1
|
Rifaai RA, El-Tahawy NFG, Abozaid SMM, Abdelwahab A. Intermittent Fasting Ameliorates Age-Induced Morphological Changes in Aged Albino Rat Kidney via Autophagy Activation and Reduction of Apoptosis and Inflammation. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2025; 31:ozae102. [PMID: 39405416 DOI: 10.1093/mam/ozae102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/05/2024] [Accepted: 09/14/2024] [Indexed: 02/26/2025]
Abstract
Aging is a biological process with gradual decrease of cell function. Kidneys are one of the organs with higher susceptibility to the development of age-dependent tissue damage. Intermittent fasting has several beneficial effects on age-related degenerative changes. The aim of this study was to investigate the possible beneficial effect of intermittent fasting in delaying age-related renal changes and the possible mechanisms of this effect. Thirty male albino rats were classified into three groups: control, adult rats aged 3 months; aged group, 15-month-old rats and maintained until the age of 18 months; and intermittent fasting-aged groups, 15-month-old rats maintained on intermittent fasting for 3 months. Kidneys were processed for histological and immunohistochemical study. Aging resulted in a significant reduction in renal function and significant several degenerative changes in renal corpuscles and tubules which showed abnormal histological structure with increased collagen deposition. Aging caused significant reduction in the expression of autophagic marker light chain 3 with increased expression of active caspase-3 and inducible nitric oxide synthase. Intermittent fasting significantly improved these age-related renal changes. Intermittent fasting effectively prevents age-related renal changes through the reduction of age-related oxidative stress, inflammation, apoptosis, and activation of autophagy.
Collapse
Affiliation(s)
- Rehab Ahmed Rifaai
- Department of Histology and Cell Biology, Faculty of Medicine, Minia University, Cairo Aswan Agricultural Rd, Minia, 61519, Egypt
| | - Nashwa Fathy Gamal El-Tahawy
- Department of Histology and Cell Biology, Faculty of Medicine, Minia University, Cairo Aswan Agricultural Rd, Minia, 61519, Egypt
| | - Samah Mohammed Mahmoud Abozaid
- Department of Human Anatomy and Embryology, Faculty of Medicine, Minia University, Cairo Aswan Agricultural Rd, 61519, Egypt
| | - Alzahraa Abdelwahab
- Department of Histology and Cell Biology, Faculty of Medicine, Minia University, Cairo Aswan Agricultural Rd, Minia, 61519, Egypt
| |
Collapse
|
2
|
Innate immunity dysregulation in aging eye and therapeutic interventions. Ageing Res Rev 2022; 82:101768. [PMID: 36280210 DOI: 10.1016/j.arr.2022.101768] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 09/29/2022] [Accepted: 10/20/2022] [Indexed: 01/31/2023]
Abstract
The prevalence of eye diseases increases considerably with age, resulting in significant vision impairment. Although the pathobiology of age-related eye diseases has been studied extensively, the contribution of immune-related changes due to aging remains elusive. In the eye, tissue-resident cells and infiltrating immune cells regulate innate responses during injury or infection. But due to aging, these cells lose their protective functions and acquire pathological phenotypes. Thus, dysregulated ocular innate immunity in the elderly increases the susceptibility and severity of eye diseases. Herein, we emphasize the impact of aging on the ocular innate immune system in the pathogenesis of infectious and non-infectious eye diseases. We discuss the role of age-related alterations in cellular metabolism, epigenetics, and cellular senescence as mechanisms underlying altered innate immune functions. Finally, we describe approaches to restore protective innate immune functions in the aging eye. Overall, the review summarizes our current understanding of innate immune functions in eye diseases and their dysregulation during aging.
Collapse
|
3
|
Ishaq A, Tchkonia T, Kirkland JL, Siervo M, Saretzki G. Palmitate induces DNA damage and senescence in human adipocytes in vitro that can be alleviated by oleic acid but not inorganic nitrate. Exp Gerontol 2022; 163:111798. [PMID: 35390489 PMCID: PMC9214712 DOI: 10.1016/j.exger.2022.111798] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/28/2022] [Accepted: 03/31/2022] [Indexed: 11/22/2022]
Abstract
Hypertrophy in white adipose tissue (WAT) can result in sustained systemic inflammation, hyperlipidaemia, insulin resistance, and onset of senescence in adipocytes. Inflammation and hypertrophy can be induced in vitro using palmitic acid (PA). WAT adipocytes have innately low β-oxidation capacity, while inorganic nitrate can promote a beiging phenotype, with promotion of β-oxidation when cells are exposed to nitrate during differentiation. We hypothesized that treatment of human adipocytes with PA in vitro can induce senescence, which might be attenuated by nitrate treatment through stimulation of β-oxidation to remove accumulated lipids. Differentiated subcutaneous and omental adipocytes were treated with PA and nitrate and senescence markers were analyzed. PA induced DNA damage and increased p16INK4a levels in both human subcutaneous and omental adipocytes in vitro. However, lipid accumulation and lipid droplet size increased after PA treatment only in subcutaneous adipocytes. Thus, hypertrophy and senescence seem not to be causally associated. Contrary to our expectations, subsequent treatment of PA-induced adipocytes with nitrate did not attenuate PA-induced lipid accumulation or senescence. Instead, we found a significantly beneficial effect of oleic acid (OA) on human subcutaneous adipocytes when applied together with PA, which reduced the DNA damage caused by PA treatment.
Collapse
Affiliation(s)
- Abbas Ishaq
- Biosciences Institute, Campus for Ageing and Vitality, Newcastle upon Tyne, UK
| | - Tamara Tchkonia
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, United States of America
| | - James L Kirkland
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, United States of America
| | - Mario Siervo
- Human Nutrition Research Centre, Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK; School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, UK
| | - Gabriele Saretzki
- Biosciences Institute, Campus for Ageing and Vitality, Newcastle upon Tyne, UK.
| |
Collapse
|
4
|
Chen H, Liu O, Chen S, Zhou Y. Aging and Mesenchymal Stem Cells: Therapeutic Opportunities and Challenges in the Older Group. Gerontology 2021; 68:339-352. [PMID: 34161948 DOI: 10.1159/000516668] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/07/2021] [Indexed: 11/19/2022] Open
Abstract
With aging, a portion of cells, including mesenchymal stem cells (MSCs), become senescent, and these senescent cells accumulate and promote various age-related diseases. Therefore, the older age group has become a major population for MSC therapy, which is aimed at improving tissue regeneration and function of the aged body. However, the application of MSC therapy is often unsatisfying in the aged group. One reasonable conjecture for this correlation is that aging microenvironment reduces the number and function of MSCs. Cellular senescence also plays an important role in MSC function impairment. Thus, it is necessary to explore the relationship between senescence and MSCs for improving the application of MSCs in the elderly. Here, we present the influence of aging on MSCs and the characteristics and functional changes of senescent MSCs. Furthermore, current therapeutic strategies for improving MSC therapy in the elderly group are also discussed.
Collapse
Affiliation(s)
- Huan Chen
- Hunan Key Laboratory of Oral Health Research, Hunan 3D Printing Engineering Research Center of Oral Care, Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya Stomatological Hospital, and Xiangya School of Stomatology, Central South University, Changsha, China
| | - Ousheng Liu
- Hunan Key Laboratory of Oral Health Research, Hunan 3D Printing Engineering Research Center of Oral Care, Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya Stomatological Hospital, and Xiangya School of Stomatology, Central South University, Changsha, China
| | - Sijia Chen
- Hunan Key Laboratory of Oral Health Research, Hunan 3D Printing Engineering Research Center of Oral Care, Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya Stomatological Hospital, and Xiangya School of Stomatology, Central South University, Changsha, China
| | - Yueying Zhou
- Hunan Key Laboratory of Oral Health Research, Hunan 3D Printing Engineering Research Center of Oral Care, Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya Stomatological Hospital, and Xiangya School of Stomatology, Central South University, Changsha, China
| |
Collapse
|
5
|
Dietary restriction delays the secretion of senescence associated secretory phenotype by reducing DNA damage response in the process of renal aging. Exp Gerontol 2018; 107:4-10. [DOI: 10.1016/j.exger.2017.09.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 08/28/2017] [Accepted: 09/07/2017] [Indexed: 01/21/2023]
|
6
|
Ishaq A, Schröder J, Edwards N, von Zglinicki T, Saretzki G. Dietary Restriction Ameliorates Age-Related Increase in DNA Damage, Senescence and Inflammation in Mouse Adipose Tissuey. J Nutr Health Aging 2018; 22:555-561. [PMID: 29582897 PMCID: PMC5866821 DOI: 10.1007/s12603-017-0968-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 07/11/2017] [Indexed: 12/11/2022]
Abstract
Ageing is associated with redistribution of fat around the body and saturation of visceral adipose depots. Likewise, the presence of excess fat in obesity or during ageing places extra stress on visceral depots, resulting in chronic inflammation and increased senescence. This process can contribute to the establishment of the metabolic syndrome and accelerated ageing. Dietary restriction (DR) is known to alleviate physiological signs of inflammation, ageing and senescence in various tissues including adipose tissue. OBJECTIVES Our pilot study aimed to analyse senescence and inflammation parameters in mouse visceral fat tissue during ageing and by short term, late-onset dietary restriction as a nutritional intervention. Design, measurements: In this study we used visceral adipose tissue from mice between 5 and 30 months of age and analysed markers of senescence (adipocyte size, γH2A.X, p16, p21) and inflammation (e.g. IL-6, TNFα, IL-1β, macrophage infiltration) using immuno-staining, as well as qPCR for gene expression analysis. Fat tissues from 3 mice per group were analysed. RESULTS We found that the amount of γH2A.X foci as well as the expression of senescence and inflammation markers increased during ageing but decreased with short term DR. In contrast, the increase in amounts of single or aggregated macrophages in fat depots occurred only at higher ages. Surprisingly, we also found that adipocyte size as well as some senescence parameters decreased at very high age (30 months). CONCLUSIONS Our results demonstrate increased senescence and inflammation during ageing in mouse visceral fat while DR was able to ameliorate several of these parameters as well as increased adipocyte size at 17.5 months of age. This highlights the health benefits of a decreased nutritional intake over a relatively short period of time at middle age.
Collapse
Affiliation(s)
- A Ishaq
- Dr. Gabriele Saretzki, The Ageing Biology Centre and Institute for Cell and Molecular Biosciences, Campus for Ageing and Vitality, Edwardson Building, Newcastle upon Tyne, NE4 5PL, United Kingdom, Phone: 0044 191 208 1214, Fax: 0044 191 208 1101,
| | | | | | | | | |
Collapse
|
7
|
Zhang Y, Unnikrishnan A, Deepa SS, Liu Y, Li Y, Ikeno Y, Sosnowska D, Van Remmen H, Richardson A. A new role for oxidative stress in aging: The accelerated aging phenotype in Sod1 -/- mice is correlated to increased cellular senescence. Redox Biol 2016; 11:30-37. [PMID: 27846439 PMCID: PMC5109248 DOI: 10.1016/j.redox.2016.10.014] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 10/19/2016] [Accepted: 10/22/2016] [Indexed: 12/11/2022] Open
Abstract
In contrast to other mouse models that are deficient in antioxidant enzymes, mice null for Cu/Zn-superoxide dismutase (Sod1−/− mice) show a major decrease in lifespan and several accelerated aging phenotypes. The goal of this study was to determine if cell senescence might be a contributing factor in the accelerated aging phenotype observed in the Sod1−/− mice. We focused on kidney because it is a tissue that has been shown to a significant increase in senescent cells with age. The Sod1−/− mice are characterized by high levels of DNA oxidation in the kidney, which is attenuated by DR. The kidney of the Sod1−/− mice also have higher levels of double strand DNA breaks than wild type (WT) mice. Expression (mRNA and protein) of p16 and p21, two of the markers of cellular senescence, which increased with age, are increased significantly in the kidney of Sod1−/− mice as is β-gal staining cells. In addition, the senescence associated secretory phenotype was also increased significantly in the kidney of Sod1−/− mice compared to WT mice as measured by the expression of transcripts for IL-6 and IL-1β. Dietary restriction of the Sod1−/− mice attenuated the increase in DNA damage, cellular senescence, and expression of IL-6 and IL-1β. Interestingly, the Sod1−/− mice showed higher levels of circulating cytokines than WT mice, suggesting that the accelerated aging phenotype shown by the Sod1−/− mice could result from increased inflammation arising from an accelerated accumulation of senescent cells. Based on our data with Sod1−/− mice, we propose that various bouts of increased oxidative stress over the lifespan of an animal leads to the accumulation of senescent cells. The accumulation of senescent cells in turn leads to increased inflammation, which plays a major role in the loss of function and increased pathology that are hallmark features of aging. Sod1−/− mice have high levels of oxidative damage and DNA double strand breaks. Sod1−/− mice show increased cellular senescence, e.g., p16, p21 and β-gal+ cells. Sod1−/− mice showed an increase in the senescence associated secretory phenotype. Dietary restriction attenuated cellular senescence and inflammation in Sod1−/− mice.
Collapse
Affiliation(s)
- Yiqiang Zhang
- Greehy Children's Cancer Institute, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Archana Unnikrishnan
- Department of Geriatric Medicine and the Reynolds Oklahoma Center on Aging, Oklahoma University Health Science Center, Oklahoma City, OK, USA
| | - Sathyaseelan S Deepa
- Department of Geriatric Medicine and the Reynolds Oklahoma Center on Aging, Oklahoma University Health Science Center, Oklahoma City, OK, USA
| | - Yuhong Liu
- Departments of Cellular and Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Yan Li
- Departments of Cellular and Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Yuji Ikeno
- Departments of Pathology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA; Geriatric Research, Education and Clinical Center (GRECC), South Texas Veterans Health Care System, San Antonio, TX, USA
| | - Danuta Sosnowska
- Department of Geriatric Medicine and the Reynolds Oklahoma Center on Aging, Oklahoma University Health Science Center, Oklahoma City, OK, USA
| | - Holly Van Remmen
- Oklahoma Medical Research Foundation, Oklahoma City, OK, USA; Oklahoma City VA Medical Center, Oklahoma City, OK, USA
| | - Arlan Richardson
- Department of Geriatric Medicine and the Reynolds Oklahoma Center on Aging, Oklahoma University Health Science Center, Oklahoma City, OK, USA; Oklahoma City VA Medical Center, Oklahoma City, OK, USA.
| |
Collapse
|