.02, 0.41), z = 2.16, df = 19, I2 = 52.2%, P = 0.031] and pulse wave velocity (PWV) [SMD = -0.24, 95% CI (-0.46, -0.02), z = 2.17, df = 10, I2 = 8.6%, P = 0.030], and no significant effect was observed on augmentation index (Aix). Subgroup analysis showed small effects of regular aerobic exercise on FMD [SMD = 0.37, 95% CI (0.13, 0.61), z = 3.05, df = 9, I2 = 52.6%, P = 0.002] in the overweight not obese subgroup (25 = BMI <30 kg/m2), but no significant effect on the obese subgroup (BMI ≥30 kg/m2). Regular aerobic exercise for more than 24 weeks improved FMD by small effect sizes [SMD = 0.48, 95% CI (0.04, 0.93), z = 2.12, df = 5, I2 = 56.4%, P = 0.034] and for more than three times per week improved FMD by moderate effect sizes [SMD = 0.55, 95% CI (0.12, 0.98), z = 2.50, df = 3, I2 = 31.1%, P = 0.012] in obese and overweight older adults with or without CVD. Conclusion In obese and overweight older adults with or without comorbidity, regular aerobic exercise for more than 24 weeks improved FMD by small effect sizes and exercise for more than three times per week improved FMD by moderate effect sizes and regular aerobic exercise reduced PWV by small effect sizes and had no influence on Aix. Taken together, it was recommended that obese and overweight older adults should adhere to regular aerobic exercise, training at least 3 times per week for better results.
Collapse
Affiliation(s)
- Peilun Li
- Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, Scientific Research Center, Guangzhou Sport University, Guangzhou, Guangdong, China
| | - Ziqing Liu
- Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, Scientific Research Center, Guangzhou Sport University, Guangzhou, Guangdong, China
| | - Kewen Wan
- Department of Sports Science and Physical Education, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Kangle Wang
- Department of Health and Physical Education, The Education University of Hong Kong, Hong Kong SAR, China
| | - Chen Zheng
- Department of Sports Science and Physical Education, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Junhao Huang
- Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, Scientific Research Center, Guangzhou Sport University, Guangzhou, Guangdong, China
| |
Collapse
|
11
|
Boyraz B, Peker T. The Role of Advanced Glycation End-Product Levels Measured by Skin Autofluorescence in the Development of Mitral Annular Calcification. J Cardiovasc Dev Dis 2023; 10:406. [PMID: 37754835 PMCID: PMC10531500 DOI: 10.3390/jcdd10090406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/06/2023] [Accepted: 09/18/2023] [Indexed: 09/28/2023] Open
Abstract
As a person ages, mitral annular calcification develops in the mitral annulus with increasing frequency. Lipid deposition, inflammation, and aging-related degeneration have been cited as potential causes of this pathophysiology, though there is currently no conclusive evidence to support this. AGEs accumulate in tissues due to the glycation of proteins and lipids, increasing the release of proinflammatory cytokines secondary to oxidative stress through the AGE receptor. The AGE levels increase in diabetic microvascular complications and degenerative aortic valve disease. Our study was planned prospectively as a case-control study involving 94 MAC-positive patients and 94 MAC-negative patients. The demographics, echocardiographic data and AGE levels of the patients were measured and recorded using the skin autofluorescence method. AGE levels were significantly higher in the MAC-positive patient group (3.2 vs. 2.7; p < 0.001). The AGE levels were observed as an independent predictor of MAC development in a regression analysis (OR: 8.05, 95% CI: 3.74-17.33, p < 0.001). In a ROC-curve analysis, the AUC was 0.79 (95% CI: 0.72-0.85). At a cut-off value of 2.7, 79.7% sensitivity and 69.1% specificity were observed. AGE levels can be used to cheaply, easily and non-invasively identify patients at risk of developing MAC.
Collapse
Affiliation(s)
- Bedrettin Boyraz
- Cardiology Department, Medicalpark Hospital, Health Science Faculty, Mudanya University, Bursa 16950, Turkey;
| | | |
Collapse
|
12
|
Palić B, Brizić I, Sher EK, Cvetković I, Džidić-Krivić A, Abdelghani HTM, Sher F. Effects of Zofenopril on Arterial Stiffness in Hypertension Patients. Mol Biotechnol 2023:10.1007/s12033-023-00861-5. [PMID: 37702881 DOI: 10.1007/s12033-023-00861-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/29/2023] [Indexed: 09/14/2023]
Abstract
Angiotensin-converting enzyme inhibitors (ACEIs) reduce arterial stiffness beyond their antihypertensive effect. Studies showed that sulfhydryl ACEIs have the antioxidative potential to improve endothelial function, which might have a clinical effect on arterial distensibility. However, there are no studies that directly compare the effects of sulfhydryl (zofenopril) and non-sulfhydryl ACEIs (enalapril) on arterial stiffness. Therefore, this prospective study aims to compare the effects of enalapril and zofenopril on arterial stiffness and oxidative stress in both short- and long-term treatment of arterial hypertension (AH). Baseline and post-treatment peripheral and central arterial pressure indices, augmentation index (Aix), aortic pulse wave velocity (ao-PWV), serum levels of oxidized low-density cholesterol lipoprotein, LDL and uric acid (UA) were measured. The results showed that acute treatment with zofenopril, in contrast to enalapril, significantly decreased peripheral and central Aix (p < 0.001). Chronic treatment with zofenopril showed a superior effect over enalapril on the reduction of the peripheral systolic arterial pressure with reduction of ao-PWV (p = 0.004), as well as a reduction in peripheral Aix (p = 0.021) and central Aix (p = 0.021). Therefore, this study indicates that zofenopril has beneficial effects on the reduction of arterial stiffness compared to enalapril. It has potent clinical efficacy in AH treatment and further studies should compare its safety and long-term efficacy to other AH drugs that would aid clinicians in treating AH and other various cardiovascular diseases that have arterial stiffness as a common denominator.
Collapse
Affiliation(s)
- Benjamin Palić
- Department of Internal Medicine, University Clinical Hospital Mostar, 88000, Mostar, Bosnia and Herzegovina
| | - Ivica Brizić
- Department of Internal Medicine, University Clinical Hospital Mostar, 88000, Mostar, Bosnia and Herzegovina
| | - Emina Karahmet Sher
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK.
| | - Ivona Cvetković
- Department of Laboratory Diagnostics, University Clinical Hospital Mostar, 88000, Mostar, Bosnia and Herzegovina
| | - Amina Džidić-Krivić
- Department of Neurology, Cantonal Hospital Zenica, 72000, Zenica, Bosnia and Herzegovina
- International Society of Engineering Science and Technology, Nottingham, UK
| | - Heba Taha Mohmmed Abdelghani
- Department of Physiology of Physical Activity, College of Sport Sciences and Physical Activity, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Farooq Sher
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK.
| |
Collapse
|
13
|
Weijs RWJ, Oudegeest-Sander MH, Vloet JIA, Hopman MTE, Claassen JAHR, Thijssen DHJ. A decade of aging in healthy older adults: longitudinal findings on cerebrovascular and cognitive health. GeroScience 2023; 45:2629-2641. [PMID: 37052769 PMCID: PMC10651595 DOI: 10.1007/s11357-023-00790-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/31/2023] [Indexed: 04/14/2023] Open
Abstract
Research suggests an association between cerebrovascular health and cognitive decline, but previous work is limited by its cross-sectional nature or short (< 1-2 years) follow-up. Our aim was to examine, across 10 years of follow-up in healthy older adults, changes in cerebrovascular health and their relationship with subjective memory complaints as an early marker of cognitive decline. Between 2008 and 2010, twenty-eight healthy older adults (69 ± 4 years) underwent baseline blood pressure and transcranial Doppler measurements to assess middle cerebral artery blood velocity (MCAv), cerebrovascular resistance index (CVRi), and measures of cerebral autoregulation (CA). After 9-12 years of follow-up, these measurements were repeated, and presence of memory complaints was evaluated. Linear mixed-model analyses explored effects of aging on cerebrovascular parameters and whether memory complaints were associated with cerebrovascular changes. Across a median follow-up of 10.9 years, no changes in MCAv, CVRi, or CA were found. At baseline, these parameters were not different between subjects with (n = 15) versus without (n = 13) memory complaints. During follow-up, subjects with memory complaints showed larger decreases in MCAv (- 10% versus + 9%, P = 0.041) and increases in CVRi (+ 26% versus - 9%, P = 0.029) compared to other peers without memory complaints, but no distinct changes in CA parameters (P > 0.05). Although a decade of aging does not lead to deterioration in cerebral blood flow or autoregulation, our findings suggest that reductions in cerebral blood flow and increases in cerebrovascular resistance are associated with early subjective cognitive decline.
Collapse
Affiliation(s)
- Ralf W J Weijs
- Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, The Netherlands
| | - Madelijn H Oudegeest-Sander
- Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, The Netherlands
- Department of Geriatrics, Radboudumc Alzheimer Center, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Janneke I A Vloet
- Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, The Netherlands
| | - Maria T E Hopman
- Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, The Netherlands
| | - Jurgen A H R Claassen
- Department of Geriatrics, Radboudumc Alzheimer Center, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Dick H J Thijssen
- Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, The Netherlands.
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK.
| |
Collapse
|
14
|
Willett TL, Voziyan P, Nyman JS. Causative or associative: A critical review of the role of advanced glycation end-products in bone fragility. Bone 2022; 163:116485. [PMID: 35798196 PMCID: PMC10062699 DOI: 10.1016/j.bone.2022.116485] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/27/2022] [Accepted: 06/29/2022] [Indexed: 11/02/2022]
Abstract
The accumulation of advanced glycation end-products (AGEs) in the organic matrix of bone with aging and chronic disease such as diabetes is thought to increase fracture risk independently of bone mass. However, to date, there has not been a clinical trial to determine whether inhibiting the accumulation of AGEs is effective in preventing low-energy, fragility fractures. Moreover, unlike with cardiovascular or kidney disease, there are also no pre-clinical studies demonstrating that AGE inhibitors or breakers can prevent the age- or diabetes-related decrease in the ability of bone to resist fracture. In this review, we critically examine the case for a long-standing hypothesis that AGE accumulation in bone tissue degrades the toughening mechanisms by which bone resists fracture. Prior research into the role of AGEs in bone has primarily measured pentosidine, an AGE crosslink, or bulk fluorescence of hydrolysates of bone. While significant correlations exist between these measurements and mechanical properties of bone, multiple AGEs are both non-fluorescent and non-crosslinking. Since clinical studies are equivocal on whether circulating pentosidine is an indicator of elevated fracture risk, there needs to be a more complete understanding of the different types of AGEs including non-crosslinking adducts and multiple non-enzymatic crosslinks in bone extracellular matrix and their specific contributions to hindering fracture resistance (biophysical and biological). By doing so, effective strategies to target AGE accumulation in bone with minimal side effects could be investigated in pre-clinical and clinical studies that aim to prevent fragility fractures in conditions that bone mass is not the underlying culprit.
Collapse
Affiliation(s)
- Thomas L Willett
- Biomedical Engineering Program, Systems Design Engineering, University of Waterloo, Waterloo, Ontario, Canada.
| | - Paul Voziyan
- Department of Orthopaedic Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jeffry S Nyman
- Department of Orthopaedic Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN 37212, USA.
| |
Collapse
|
15
|
El-Sayed NS, Elatrebi S, Said R, Ibrahim HF, Omar EM. Potential mechanisms underlying the association between type II diabetes mellitus and cognitive dysfunction in rats: a link between miRNA-21 and Resveratrol's neuroprotective action. Metab Brain Dis 2022; 37:2375-2388. [PMID: 35781592 PMCID: PMC9581846 DOI: 10.1007/s11011-022-01035-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 06/13/2022] [Indexed: 11/10/2022]
Abstract
Cognitive impairment is considered as a typical feature of neurodegenerative diseases in diabetes mellitus (DM). However, the exact link between cognitive dysfunction and diabetes mellitus is still vague. This study aims to investigate some of the mechanisms underlying cognitive impairment that associates diabetes mellitus and insulin resistance. We investigated the role of resveratrol as well on cognitive function in experimentally induced type 2 diabetes highlighting on its influence on the expression of brain miRNA 21. Resveratrol is a naturally occurring, biologically active compound that has numerous significant impacts on the body. Type 2 diabetes mellitus was induced by high fat diet followed a single dose of streptozotocin. Diabetic rats were treated with resveratrol for four weeks. Rats were sacrificed after neurobehavioral testing. Hippocampal tissues were used to assess expression of miRNA 21, GSK and oxidative stress markers. Serum samples were obtained to determine glucose levels, lipid profile and insulin levels. Hippocampal and serum AGEs were measured as well and HOMA IR was calculated. We detected memory impairment and disturbed insulin signaling in diabetic rats. These derangements were reversed by resveratrol treatment partially due to increased expression of miRNA-21. Our study pins the role of miRNA-21 in modulating brain insulin signaling and hence alleviating cognitive dysfunction accompanying diabetes mellitus.
Collapse
Affiliation(s)
- Norhan S. El-Sayed
- Department of Medical Physiology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Soha Elatrebi
- Department of Clinical Pharmacology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Rasha Said
- Department of Medical Biochemistry, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Heba F. Ibrahim
- Department of Histology and Cell Biology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Eman M. Omar
- Department of Medical Physiology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| |
Collapse
|
16
|
Advanced Glycation End Products in Health and Disease. Microorganisms 2022; 10:microorganisms10091848. [PMID: 36144449 PMCID: PMC9501837 DOI: 10.3390/microorganisms10091848] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 11/18/2022] Open
Abstract
Advanced glycation end products (AGEs), formed through the nonenzymatic reaction of reducing sugars with the side-chain amino groups of lysine or arginine of proteins, followed by further glycoxidation reactions under oxidative stress conditions, are involved in the onset and exacerbation of a variety of diseases, including diabetes, atherosclerosis, and Alzheimer’s disease (AD) as well as in the secondary stages of traumatic brain injury (TBI). AGEs, in the form of intra- and interprotein crosslinks, deactivate various enzymes, exacerbating disease progression. The interactions of AGEs with the receptors for the AGEs (RAGE) also result in further downstream inflammatory cascade events. The overexpression of RAGE and the AGE-RAGE interactions are especially involved in cases of Alzheimer’s disease and other neurodegenerative diseases, including TBI and amyotrophic lateral sclerosis (ALS). Maillard reactions are also observed in the gut bacterial species. The protein aggregates found in the bacterial species resemble those of AD and Parkinson’s disease (PD), and AGE inhibitors increase the life span of the bacteria. Dietary AGEs alter the gut microbiota composition and elevate plasma glycosylation, thereby leading to systemic proinflammatory effects and endothelial dysfunction. There is emerging interest in developing AGE inhibitor and AGE breaker compounds to treat AGE-mediated pathologies, including diabetes and neurodegenerative diseases. Gut-microbiota-derived enzymes may also function as AGE-breaker biocatalysts. Thus, AGEs have a prominent role in the pathogenesis of various diseases, and the AGE inhibitor and AGE breaker approach may lead to novel therapeutic candidates.
Collapse
|
17
|
Li G, Lv Y, Su Q, You Q, Yu L. The effect of aerobic exercise on pulse wave velocity in middle-aged and elderly people: A systematic review and meta-analysis of randomized controlled trials. Front Cardiovasc Med 2022; 9:960096. [PMID: 36061566 PMCID: PMC9433655 DOI: 10.3389/fcvm.2022.960096] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/28/2022] [Indexed: 11/24/2022] Open
Abstract
UNLABELLED A growing body of research examines the effect of aerobic exercise on pulse wave velocity (PWV) in middle-aged and elderly people, while findings of available studies were conflicting. The aim of this study was to explore the effect of aerobic exercise on PWV in middle-aged and elderly people. Searches were performed in PubMed, Web of Science, and EBSCO databases. Cochrane risk assessment tool was used to evaluate the methodological quality of the included literature. We included studies that satisfied the following criteria: (1) eligible studies should be randomized controlled trials (RCTs); (2) eligible studies should include both an intervention and a control group; (3) eligible studies should use the middle-aged or elderly people as subjects; and (4) eligible studies should use PWV as the outcome measure. From 972 search records initially identified, 11 studies with a total of 12 exercise groups (n = 245) and 11 control groups (n = 239) were eligible for meta-analysis. There was a significant effect of aerobic exercise on reducing PWV in middle-aged and elderly people [weighted mean difference (WMD), -0.75 (95% CI, -1.21 to -0.28), p = 0.002]. Specifically, a higher intensity [vigorous-intensity, -0.74 (-1.34 to -0.14), p = 0.02; moderate-intensity, -0.68 (-1.49 to 0.12), p = 0.10], a younger age [45 years ≤ age < 60 years, -0.57 (-0.78 to -0.37), p < 0.00001; age ≥ 60 years, -0.91 (-2.10 to 0.27), p = 0.13], a better health status [healthy, -1.19 (-2.06 to -0.31), p = 0.008; diseased, -0.32 (-0.64 to -0.01), p = 0.04], and a lower basal body mass index (BMI) [BMI < 25, -1.19 (-2.06 to -0.31), p = 0.008; 25 ≤ BMI < 30, -0.52 (-0.92 to -0.12), p = 0.01; BMI ≥ 30, -0.09 (-0.93 to 0.76), p = 0.84] were associatedwith larger reductions in PWV. Aerobic exercise, especially vigorous-intensity aerobic exercise, contributed to reducing PWV in middle-aged and elderly people. The effect of aerobic exercise on improving PWV was associated with characteristics of the participants. Specifically, a younger age, a better health status, and a lower basal BMI contributed to more significant reductions in PWV. SYSTEMATIC REVIEW REGISTRATION [https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42022337103], identifier [CRD42022337103].
Collapse
Affiliation(s)
- Gen Li
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing, China
- Department of Strength and Conditioning Training, Beijing Sport University, Beijing, China
| | - Yuanyuan Lv
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing, China
- China Institute of Sport and Health Science, Beijing Sport University, Beijing, China
| | - Qing Su
- Ersha Sports Training Center of Guangdong Province, Guangzhou, China
| | - Qiuping You
- Sports Coaching College, Beijing Sport University, Beijing, China
| | - Laikang Yu
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing, China
- Department of Strength and Conditioning Training, Beijing Sport University, Beijing, China
| |
Collapse
|
18
|
Craighead DH, Freeberg KA, Maurer GS, Myers VH, Seals DR. Translational Potential of High-Resistance Inspiratory Muscle Strength Training. Exerc Sport Sci Rev 2022; 50:107-117. [PMID: 35394978 PMCID: PMC9203907 DOI: 10.1249/jes.0000000000000293] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Age-associated cardiovascular (CV) dysfunction increases the risk for CV diseases. Aerobic exercise training can improve CV function, but only a minority of adults meet aerobic exercise guidelines. High-resistance inspiratory muscle strength training is a time-efficient lifestyle intervention that may promote adherence and improve CV function. However, further investigation is needed to translate inspiratory muscle strength training into the public health domain.
Collapse
Affiliation(s)
- Daniel H. Craighead
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado
| | - Kaitlin A. Freeberg
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado
| | - Grace S. Maurer
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado
| | | | - Douglas R. Seals
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado
| |
Collapse
|
19
|
Perivascular adipose tissue-mediated arterial stiffening in aging and disease: An emerging translational therapeutic target? Pharmacol Res 2022; 178:106150. [PMID: 35339679 DOI: 10.1016/j.phrs.2022.106150] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/14/2022] [Accepted: 02/26/2022] [Indexed: 01/11/2023]
Abstract
Cardiovascular diseases (CVD) are the leading cause of mortality in modernized societies. Arterial stiffening with aging and disease is a key pathological event leading to increased CVD morbidity and mortality. Perivascular adipose tissue (PVAT) is a fat depot not widely studied yet has direct and profound effects on arterial stiffening. Identifying PVAT as a novel therapeutic target to lower arterial stiffness and thereby CVD risk has potentially important clinical ramifications. Thus, herein, we will overview the current preclinical evidence and the associated mechanisms for PVAT to promote arterial stiffness with aging and other disease conditions. We will also discuss viable translational lifestyle and pharmacological interventions for altering PVAT function that may de-stiffen arteries. Last, the translational potential for PVAT as a therapeutic target to lower arterial stiffness and CVD risk for clinical populations will be discussed.
Collapse
|
20
|
Jafarnejad S, Hooshiar S, Esmaili H, Taherian A. Exercise, Advanced Glycation End Products, and Their Effects on Cardiovascular Disorders: A Narrative Review. HEART AND MIND 2022. [DOI: 10.4103/hm.hm_31_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
21
|
van der Bruggen MM, Spronck B, Delhaas T, Reesink KD, Schalkwijk CG. The Putative Role of Methylglyoxal in Arterial Stiffening: A Review. Heart Lung Circ 2021; 30:1681-1693. [PMID: 34393049 DOI: 10.1016/j.hlc.2021.06.527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/28/2021] [Accepted: 06/01/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Arterial stiffening is a hallmark of vascular ageing and a consequence of many diseases including diabetes mellitus. Methylglyoxal (MGO), a highly reactive α-dicarbonyl mainly formed during glycolysis, has emerged as a potential contributor to the development of arterial stiffness. MGO reacts with arginine and lysine residues in proteins to form stable advanced glycation endproducts (AGEs). AGEs may contribute to arterial stiffening by increased cross-linking of collagen within the extracellular matrix (ECM), by altering the vascular structure, and by triggering inflammatory and oxidative pathways. Although arterial stiffness is mainly determined by ECM and vascular smooth muscle cell function, the effects of MGO and MGO-derived AGEs on these structures have not been thoroughly reviewed to date. METHODS AND RESULTS We conducted a PubMed search without filtering for publication date which resulted in 16 experimental and 22 clinical studies eligible for inclusion. Remarkably, none of the experimental and only three of the clinical studies specifically mentioned MGO-derived AGEs. Almost all studies reported an association between arterial stiffness and AGE accumulation in the arterial wall or increased plasma AGEs. Other studies report reduced arterial stiffness in experimental models upon administration of AGE-breakers. CONCLUSIONS No papers published to date directly show an association between MGO or MGO-derived AGEs and arterial stiffening. The relevance of the various underlying mechanisms is not yet clear, which is particularly due to methodological challenges in the detection of MGO and MGO-derived AGEs at the molecular, intra- and pericellular, and structural levels, as well as in challenges in the assessment of intrinsic arterial wall properties at ECM- and tissue levels.
Collapse
Affiliation(s)
- Myrthe M van der Bruggen
- Department of Biomedical Engineering, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
| | - Bart Spronck
- Department of Biomedical Engineering, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands; Department of Biomedical Engineering, School of Engineering & Applied Sciences, Yale University, New Haven, CT, USA
| | - Tammo Delhaas
- Department of Biomedical Engineering, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
| | - Koen D Reesink
- Department of Biomedical Engineering, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands.
| | - Casper G Schalkwijk
- Department of Internal Medicine, CARIM School for Cardiovascular Diseases, Maastricht University Medical Center, Maastricht, The Netherlands
| |
Collapse
|
22
|
Advanced Glycation End Products: New Clinical and Molecular Perspectives. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18147236. [PMID: 34299683 PMCID: PMC8306599 DOI: 10.3390/ijerph18147236] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/30/2021] [Accepted: 07/03/2021] [Indexed: 12/17/2022]
Abstract
Diabetes mellitus (DM) is considered one of the most massive epidemics of the twenty-first century due to its high mortality rates caused mainly due to its complications; therefore, the early identification of such complications becomes a race against time to establish a prompt diagnosis. The research of complications of DM over the years has allowed the development of numerous alternatives for diagnosis. Among these emerge the quantification of advanced glycation end products (AGEs) given their increased levels due to chronic hyperglycemia, while also being related to the induction of different stress-associated cellular responses and proinflammatory mechanisms involved in the progression of chronic complications of DM. Additionally, the investigation for more valuable and safe techniques has led to developing a newer, noninvasive, and effective tool, termed skin fluorescence (SAF). Hence, this study aimed to establish an update about the molecular mechanisms induced by AGEs during the evolution of chronic complications of DM and describe the newer measurement techniques available, highlighting SAF as a possible tool to measure the risk of developing DM chronic complications.
Collapse
|
23
|
Heinbockel TC, Craighead DH. Case studies in physiology: Impact of a long-distance hike on the Pacific Crest Trail on arterial function and body composition in a highly fit young male. Physiol Rep 2021; 9:e14767. [PMID: 33661563 PMCID: PMC7931801 DOI: 10.14814/phy2.14767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/27/2021] [Accepted: 01/27/2021] [Indexed: 11/24/2022] Open
Abstract
The Pacific Crest Trail (PCT) is a 4265‐km hiking trail that extends from the US‐Mexican border to the US‐Canadian border through the mountain ranges of western North America. Individuals who hike the entire length of the trail in one season (4–6 months) perform long daily exercise durations while exposed to extreme environmental temperatures, high altitudes, intense solar radiation, and the consumption of calorie‐rich, nutrient‐poor diets. This case study reports changes in arterial function and body composition in a subject before and after a 112‐day long‐distance hike of the PCT. Brachial artery flow‐mediated dilation, a measure of vascular endothelial function, decreased from: 6.97% to 5.00%. Carotid‐femoral pulse wave velocity, a measure of aortic stiffness, increased from 5.39 to 5.76 m/s. Dual‐energy x‐ray absorptiometry scans detected no major changes in total‐body bone mineral density, fat mass, or lean mass, although there were minor, unfavorable changes in some subregions of the body. It is important for individuals completing a long‐distance hike to be aware of the potential deleterious changes associated with large volumes of exercise and consuming a high‐calorie, low‐quality diet.
Collapse
Affiliation(s)
- Thomas C Heinbockel
- Department of Integrative Physiology, The University of Colorado Boulder, Boulder, CO, USA
| | - Daniel H Craighead
- Department of Integrative Physiology, The University of Colorado Boulder, Boulder, CO, USA
| |
Collapse
|
24
|
Williams JS, Dunford EC, Cheng JL, Moncion K, Valentino SE, Droog CA, Cherubini JM, King TJ, Noguchi KS, Wiley E, Turner JR, Tang A, Al-Khazraji BK, MacDonald MJ. The impact of the 24-h movement spectrum on vascular remodeling in older men and women: a review. Am J Physiol Heart Circ Physiol 2021; 320:H1136-H1155. [PMID: 33449851 DOI: 10.1152/ajpheart.00754.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Aging is associated with increased risk of cardiovascular and cerebrovascular events, which are preceded by early, negative remodeling of the vasculature. Low physical activity is a well-established risk factor associated with the incidence and development of disease. However, recent physical activity literature indicates the importance of considering the 24-h movement spectrum. Therefore, the purpose of this review was to examine the impact of the 24-h movement spectrum, specifically physical activity (aerobic and resistance training), sedentary behavior, and sleep, on cardiovascular and cerebrovascular outcomes in older adults, with a focus on recent evidence (<10 yr) and sex-based considerations. The review identifies that both aerobic training and being physically active (compared with sedentary) are associated with improvements in endothelial function, arterial stiffness, and cerebrovascular function. Additionally, there is evidence of sex-based differences in endothelial function: a blunted improvement in aerobic training in postmenopausal women compared with men. While minimal research has been conducted in older adults, resistance training does not appear to influence arterial stiffness. Poor sleep quantity or quality are associated with both impaired endothelial function and increased arterial stiffness. Finally, the review highlights mechanistic pathways involved in the regulation of vascular and cerebrovascular function, specifically the balance between pro- and antiatherogenic factors, which mediate the relationship between the 24-h movement spectrum and vascular outcomes. Finally, this review proposes future research directions: examining the role of duration and intensity of training, combining aerobic and resistance training, and exploration of sex-based differences in cardiovascular and cerebrovascular outcomes.
Collapse
Affiliation(s)
- Jennifer S Williams
- Vascular Dynamics Lab, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Emily C Dunford
- Vascular Dynamics Lab, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Jem L Cheng
- Vascular Dynamics Lab, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Kevin Moncion
- MacStroke Canada, School of Rehabilitation Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Sydney E Valentino
- Vascular Dynamics Lab, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Connor A Droog
- Vascular Dynamics Lab, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Joshua M Cherubini
- Vascular Dynamics Lab, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Trevor J King
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Kenneth S Noguchi
- MacStroke Canada, School of Rehabilitation Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Elise Wiley
- MacStroke Canada, School of Rehabilitation Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Joshua R Turner
- Vascular Dynamics Lab, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Ada Tang
- MacStroke Canada, School of Rehabilitation Sciences, McMaster University, Hamilton, Ontario, Canada
| | | | - Maureen J MacDonald
- Vascular Dynamics Lab, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
25
|
Physical activity and markers of glycation in older individuals: data from a combined cross-sectional and randomized controlled trial (EXAMIN AGE). Clin Sci (Lond) 2020; 134:1095-1105. [DOI: 10.1042/cs20200255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/23/2020] [Accepted: 05/01/2020] [Indexed: 11/17/2022]
Abstract
AbstractBackground: Advanced glycation end products (AGEs) are protein modifications that are predominantly formed from dicarbonyl compounds that arise from glucose and lipid metabolism. AGEs and sedentary behavior have been identified as a driver of accelerated (vascular) aging. The effect of physical activity on AGE accumulation is unknown. Therefore, we investigated whether plasma AGEs and dicarbonyl levels are different across older individuals that were active or sedentary and whether plasma AGEs are affected by high-intensity interval training (HIIT).Methods: We included healthy older active (HA, n=38, 44.7% female, 60.1 ± 7.7 years old) and healthy older sedentary (HS, n=36, 72.2% female, 60.0 ± 7.3 years old) individuals as well as older sedentary individuals with increased cardiovascular risk (SR, n=84, 50% female, 58.7 ± 6.6 years old). The SR group was randomized into a 12-week walking-based HIIT program or control group. We measured protein-bound and free plasma AGEs and dicarbonyls by ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) at baseline and after the HIIT intervention.Results: Protein-bound AGE Nε-(carboxymethyl)lysine (CML) was lower in SR (2.6 ± 0.5 μmol/l) and HS (3.1 ± 0.5 μmol/l) than in HA (3.6 ± 0.6 μmol/l; P<0.05) and remained significantly lower after adjustment for several potential confounders. None of the other glycation markers were different between HS and HA. HIIT did not change plasma AGEs and dicarbonyls in SR.Discussion: Although lifestyle interventions may act as important modulators of cardiovascular risk, HIIT is not a potent short-term intervention to reduce glycation in older individuals, underlining the need for other approaches, such as pharmacological agents, to reduce AGEs and lower cardiovascular risk in this population.
Collapse
|
26
|
Karimabad MN, Niknia S, Golnabadi MB, Poor SF, Hajizadeh MR, Mahmoodi M. Effect of Citrullus colocynthis Extract on Glycated Hemoglobin Formation (In Vitro). Eurasian J Med 2020; 52:47-51. [PMID: 32158314 DOI: 10.5152/eurasianjmed.2020.19223] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Objective Diabetes mellitus (DM) is typically a disorder of carbohydrate, fat, and protein metabolism. It develops due to a lack of or loss associated with insulin and/or resistance to insulin. Regarding complications of chemical substance use, drugs with few complications and high-reliability tannins are needed. This study aimed to determine the effect and mechanism of action of Citrullus colocynthis extract on the formation of glycated hemoglobin (HbA1c). Materials and Methods A solution containing hemoglobin and glucose was incubated for 1, 2, 3, 4, 30, and 60 days by adding Citrullus colocynthis extract or glutathione. Quantitative measurement of HbA1c was performed using ion-exchange chromatography. Data were analyzed using ANOVA and two-way repeated measures test. A p<0.05 was considered statistically significant. Results The Citrullus colocynthis extract in hyperglycemic conditions and with increasing time reduced the formation of HbA1c and thus inhibited the production of glycated proteins. By increasing the time and after initiation of reaction of extract concentrations (0, 0.1, 0.3, 0.5, and 1 g/dL), presently, there was a significant decrease in the formation of HbA1C compared to those in the control group (p<0.05). The decrease in glycation has been dose dependent. Conclusion Therefore, Citrullus colocynthis could directly reduce the formation of HbA1c.
Collapse
Affiliation(s)
- Mojgan Noroozi Karimabad
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Sedigheh Niknia
- Department of Clinical Biochemistry, Faculty of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mahdieh Bemani Golnabadi
- Department of Clinical Biochemistry, Faculty of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Shirin Fattah Poor
- Department of Clinical Biochemistry, Faculty of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mohammad Reza Hajizadeh
- Department of Clinical Biochemistry, Faculty of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mehdi Mahmoodi
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.,Department of Clinical Biochemistry, Faculty of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.,Department of Clinical Biochemistry, Afzalipoor Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
27
|
Ho TY, Redmayne GP, Tran A, Liu D, Butlin M, Avolio A, Boutcher SH, Boutcher YN. The effect of interval sprinting exercise on vascular function and aerobic fitness of post‐menopausal women. Scand J Med Sci Sports 2019; 30:312-321. [DOI: 10.1111/sms.13574] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 09/24/2019] [Accepted: 10/08/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Tze Y. Ho
- School of Medical Sciences University of New South Wales Kensington NSW Australia
| | - Georgia P. Redmayne
- School of Medical Sciences University of New South Wales Kensington NSW Australia
| | - Aengus Tran
- School of Medical Sciences University of New South Wales Kensington NSW Australia
| | - Diana Liu
- School of Medical Sciences University of New South Wales Kensington NSW Australia
| | - Mark Butlin
- Department of Biomedical Sciences Faculty of Medicine and Health Sciences Macquarie University Sydney NSW Australia
| | - Alberto Avolio
- Department of Biomedical Sciences Faculty of Medicine and Health Sciences Macquarie University Sydney NSW Australia
| | - Stephen H. Boutcher
- School of Medical Sciences University of New South Wales Kensington NSW Australia
| | - Yati N. Boutcher
- School of Medical Sciences University of New South Wales Kensington NSW Australia
| |
Collapse
|
28
|
Pickup L, Radhakrishnan A, Townend JN, Ferro CJ. Arterial stiffness in chronic kidney disease. Curr Opin Nephrol Hypertens 2019; 28:527-536. [DOI: 10.1097/mnh.0000000000000535] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
29
|
Craighead DH, Heinbockel TC, Hamilton MN, Bailey EF, MacDonald MJ, Gibala MJ, Seals DR. Time-efficient physical training for enhancing cardiovascular function in midlife and older adults: promise and current research gaps. J Appl Physiol (1985) 2019; 127:1427-1440. [PMID: 31556835 PMCID: PMC10205162 DOI: 10.1152/japplphysiol.00381.2019] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 08/28/2019] [Accepted: 09/18/2019] [Indexed: 12/11/2022] Open
Abstract
Cardiovascular diseases (CVD) remain the leading cause of death in developed societies, and "midlife" (50-64 yr) and older (65+) men and women bear the great majority of the burden of CVD. Much of the increased risk of CVD in this population is attributable to CV dysfunction, including adverse changes in the structure and function of the heart, increased systolic blood pressure, and arterial dysfunction. The latter is characterized by increased arterial stiffness and vascular endothelial dysfunction. Conventional aerobic exercise training, as generally recommended in public health guidelines, is an effective strategy to preserve or improve CV function with aging. However, <40% of midlife and older adults meet aerobic exercise guidelines, due in part to time availability-related barriers. As such, there is a need to develop evidence-based time-efficient exercise interventions that promote adherence and optimize CV function in these groups. Two promising interventions that may meet these criteria are interval training and inspiratory muscle strength training (IMST). Limited research suggests these modes of training may improve CV function with time commitments of ≤60 min/wk. This review will summarize the current evidence for interval training and IMST to improve CV function in midlife/older adults and identify key research gaps and future directions.
Collapse
Affiliation(s)
- Daniel H Craighead
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado
| | - Thomas C Heinbockel
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado
| | - Makinzie N Hamilton
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado
| | - E Fiona Bailey
- Department of Physiology, University of Arizona College of Medicine, Tucson, Arizona
| | | | - Martin J Gibala
- Department of Kinesiology, McMaster University, Ontario, Canada
| | - Douglas R Seals
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado
| |
Collapse
|
30
|
Soluble receptor for advanced glycation end-products independently influences individual age-dependent increase of arterial stiffness. Hypertens Res 2019; 43:111-120. [DOI: 10.1038/s41440-019-0347-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 09/14/2019] [Accepted: 09/25/2019] [Indexed: 01/01/2023]
|
31
|
Rossman MJ, LaRocca TJ, Martens CR, Seals DR. Healthy lifestyle-based approaches for successful vascular aging. J Appl Physiol (1985) 2018; 125:1888-1900. [PMID: 30212305 PMCID: PMC6842891 DOI: 10.1152/japplphysiol.00521.2018] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 08/23/2018] [Accepted: 09/09/2018] [Indexed: 12/19/2022] Open
Abstract
This review summarizes a presentation given at the 2016 Gerontological Society of America Annual Meeting as part of the Vascular Aging Workshop. The development of age-related vascular dysfunction increases the risk of cardiovascular disease as well as other chronic age-associated disorders, including chronic kidney disease and Alzheimer's disease. Healthy lifestyle behaviors, most notably regular aerobic exercise and certain dietary patterns, are considered "first-line" strategies for the prevention and/or treatment of vascular dysfunction with aging. Despite the well-established benefits of these strategies, however, many older adults do not meet the recommended guidelines for exercise or consume a healthy diet. Therefore, it is important to establish alternative and/or complementary evidence-based approaches to prevent or reverse age-related vascular dysfunction. Time-efficient forms of exercise training, hormetic exposure to mild environmental stress, fasting "mimicking" dietary paradigms, and nutraceutical/pharmaceutical approaches to favorably modulate cellular and molecular pathways activated by exercise and healthy dietary patterns may hold promise as such alternative approaches. Determining the efficacy of these novel strategies is important to provide alternatives for adults with low adherence to conventional healthy lifestyle practices for healthy vascular aging.
Collapse
Affiliation(s)
- Matthew J Rossman
- Department of Integrative Physiology, University of Colorado-Boulder , Boulder, Colorado
| | - Thomas J LaRocca
- Department of Integrative Physiology, University of Colorado-Boulder , Boulder, Colorado
| | - Christopher R Martens
- Department of Integrative Physiology, University of Colorado-Boulder , Boulder, Colorado
| | - Douglas R Seals
- Department of Integrative Physiology, University of Colorado-Boulder , Boulder, Colorado
| |
Collapse
|
32
|
Schinkovitz A, Le Pogam P, Derbré S, Roy-Vessieres E, Blanchard P, Thirumaran SL, Breard D, Aumond MC, Zehl M, Urban E, Kaur A, Jäger N, Hofer S, Kopp B, Stuppner H, Baglin I, Seraphin D, Tomasi S, Henrion D, Boustie J, Richomme P. Secondary metabolites from lichen as potent inhibitors of advanced glycation end products and vasodilative agents. Fitoterapia 2018; 131:182-188. [PMID: 30339926 DOI: 10.1016/j.fitote.2018.10.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 10/09/2018] [Accepted: 10/15/2018] [Indexed: 12/17/2022]
Abstract
Secondary metabolites from lichens are known for exhibiting various biological effects such as anti-inflammatory, antioxidant and antibacterial activities. Despite this wide range of reported biological effects, their impact on the formation of advanced glycation end products (AGEs) remains vastly unexplored. The latter are known contributors to lifestyle and age-related diseases such as Alzheimer and Parkinson. Moreover, the development of atherosclerosis and arterial stiffness is causally linked to the formation of AGEs. With this in mind, the present work evaluated the inhibitory effects of secondary lichen metabolites on the formation of pentosidine-like AGEs' by using an in vitro, Maillard reaction based, fluorescence assay. Overall, thirty-seven natural and five synthetically modified compounds were tested, eighteen of which exhibiting IC50 values in the range of 0.05 to 0.70 mM. This corresponds to 2 to 32 fold of the inhibitory activity of aminoguanidine. Targeting one major inhibiting mechanism of AGEs formation, all compounds were additionally evaluated on their radical scavenging capacities in an DPPH assay. Furthermore, as both AGEs' formation and hypertension are major risk factors for atherosclerosis, compounds that were available in sufficient amounts were also tested for their vasodilative effects. Overall, and though some of the active compounds were previously reported cytotoxic, present results highlight the interesting potential of secondary lichen metabolites as anti-AGEs and vasodilative agents.
Collapse
Affiliation(s)
- Andreas Schinkovitz
- SONAS, EA921, Universtiy of Angers, SFR QUASAV, Faculty of Health Sciences, Department of Pharmacy, 16 Bd Daviers, 49045, Angers, France.
| | - Pierre Le Pogam
- Université Rennes, CNRS, ISCR - UMR 6226, F-35000 Rennes, France; BioCIS, Université Paris-Sud, CNRS, Université Paris-Saclay, 5 Rue J.-B. Clément, 92290 Châtenay-Malabry, France
| | - Séverine Derbré
- SONAS, EA921, Universtiy of Angers, SFR QUASAV, Faculty of Health Sciences, Department of Pharmacy, 16 Bd Daviers, 49045, Angers, France
| | - Emilie Roy-Vessieres
- Université d'Angers, MITOVASC Institute, CarMe team, INSERM U1083, CNRS UMR6015, CARFI facility, 3 rue Roger Amsler, 49100 Angers, France
| | - Patricia Blanchard
- SONAS, EA921, Universtiy of Angers, SFR QUASAV, Faculty of Health Sciences, Department of Pharmacy, 16 Bd Daviers, 49045, Angers, France
| | - Sangeetha-Laura Thirumaran
- SONAS, EA921, Universtiy of Angers, SFR QUASAV, Faculty of Health Sciences, Department of Pharmacy, 16 Bd Daviers, 49045, Angers, France; Université de Caen Normandie, Centre d'Etudes et de Recherche sur le Médicament de Normandie (CERMN), 14000 Caen, France
| | - Dimitri Breard
- SONAS, EA921, Universtiy of Angers, SFR QUASAV, Faculty of Health Sciences, Department of Pharmacy, 16 Bd Daviers, 49045, Angers, France
| | - Marie-Chistine Aumond
- SONAS, EA921, Universtiy of Angers, SFR QUASAV, Faculty of Health Sciences, Department of Pharmacy, 16 Bd Daviers, 49045, Angers, France
| | - Martin Zehl
- University of Vienna, Department of Analytical Chemistry, Währinger Straße 38, 1090 Vienna, Austria
| | - Ernst Urban
- University of Vienna, Department of Pharmaceutical Chemistry, Althanstraße 14, 1090 Vienna, Austria
| | - Amandeep Kaur
- University of Vienna, Department of Pharmacognosy, Althanstraße 14, 1090 Vienna, Austria
| | - Nathalie Jäger
- University of Vienna, Department of Pharmacognosy, Althanstraße 14, 1090 Vienna, Austria
| | - Stefanie Hofer
- SONAS, EA921, Universtiy of Angers, SFR QUASAV, Faculty of Health Sciences, Department of Pharmacy, 16 Bd Daviers, 49045, Angers, France; University of Innsbruck, Institute of Pharmacy/Pharmacognosy, Center for Chemistry and Biomedicine, Innrain 80 - 82/IV, 6020 Innsbruck, Austria
| | - Brigitte Kopp
- University of Vienna, Department of Pharmacognosy, Althanstraße 14, 1090 Vienna, Austria
| | - Hermann Stuppner
- University of Innsbruck, Institute of Pharmacy/Pharmacognosy, Center for Chemistry and Biomedicine, Innrain 80 - 82/IV, 6020 Innsbruck, Austria
| | - Isabelle Baglin
- SONAS, EA921, Universtiy of Angers, SFR QUASAV, Faculty of Health Sciences, Department of Pharmacy, 16 Bd Daviers, 49045, Angers, France
| | - Denis Seraphin
- SONAS, EA921, Universtiy of Angers, SFR QUASAV, Faculty of Health Sciences, Department of Pharmacy, 16 Bd Daviers, 49045, Angers, France
| | - Sophie Tomasi
- Université Rennes, CNRS, ISCR - UMR 6226, F-35000 Rennes, France
| | - Daniel Henrion
- Université de Caen Normandie, Centre d'Etudes et de Recherche sur le Médicament de Normandie (CERMN), 14000 Caen, France
| | - Joël Boustie
- Université Rennes, CNRS, ISCR - UMR 6226, F-35000 Rennes, France
| | - Pascal Richomme
- SONAS, EA921, Universtiy of Angers, SFR QUASAV, Faculty of Health Sciences, Department of Pharmacy, 16 Bd Daviers, 49045, Angers, France
| |
Collapse
|
33
|
Kujawski S, Kujawska A, Gajos M, Klawe JJ, Tafil-Klawe M, Mądra-Gackowska K, Stankiewicz B, Newton JL, Kędziora-Kornatowska K, Zalewski P. Effects of 3-months sitting callisthenic balance and resistance exercise on aerobic capacity, aortic stiffness and body composition in healthy older participants. Randomized Controlled Trial. Exp Gerontol 2018; 108:125-130. [PMID: 29655928 DOI: 10.1016/j.exger.2018.04.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 03/12/2018] [Accepted: 04/12/2018] [Indexed: 11/20/2022]
Abstract
BACKGROUND Arterial stiffness (AS) is a reduction in the ability of large arteries to readily accommodate the increase in blood ejected from the heart during systole related with aging. Physical exercise is associated with AS reduction. However, it remains controversial as to which modality and intensity (resistance vs aerobic, high vs low) would be the most effective. The aim of these studies is to examine the effects of 3-months sitting callisthenic balance (SCB) and resistance exercise (RET) on aerobic capacity, aortic stiffness and body composition in older participants. MATERIAL AND METHODS Aortic pulse wave velocity (PWVao), return time (RT), diastolic reflection area (DRA) and blood pressure (BP) level changes were measured with Arteriograph. Aerobic capacity was examined with 6-min walk test (6-MWT) and spiroergometry (VO2max). Body composition was analyzed by Bioelectric Impedance Analysis using Tanita. RESULTS Significant improvements of BP, PWVao, RT and DRA were observed in the SCB group (p = 0.018, p = 0.017 and p = 0.012, respectively). % of fat mass improved in RET and SCB group (p = 0.003, p = 0.012, respectively). Visceral fat significantly improved in SCB group (p = 0.03). CONCLUSIONS Despite no significant changes in indicators of aerobic capacity (VO2max and 6MWT result) in both groups, significant improvement in all measures of AS, except SBPao were observed in the SCB group, while no AS improvement in the RET group was noted. There were some differences in pattern of body compositions improvement between two groups.
Collapse
Affiliation(s)
- Sławomir Kujawski
- Department of Hygiene and Epidemiology, Division of Ergonomics and Exercise Physiology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Poland.
| | - Agnieszka Kujawska
- Department of Physiology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Poland; Department of Geriatrics, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Poland
| | - Małgorzata Gajos
- Department of Geriatrics, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Poland
| | - Jacek J Klawe
- Department of Hygiene and Epidemiology, Division of Ergonomics and Exercise Physiology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Poland
| | - Małgorzata Tafil-Klawe
- Department of Physiology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Poland
| | - Katarzyna Mądra-Gackowska
- Department of Geriatrics, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Poland
| | - Błażej Stankiewicz
- Institute of Physical Education, Kazimierz Wielki University in Bydgoszcz, Poland
| | - Julia L Newton
- Institute for Cellular Medicine, The Medical School, Newcastle University, Framlington Place, Newcastle-upon-Tyne NE2 4HH, United Kingdom
| | | | - Paweł Zalewski
- Department of Hygiene and Epidemiology, Division of Ergonomics and Exercise Physiology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Poland
| |
Collapse
|
34
|
Affiliation(s)
- Kristen L Nowak
- From the University of Colorado Anschutz Medical Campus, Aurora (K.L.N., M.C.); and University of Colorado Boulder (M.J.R., D.R.S.).
| | - Matthew J Rossman
- From the University of Colorado Anschutz Medical Campus, Aurora (K.L.N., M.C.); and University of Colorado Boulder (M.J.R., D.R.S.)
| | - Michel Chonchol
- From the University of Colorado Anschutz Medical Campus, Aurora (K.L.N., M.C.); and University of Colorado Boulder (M.J.R., D.R.S.)
| | - Douglas R Seals
- From the University of Colorado Anschutz Medical Campus, Aurora (K.L.N., M.C.); and University of Colorado Boulder (M.J.R., D.R.S.)
| |
Collapse
|
35
|
Hartman YAW, Hopman MTE, Schreuder TH, Verheggen RJHM, Scholten RR, Oudegeest‐Sander MH, Poelkens F, Maiorana AJ, Naylor LH, Willems PH, Tack CJ, Thijssen DHJ, Green DJ. Improvements in fitness are not obligatory for exercise training-induced improvements in CV risk factors. Physiol Rep 2018; 6:e13595. [PMID: 29464893 PMCID: PMC5820463 DOI: 10.14814/phy2.13595] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 01/04/2017] [Indexed: 12/18/2022] Open
Abstract
The purpose of this study was to assess whether changes in physical fitness relate to changes in cardiovascular risk factors following standardized, center-based and supervised exercise training programs in subjects with increased cardiovascular risk. We pooled data from exercise training studies of subjects with increased cardiovascular risk (n = 166) who underwent 8-52 weeks endurance training. We determined fitness (i.e., peak oxygen uptake) and traditional cardiovascular risk factors (body mass index, blood pressure, total cholesterol, high-density lipoprotein cholesterol), before and after training. We divided subjects into quartiles based on improvement in fitness, and examined whether these groups differed in terms of risk factors. Associations between changes in fitness and in cardiovascular risk factors were further tested using Pearson correlations. Significant heterogeneity was apparent in the improvement of fitness and individual risk factors, with nonresponder rates of 17% for fitness, 44% for body mass index, 33% for mean arterial pressure, 49% for total cholesterol, and 49% for high-density lipoprotein cholesterol. Neither the number, nor the magnitude, of change in cardiovascular risk factors differed significantly between quartiles of fitness change. Changes in fitness were not correlated with changes in cardiovascular risk factors (all P > 0.05). Our data suggest that significant heterogeneity exists in changes in peak oxygen uptake after training, while improvement in fitness did not relate to improvement in cardiovascular risk factors. In subjects with increased cardiovascular risk, improvements in fitness are not obligatory for training-induced improvements in cardiovascular risk factors.
Collapse
Affiliation(s)
- Yvonne A. W. Hartman
- Department of PhysiologyRadboud University Medical CenterNijmegenThe Netherlands
| | - Maria T. E. Hopman
- Department of PhysiologyRadboud University Medical CenterNijmegenThe Netherlands
- Division of Human NutritionWageningen UniversityWageningenThe Netherlands
| | - Tim H. Schreuder
- Department of PhysiologyRadboud University Medical CenterNijmegenThe Netherlands
| | | | - Ralph R. Scholten
- Department of PhysiologyRadboud University Medical CenterNijmegenThe Netherlands
| | - Madelijn H. Oudegeest‐Sander
- Department of PhysiologyRadboud University Medical CenterNijmegenThe Netherlands
- Department of Geriatric MedicineRadboud University Medical CenterNijmegenThe Netherlands
| | - Fleur Poelkens
- Department of PhysiologyRadboud University Medical CenterNijmegenThe Netherlands
| | - Andrew J. Maiorana
- Advanced Heart Failure and Cardiac Transplant ServiceRoyal Perth HospitalPerthWestern AustraliaAustralia
- School of Physiotherapy and Exercise ScienceCurtin UniversityPerthWestern AustraliaAustralia
- Allied Health DepartmentFiona Stanley HospitalMurdochWestern AustraliaAustralia
| | - Louise H. Naylor
- Allied Health DepartmentFiona Stanley HospitalMurdochWestern AustraliaAustralia
- The School of Hum an Sciences (Exercise and Sport Science)The University of Western AustraliaCrawleyWestern AustraliaAustralia
| | - Peter H. Willems
- Department of BiochemistryRadboud Institute for Molecular Life SciencesNijmegenThe Netherlands
| | - Cees J. Tack
- Department of Internal MedicineRadboud University Medical CenterNijmegenThe Netherlands
| | - Dick H. J. Thijssen
- Department of PhysiologyRadboud University Medical CenterNijmegenThe Netherlands
- Research institute for Sport and Exercise SciencesLiverpool John Moores UniversityLiverpoolUnited Kingdom
| | - Daniel J. Green
- The School of Hum an Sciences (Exercise and Sport Science)The University of Western AustraliaCrawleyWestern AustraliaAustralia
- Research institute for Sport and Exercise SciencesLiverpool John Moores UniversityLiverpoolUnited Kingdom
- National Health and Medical Research Council of AustraliaCanberraAustralia
| |
Collapse
|
36
|
Li CY, Wang LX, Dong SS, Hong Y, Zhou XH, Zheng WW, Zheng C. Phlorizin Exerts Direct Protective Effects on Palmitic Acid (PA)-Induced Endothelial Dysfunction by Activating the PI3K/AKT/eNOS Signaling Pathway and Increasing the Levels of Nitric Oxide (NO). Med Sci Monit Basic Res 2018; 24:1-9. [PMID: 29307883 PMCID: PMC5771185 DOI: 10.12659/msmbr.907775] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Background Sodium glucose transporter-2 inhibitors are the newest antidiabetic drugs that seem to be cardioprotective and can prevent type 2 diabetes in patients with high cardiovascular risks. Previous clinical trials have shown that these inhibitors can alleviate endothelial dysfunction, but the mechanism of action remains unknown. How SGLT inhibitor influences the release of NO in PA-induced HUVECs has never been reported. Material/Methods To explore the potential effects of the endothelial-protective mechanism of phlorizin and its impact on nitric oxide (NO), human umbilical vein endothelial cells (HUVECs) were incubated with palmitic acid (PA) and then treated with phlorizin. Western blotting was performed to assess the phosphorylation of AKT, eNOS, and IRS-1. To further explore potential targets, siRNA transfection was used to demonstrate the role of SGLT1 and SGLT2. Results Phlorizin suppressed the expression of SGLT1 and SGLT2, activated the PI3K/AKT/eNOS signaling pathway, increased the output of NO, and promoted the consumption of glucose in PA-induced HUVECs. Through demonstrating siRNA suppression of the expression of SGLT1 and SGLT2 in PA-induced HUVECs, this study provides a new understanding of the mechanism behind SGLT1 and SGLT2. Conclusions Our data demonstrate that phlorizin ameliorates the endothelial dysfunction link with the activation of the PI3K/AKT/eNOS signaling pathway and augmentation of the release of NO, partially through suppressing the expression of SGLT1 and SGLT2 in PA-induced HUVECS.
Collapse
Affiliation(s)
- Chun-Ying Li
- Diabetes Center and Department of Endocrinology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China (mainland)
| | - Liang-Xue Wang
- Diabetes Center and Department of Endocrinology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China (mainland)
| | - Si-Si Dong
- Diabetes Center and Department of Endocrinology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China (mainland)
| | - Ying Hong
- Diabetes Center and Department of Endocrinology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China (mainland)
| | - Xin-He Zhou
- Diabetes Center and Department of Endocrinology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China (mainland)
| | - Wen-Wen Zheng
- Diabetes Center and Department of Endocrinology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China (mainland)
| | - Chao Zheng
- Diabetes Center and Department of Endocrinology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China (mainland)
| |
Collapse
|
37
|
Kim HK, Hwang CL, Yoo JK, Hwang MH, Handberg EM, Petersen JW, Nichols WW, Sofianos S, Christou DD. All-Extremity Exercise Training Improves Arterial Stiffness in Older Adults. Med Sci Sports Exerc 2017; 49:1404-1411. [PMID: 28166118 DOI: 10.1249/mss.0000000000001229] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Large elastic arteries stiffen with age, which predisposes older adults to increased risk for cardiovascular disease. Aerobic exercise training is known to reduce the risk for cardiovascular disease, but the optimal exercise prescription for attenuating large elastic arterial stiffening in older adults is not known. PURPOSE The purpose of this randomized controlled trial was to compare the effect of all-extremity high-intensity interval training (HIIT) and moderate-intensity continuous training (MICT) on aortic pulse wave velocity (PWV) and carotid artery compliance in older adults. METHODS Forty-nine sedentary older adults (age = 64 ± 1 yr), free of overt major clinical disease, were randomized to HIIT (n = 17), MICT (n = 18), or nonexercise controls (CONT; n = 14). HIIT (4 × 4 min at 90% HRpeak interspersed with 3 × 3 min active recovery at 70% HRpeak) and isocaloric MICT (70% HRpeak) were performed on an all-extremity non-weight-bearing ergometer, 4 d·wk for 8 wk under supervision. Aortic (carotid to femoral PWV [cfPWV]) and common carotid artery compliance were assessed at pre- and postintervention. RESULTS cfPWV improved by 0.5 m·s in MICT (P = 0.04) but did not significantly change in HIIT and CONT (P > 0.05). Carotid artery compliance improved by 0.03 mm·mm Hg in MICT (P = 0.001), but it remained unchanged in HIIT and CONT (P > 0.05). Improvements in arterial stiffness in response to MICT were not confounded by changes in aortic or brachial blood pressure, HR, body weight, total and abdominal adiposity, blood lipids, or aerobic fitness. CONCLUSION All-extremity MICT, but not HIIT, improved central arterial stiffness in previously sedentary older adults free of major clinical disease. Our findings have important implications for aerobic exercise prescription in older adults.
Collapse
Affiliation(s)
- Han-Kyul Kim
- 1Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL; 2Division of Health and Exercise Science, Incheon National University, Incheon, KOREA; and 3Division of Cardiovascular Medicine, University of Florida, Gainesville, FL
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Iulita MF, Noriega de la Colina A, Girouard H. Arterial stiffness, cognitive impairment and dementia: confounding factor or real risk? J Neurochem 2017; 144:527-548. [PMID: 28991365 DOI: 10.1111/jnc.14235] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 09/18/2017] [Accepted: 10/02/2017] [Indexed: 12/11/2022]
Abstract
Large artery stiffness is a frequent condition that arises with ageing, and is accelerated by the presence of co-morbidities like hypertension, obesity and diabetes. Although epidemiological studies have indicated an association between arterial stiffness, cognitive impairment and dementia, the precise effects of stiff arteries on the brain remains obscure. This is because, in humans, arterial stiffness is often accompanied by other factors such as age, high blood pressure, atherosclerosis and inflammation, which could themselves damage the brain independently of stiffness. Therefore, the question remains: is arterial stiffness a true risk for cognitive decline? Or, is it a confounding factor? In this review, we provide an overview of arterial stiffness and its impact on brain function based on human and animal studies. We summarize the evidence linking arterial stiffness to cognitive dysfunction and dementia, and discuss the role of new animal models to better understand the mechanisms by which arterial stiffness affects the brain. We close with an overview of treatments to correct stiffness and discuss the challenges to translate them to real patient care. This article is part of the Special Issue "Vascular Dementia".
Collapse
Affiliation(s)
- M Florencia Iulita
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, 2900, Edouard-Montpetit, Canada
| | - Adrián Noriega de la Colina
- Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal (CRIUGM), Université de Montréal, 4545, Chemin Queen Mary, Canada
| | - Hélène Girouard
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, 2900, Edouard-Montpetit, Canada
| |
Collapse
|
39
|
Pierce GL. Aortic Stiffness in Aging and Hypertension: Prevention and Treatment with Habitual Aerobic Exercise. Curr Hypertens Rep 2017; 19:90. [PMID: 29046980 PMCID: PMC10949831 DOI: 10.1007/s11906-017-0788-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
PURPOSE OF REVIEW Habitual aerobic exercise is associated with lower aortic stiffness, as measured by carotid-femoral pulse wave velocity (CFPWV), in middle-aged/older adults without hypertension, but beneficial effects of aerobic exercise on CFPWV in hypertension remain contraversial. Therefore, the focus of this review is to discuss the evidence for and against the beneficial effects of aerobic exercise on aortic stiffness in middle-aged and older adults with hypertension, possible limitations in these studies, and highlight novel directions for future research. RECENT FINDINGS Most randomized controlled intervention studies demonstrate that short-term aerobic exercise results in no reductions in CFPWV in middle-aged and/or older adults with treated or treatment-naïve hypertension. Higher aerobic fitness is not associated with lower aortic stiffness among older adults with treated hypertension. Aortic stiffness appears to be resistant to clinically relevant improvements in response to habitual aerobic exercise in the presence of hypertension among middle-aged and older adults.
Collapse
Affiliation(s)
- Gary L Pierce
- Department of Health and Human Physiology, University of Iowa, 225 S. Grand Ave, 412 FH, Iowa City, IA, 52242, USA.
- UI Healthcare Center for Hypertension Research, University of Iowa, Iowa City, IA, 52242, USA.
- Abboud Cardiovascular Research Center, University of Iowa, Iowa City, IA, 52242, USA.
| |
Collapse
|
40
|
Emel’yanov VV. Glycation, antiglycation, and deglycation: Their role in aging mechanisms and geroprotective effects (literature review). ADVANCES IN GERONTOLOGY 2017. [DOI: 10.1134/s2079057017010064] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
41
|
Maessen MFH, Schalkwijk CG, Verheggen RJHM, Aengevaeren VL, Hopman MTE, Eijsvogels TMH. A comparison of dicarbonyl stress and advanced glycation endproducts in lifelong endurance athletes vs. sedentary controls. J Sci Med Sport 2017; 20:921-926. [PMID: 28416154 DOI: 10.1016/j.jsams.2017.03.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 02/14/2017] [Accepted: 03/03/2017] [Indexed: 11/30/2022]
Abstract
OBJECTIVES Dicarbonyl stress and high concentrations of advanced glycation endproducts (AGEs) relate to an elevated risk for cardiovascular diseases (CVD). Exercise training lowers the risk for future CVD. We tested the hypothesis that lifelong endurance athletes have lower dicarbonyl stress and AGEs compared to sedentary controls and that these differences relate to a better cardiovascular health profile. DESIGN Cross-sectional study. METHODS We included 18 lifelong endurance athletes (ATH, 61±7years) and 18 sedentary controls (SED, 58±7years) and measured circulating glyoxal (GO), methylglyoxal (MGO) and 3-deoxyglucosone (3DG) as markers of dicarbonyl stress. Furthermore, we measured serum levels of protein-bound AGEs NƐ-(carboxymethyl)lysine (CML), NƐ-(carboxyethyl)lysine (CEL), methylglyoxal-derived hydroimidazolone-1 (MG-H1), and pentosidine. Additionally, we measured cardiorespiratory fitness (VO2peak) and cardiovascular health markers. RESULTS ATH had lower concentrations of MGO (196 [180-246] vs. 242 [207-292] nmol/mmol lysine, p=0.043) and 3DG (927 [868-972] vs. 1061 [982-1114] nmol/mmol lysine, p<0.01), but no GO compared to SED. ATH demonstrated higher concentrations CML and CEL compared to SED. Pentosidine did not differ across groups and MG-H1 was significantly lower in ATH compared to SED. Concentrations of MGO en 3DG were inversely correlated with cardiovascular health markers, whereas CML and CEL were positively correlated with VO2peak and cardiovascular health markers. CONCLUSION Lifelong exercise training relates to lower dicarbonyl stress (MGO and 3DG) and the AGE MG-H1. The underlying mechanism and (clinical) relevance of higher CML and CEL concentrations among lifelong athletes warrants future research, since it conflicts with the idea that higher AGE concentrations relate to poor cardiovascular health outcomes.
Collapse
Affiliation(s)
- Martijn F H Maessen
- Department of Physiology, Radboud university medical center, The Netherlands
| | - Casper G Schalkwijk
- Department of Internal Medicine, CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre, The Netherlands
| | | | | | - Maria T E Hopman
- Department of Physiology, Radboud university medical center, The Netherlands
| | - Thijs M H Eijsvogels
- Department of Physiology, Radboud university medical center, The Netherlands; Research Institute for Sports and Exercise Sciences, Liverpool John Moores University, United Kingdom.
| |
Collapse
|
42
|
Chen Y, Shen F, Liu J, Yang GY. Arterial stiffness and stroke: de-stiffening strategy, a therapeutic target for stroke. Stroke Vasc Neurol 2017; 2:65-72. [PMID: 28959494 PMCID: PMC5600012 DOI: 10.1136/svn-2016-000045] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/30/2016] [Accepted: 01/24/2017] [Indexed: 12/25/2022] Open
Abstract
Stroke is the second leading cause of mortality and morbidity worldwide. Early intervention is of great importance in reducing disease burden. Since the conventional risk factors cannot fully account for the pathogenesis of stroke, it is extremely important to detect useful biomarkers of the vascular disorder for appropriate intervention. Arterial stiffness, a newly recognised reliable feature of arterial structure and function, is demonstrated to be associated with stroke onset and serve as an independent predictor of stroke incidence and poststroke functional outcomes. In this review article, different measurements of arterial stiffness, especially pressure wave velocity, were discussed. We explained the association between arterial stiffness and stroke occurrence by discussing the secondary haemodynamic changes. We reviewed clinical data that support the prediction role of arterial stiffness on stroke. Despite the lack of long-term randomised double-blind controlled therapeutic trials, it is high potential to reduce stroke prevalence through a significant reduction of arterial stiffness (which is called de-stiffening therapy). Pharmacological interventions or lifestyle modification that can influence blood pressure, arterial function or structure in either the short or long term are promising de-stiffening therapies. Here, we summarised different de-stiffening strategies including antihypertension drugs, antihyperlipidaemic agents, chemicals that target arterial remodelling and exercise training. Large and well-designed clinical trials on de-stiffening strategy are needed to testify the prevention effect for stroke. Novel techniques such as modern microscopic imaging and reliable animal models would facilitate the mechanistic analyses in pathophysiology, pharmacology and therapeutics.
Collapse
Affiliation(s)
- Yajing Chen
- Department of Neurology, Ruijin Hospital and Ruijin Hospital North, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fanxia Shen
- Department of Neurology, Ruijin Hospital and Ruijin Hospital North, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianrong Liu
- Department of Neurology, Ruijin Hospital and Ruijin Hospital North, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guo-Yuan Yang
- Department of Neurology, Ruijin Hospital and Ruijin Hospital North, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Neuroscience and Neuroengineering Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
43
|
Green DJ, Hopman MTE, Padilla J, Laughlin MH, Thijssen DHJ. Vascular Adaptation to Exercise in Humans: Role of Hemodynamic Stimuli. Physiol Rev 2017; 97:495-528. [PMID: 28151424 DOI: 10.1152/physrev.00014.2016] [Citation(s) in RCA: 477] [Impact Index Per Article: 59.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
On the 400th anniversary of Harvey's Lumleian lectures, this review focuses on "hemodynamic" forces associated with the movement of blood through arteries in humans and the functional and structural adaptations that result from repeated episodic exposure to such stimuli. The late 20th century discovery that endothelial cells modify arterial tone via paracrine transduction provoked studies exploring the direct mechanical effects of blood flow and pressure on vascular function and adaptation in vivo. In this review, we address the impact of distinct hemodynamic signals that occur in response to exercise, the interrelationships between these signals, the nature of the adaptive responses that manifest under different physiological conditions, and the implications for human health. Exercise modifies blood flow, luminal shear stress, arterial pressure, and tangential wall stress, all of which can transduce changes in arterial function, diameter, and wall thickness. There are important clinical implications of the adaptation that occurs as a consequence of repeated hemodynamic stimulation associated with exercise training in humans, including impacts on atherosclerotic risk in conduit arteries, the control of blood pressure in resistance vessels, oxygen delivery and diffusion, and microvascular health. Exercise training studies have demonstrated that direct hemodynamic impacts on the health of the artery wall contribute to the well-established decrease in cardiovascular risk attributed to physical activity.
Collapse
Affiliation(s)
- Daniel J Green
- School of Sport Science, Exercise and Health, The University of Western Australia, Crawley, Western Australia; Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom; Radboud University Medical Center, Radboud Institute for Health Sciences, Department of Physiology, Nijmegen, The Netherlands; Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri; Department of Child Health, University of Missouri, Columbia, Missouri; Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri; Department of Biomedical Sciences, University of Missouri, Columbia, Missouri; and Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - Maria T E Hopman
- School of Sport Science, Exercise and Health, The University of Western Australia, Crawley, Western Australia; Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom; Radboud University Medical Center, Radboud Institute for Health Sciences, Department of Physiology, Nijmegen, The Netherlands; Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri; Department of Child Health, University of Missouri, Columbia, Missouri; Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri; Department of Biomedical Sciences, University of Missouri, Columbia, Missouri; and Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - Jaume Padilla
- School of Sport Science, Exercise and Health, The University of Western Australia, Crawley, Western Australia; Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom; Radboud University Medical Center, Radboud Institute for Health Sciences, Department of Physiology, Nijmegen, The Netherlands; Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri; Department of Child Health, University of Missouri, Columbia, Missouri; Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri; Department of Biomedical Sciences, University of Missouri, Columbia, Missouri; and Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - M Harold Laughlin
- School of Sport Science, Exercise and Health, The University of Western Australia, Crawley, Western Australia; Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom; Radboud University Medical Center, Radboud Institute for Health Sciences, Department of Physiology, Nijmegen, The Netherlands; Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri; Department of Child Health, University of Missouri, Columbia, Missouri; Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri; Department of Biomedical Sciences, University of Missouri, Columbia, Missouri; and Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - Dick H J Thijssen
- School of Sport Science, Exercise and Health, The University of Western Australia, Crawley, Western Australia; Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom; Radboud University Medical Center, Radboud Institute for Health Sciences, Department of Physiology, Nijmegen, The Netherlands; Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri; Department of Child Health, University of Missouri, Columbia, Missouri; Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri; Department of Biomedical Sciences, University of Missouri, Columbia, Missouri; and Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| |
Collapse
|
44
|
Abstract
Aortic stiffness (AS) is an important predictor of cardiovascular morbidity in humans. The present review discusses the possible pathophysiological mechanisms of AS and focuses on a survey of different therapeutic modalities for decreasing AS. The influence of several nonpharmacological interventions is described: decrease body weight, diet, aerobic exercise training, music, and continuous positive airway pressure therapy. The effects of different pharmacological drug classes on AS are also discussed: antihypertensive drugs-renin-angiotensin-aldosterone system drugs, beta-blockers, alpha-blockers, diuretics, and calcium channel blockers (CCBs)-advanced glycation end product cross-link breakers, statins, oral anti-diabetics, anti-inflammatory drugs, vitamin D, antioxidant vitamins, and endothelin-1 receptor antagonists. All of these have shown some effect in decreasing AS.
Collapse
|
45
|
Targeting advanced glycation with pharmaceutical agents: where are we now? Glycoconj J 2016; 33:653-70. [PMID: 27392438 DOI: 10.1007/s10719-016-9691-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 05/11/2016] [Accepted: 05/26/2016] [Indexed: 02/06/2023]
Abstract
Advanced glycation end products (AGEs) are the final products of the Maillard reaction, a complex process that has been studied by food chemists for a century. Over the past 30 years, the biological significance of advanced glycation has also been discovered. There is mounting evidence that advanced glycation plays a homeostatic role within the body and that food-related Maillard products, intermediates such as reactive α-dicarbonyl compounds and AGEs, may influence this process. It remains to be understood, at what point AGEs and their intermediates become pathogenic and contribute to the pathogenesis of chronic diseases that inflict current society. Diabetes and its complications have been a major focus of AGE biology due to the abundance of excess sugar and α-dicarbonyls in this family of diseases. While further temporal information is required, a number of pharmacological agents that inhibit components of the advanced glycation pathway have already showed promising results in preclinical models. These therapies appear to have a wide range of mechanistic actions to reduce AGE load. Some of these agents including Alagebrium, have translated successfully to clinical trials, while others such as aminoguanidine, have had undesirable side-effect profiles. This review will discuss different pharmacological agents that have been used to reduce AGE burden in preclinical models of disease with a focus on diabetes and its complications, compare outcomes of those therapies that have reached clinical trials, and provide further rationale for the use of inhibitors of the glycation pathway in chronic diseases.
Collapse
|
46
|
López-Díez R, Shekhtman A, Ramasamy R, Schmidt AM. Cellular mechanisms and consequences of glycation in atherosclerosis and obesity. Biochim Biophys Acta Mol Basis Dis 2016; 1862:2244-2252. [PMID: 27166197 DOI: 10.1016/j.bbadis.2016.05.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 04/28/2016] [Accepted: 05/05/2016] [Indexed: 02/07/2023]
Abstract
Post-translational modification of proteins imparts diversity to protein functions. The process of glycation represents a complex set of pathways that mediates advanced glycation endproduct (AGE) formation, detoxification, intracellular disposition, extracellular release, and induction of signal transduction. These processes modulate the response to hyperglycemia, obesity, aging, inflammation, and renal failure, in which AGE formation and accumulation is facilitated. It has been shown that endogenous anti-AGE protective mechanisms are thwarted in chronic disease, thereby amplifying accumulation and detrimental cellular actions of these species. Atop these considerations, receptor for advanced glycation endproducts (RAGE)-mediated pathways downregulate expression and activity of the key anti-AGE detoxification enzyme, glyoxalase-1 (GLO1), thereby setting in motion an interminable feed-forward loop in which AGE-mediated cellular perturbation is not readily extinguished. In this review, we consider recent work in the field highlighting roles for glycation in obesity and atherosclerosis and discuss emerging strategies to block the adverse consequences of AGEs. This article is part of a Special Issue entitled: The role of post-translational protein modifications on heart and vascular metabolism edited by Jason R.B. Dyck & Jan F.C. Glatz.
Collapse
Affiliation(s)
- Raquel López-Díez
- Diabetes Research Program, Division of Endocrinology, Department of Medicine, NYU Langone Medical Center, New York, NY 10016, United States
| | - Alexander Shekhtman
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, United States
| | - Ravichandran Ramasamy
- Diabetes Research Program, Division of Endocrinology, Department of Medicine, NYU Langone Medical Center, New York, NY 10016, United States
| | - Ann Marie Schmidt
- Diabetes Research Program, Division of Endocrinology, Department of Medicine, NYU Langone Medical Center, New York, NY 10016, United States.
| |
Collapse
|
47
|
Estimated aortic stiffness is independently associated with cardiac baroreflex sensitivity in humans: role of ageing and habitual endurance exercise. J Hum Hypertens 2016; 30:513-20. [PMID: 26911535 PMCID: PMC4981524 DOI: 10.1038/jhh.2016.3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 12/30/2015] [Accepted: 01/11/2016] [Indexed: 12/25/2022]
Abstract
We hypothesized that differences in cardiac baroreflex sensitivity (BRS) would be independently associated with aortic stiffness and augmentation index (AI), clinical biomarkers of cardiovascular disease (CVD) risk, among young sedentary and middle-aged/older sedentary and endurance-trained adults. A total of 36 healthy middle-aged/older (age 55-76 years, n=22 sedentary; n=14 endurance-trained) and 5 young sedentary (age 18-31 years) adults were included in a cross-sectional study. A subset of the middle-aged/older sedentary adults (n=12) completed an 8-week aerobic exercise intervention. Invasive brachial artery blood pressure waveforms were used to compute spontaneous cardiac BRS (via sequence technique) and estimated aortic pulse wave velocity (PWV) and AI (AI, via brachial-aortic transfer function and wave separation analysis). In the cross-sectional study, cardiac BRS was 71% lower in older compared with young sedentary adults (P<0.05), but only 40% lower in older adults who performed habitual endurance exercise (P=0.03). In a regression model that included age, sex, resting heart rate, mean arterial pressure (MAP), body mass index and maximal exercise oxygen uptake, estimated aortic PWV (β±SE = −5.76 ± 2.01, P=0.01) was the strongest predictor of BRS (Model R2=0.59, P<0.001). The 8 week exercise intervention improved BRS by 38% (P=0.04) and this change in BRS was associated with improved aortic PWV (r=−0.65, P=0.044, adjusted for changes in MAP). Age- and endurance exercise-related differences in cardiac BRS are independently associated with corresponding alterations in aortic PWV among healthy adults, consistent with a mechanistic link between variations in the sensitivity of the baroreflex and aortic stiffness with age and exercise.
Collapse
|
48
|
Thorin-Trescases N, Thorin E. Lifelong Cyclic Mechanical Strain Promotes Large Elastic Artery Stiffening: Increased Pulse Pressure and Old Age-Related Organ Failure. Can J Cardiol 2015; 32:624-33. [PMID: 26961664 DOI: 10.1016/j.cjca.2015.12.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 12/02/2015] [Accepted: 12/14/2015] [Indexed: 01/08/2023] Open
Abstract
The arterial wall is under a huge mechanical constraint imposed by the cardiac cycle that is bound to generate damage with time. Each heartbeat indeed imposes a pulsatile pressure that generates a vascular stretch. Lifetime accumulation of pulsatile stretches will eventually induce fatigue of the elastic large arterial walls, such as aortic and carotid artery walls, promoting their stiffening that will gradually perturb the normal blood flow and local pressure within the organs, and lead to organ failure. The augmented pulse pressure induced by arterial stiffening favours left ventricular hypertrophy because of the repeated extra work against stiff high-pressure arteries, and tissue damage as a result of excessive pulsatile pressure transmitted into the microcirculation, especially in low resistance/high-flow organs such as the brain and kidneys. Vascular aging is therefore characterized by the stiffening of large elastic arteries leading to a gradual increase in pulse pressure with age. In this review we focus on the effect of age-related stiffening of large elastic arteries. We report the clinical evidence linking arterial stiffness and organ failure and discuss the molecular pathways that are activated by the increase of mechanical stress in the wall. We also discuss the possible interventions that could limit arterial stiffening with age, such as regular aerobic exercise training, and some pharmacological approaches.
Collapse
Affiliation(s)
| | - Eric Thorin
- Montreal Heart Institute, Research Center, Montreal, Quebéc, Canada; Department of Surgery, Faculty of Medicine, Université de Montréal, Montreal, Quebéc, Canada.
| |
Collapse
|
49
|
Soluble receptor for advanced glycation end products and increased aortic stiffness in the general population. Hypertens Res 2015; 39:266-71. [PMID: 26631850 DOI: 10.1038/hr.2015.131] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 09/01/2015] [Accepted: 09/13/2015] [Indexed: 01/11/2023]
Abstract
It has been suggested that accumulation of advanced glycation end products (AGEs) is involved in several pathophysiological processes in the vessel wall. We hypothesized that low levels of the soluble receptor for AGEs (sRAGE) might be associated with increased arterial stiffness, a manifestation of vascular ageing in the general population. Using a cross-sectional design, we analyzed 1077 subjects from the Czech post-MONICA study. The aortic pulse wave velocity (aPWV) was measured using a Sphygmocor device. sRAGE concentrations were assessed in frozen samples using enzyme-linked immunosorbent assay methods (R&D Systems). aPWV significantly (P<0.0001) increased across the sRAGE quartiles. An aPWV of 1 m s(-1) was associated with a 37% increase in the risk of low sRAGE (<918 pg ml(-1), bottom quartile; P-value=0.018). In a categorized manner, subjects in the bottom sRAGE quartile had an odds ratio of an increased aPWV (⩾9.3 m s(-1)), adjusted for all potential confounders of 2.05 (95% confidence interval: 1.26-3.32; P=0.004), but this was only the case for non-diabetic hypertensive patients. In contrast, a low sRAGE was rejected as an independent predictor of an increased aPWV in normotensive or diabetic subjects using similar regression models. In conclusion, low circulating sRAGE was independently associated with increased arterial stiffness in a general population-based sample, but this was only observed in hypertensive non-diabetic patients.
Collapse
|
50
|
Wu CF, Liu PY, Wu TJ, Hung Y, Yang SP, Lin GM. Therapeutic modification of arterial stiffness: An update and comprehensive review. World J Cardiol 2015; 7:742-753. [PMID: 26635922 PMCID: PMC4660469 DOI: 10.4330/wjc.v7.i11.742] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 09/09/2015] [Accepted: 09/25/2015] [Indexed: 02/06/2023] Open
Abstract
Arterial stiffness has been recognized as a marker of cardiovascular disease and associated with long-term worse clinical outcomes in several populations. Age, hypertension, smoking, and dyslipidemia, known as traditional vascular risk factors, as well as diabetes, obesity, and systemic inflammation lead to both atherosclerosis and arterial stiffness. Targeting multiple modifiable risk factors has become the main therapeutic strategy to improve arterial stiffness in patients at high cardiovascular risk. Additionally to life style modifications, long-term ω-3 fatty acids (fish oil) supplementation in diet may improve arterial stiffness in the population with hypertension or metabolic syndrome. Pharmacological treatment such as renin-angiotensin-aldosterone system antagonists, metformin, and 3-hydroxy-3-methyl-glutaryl-CoA reductase inhibitors were useful in individuals with hypertension and diabetes. In obese population with obstructive sleep apnea, weight reduction, aerobic exercise, and continuous positive airway pressure treatment may also improve arterial stiffness. In the populations with chronic inflammatory disease such as rheumatoid arthritis, a use of antibodies against tumor necrosis factor-alpha could work effectively. Other therapeutic options such as renal sympathetic nerve denervation for patients with resistant hypertension are investigated in many ongoing clinical trials. Therefore our comprehensive review provides knowledge in detail regarding many aspects of pathogenesis, measurement, and management of arterial stiffness in several populations, which would be helpful for physicians to make clinical decision.
Collapse
Affiliation(s)
- Ching-Fen Wu
- Ching-Fen Wu, Department of Internal Medicine, Mennonite Christian Hospital, Hualien 97144, Taiwan
| | - Pang-Yen Liu
- Ching-Fen Wu, Department of Internal Medicine, Mennonite Christian Hospital, Hualien 97144, Taiwan
| | - Tsung-Jui Wu
- Ching-Fen Wu, Department of Internal Medicine, Mennonite Christian Hospital, Hualien 97144, Taiwan
| | - Yuan Hung
- Ching-Fen Wu, Department of Internal Medicine, Mennonite Christian Hospital, Hualien 97144, Taiwan
| | - Shih-Ping Yang
- Ching-Fen Wu, Department of Internal Medicine, Mennonite Christian Hospital, Hualien 97144, Taiwan
| | - Gen-Min Lin
- Ching-Fen Wu, Department of Internal Medicine, Mennonite Christian Hospital, Hualien 97144, Taiwan
| |
Collapse
|