1
|
Huang X, Zhang Y, Huang J, Gao W, Yongfang X, Zeng C, Gao C. The effect of FMT and vitamin C on immunity-related genes in antibiotic-induced dysbiosis in mice. PeerJ 2023; 11:e15356. [PMID: 37193034 PMCID: PMC10183171 DOI: 10.7717/peerj.15356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 04/14/2023] [Indexed: 05/18/2023] Open
Abstract
Antibiotics are double-edged swords. Although antibiotics are used to inhibit pathogenic bacteria, they also run the risk of destroying some of the healthy bacteria in our bodies. We examined the effect of penicillin on the organism through a microarray dataset, after which 12 genes related to immuno-inflammatory pathways were selected by reading the literature and validated using neomycin and ampicillin. The expression of genes was measured using qRT-PCR. Several genes were significantly overexpressed in antibiotic-treated mice, including CD74 and SAA2 in intestinal tissues that remained extremely expressed after natural recovery. Moreover, transplantation of fecal microbiota from healthy mice to antibiotic-treated mice was made, where GZMB, CD3G, H2-AA, PSMB9, CD74, and SAA1 were greatly expressed; however, SAA2 was downregulated and normal expression was restored, and in liver tissue, SAA1, SAA2, SAA3 were extremely expressed. After the addition of vitamin C, which has positive effects in several aspects, to the fecal microbiota transplantation, in the intestinal tissues, the genes that were highly expressed after the fecal microbiota transplantation effectively reduced their expression, and the unaffected genes remained normally expressed, but the CD74 gene remained highly expressed. In liver tissues, normally expressed genes were not affected, but the expression of SAA1 was reduced and the expression of SAA3 was increased. In other words, fecal microbiota transplantation did not necessarily bring about a positive effect of gene expression restoration, but the addition of vitamin C effectively reduced the effects of fecal microbiota transplantation and regulated the balance of the immune system.
Collapse
Affiliation(s)
- Xiaorong Huang
- Chongqing Key Laboratory of Big Data for Bio Intelligence, Chongqing University of Posts and Tele-communications, Chongqing, China
| | - Yv Zhang
- Chongqing Key Laboratory of Big Data for Bio Intelligence, Chongqing University of Posts and Tele-communications, Chongqing, China
| | - Junsong Huang
- Chongqing Key Laboratory of Big Data for Bio Intelligence, Chongqing University of Posts and Tele-communications, Chongqing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wenli Gao
- Chongqing University of Posts and Telecommunications, Chongqing Key Laboratory of Big Data for Bio Intelligence, Chongqing, China
| | - Xie Yongfang
- Chongqing Key Laboratory of Big Data for Bio Intelligence, Chongqing University of Posts and Tele-communications, Chongqing, China
| | - Chuisheng Zeng
- Chongqing Key Laboratory of Big Data for Bio Intelligence, Chongqing University of Posts and Tele-communications, Chongqing, China
| | - Chao Gao
- Chongqing Key Laboratory of Big Data for Bio Intelligence, Chongqing University of Posts and Tele-communications, Chongqing, China
| |
Collapse
|
2
|
Ogata H, Akita S, Ikehara S, Azuma K, Yamaguchi T, Maimaiti M, Maezawa Y, Kubota Y, Yokote K, Mitsukawa N, Ikehara Y. Calcification in Werner syndrome associated with lymphatic vessels aging. Aging (Albany NY) 2021; 13:25717-25728. [PMID: 34958633 PMCID: PMC8751599 DOI: 10.18632/aging.203789] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 12/10/2021] [Indexed: 12/02/2022]
Abstract
In addition to the symptoms of aging, the main symptoms in Werner syndrome (WS), a hereditary premature aging disease, include calcification of subcutaneous tissue with solid pain and refractory skin ulcers. However, the mechanism of calcification in WS remains unclear. In this study, the histological analysis of the skin around the ulcer with calcification revealed an accumulation of calcium phosphate in the lymphatic vessels. Moreover, the morphological comparison with the lymphatic vessels in PAD patients with chronic skin ulcers demonstrated the ongoing lymphatic remodeling in WS patients because of the narrow luminal cross-sectional area (LA) of the lymphatic vessels but the increment of lymphatic microvessels density (MLVD). Additionally, fluorescence immunohistochemical analysis presented the cytoplasmic distribution and the accumulation of WRN proteins in endothelial cells on remodeling lymphatic vessels. In summary, these results point out a relationship between calcification in lymphatic vessels and the remodeling of lymphatic vessels and suggest the significance of the accumulation of WRN mutant proteins as an age-related change in WS patients. Thus, cytoplasmic accumulation of WRN protein can be an indicator of the decreasing drainage function of the lymphatic vessels and the increased risk of skin ulcers and calcification in the lymphatic vessels.
Collapse
Affiliation(s)
- Hideyuki Ogata
- Department of Plastic, Reconstructive, and Aesthetic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Shinsuke Akita
- Department of Plastic, Reconstructive, and Aesthetic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Sanae Ikehara
- Department of Pathology, Graduate School of Medicine, Chiba University, Chiba, Japan.,Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Kazuhiko Azuma
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Takashi Yamaguchi
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Maihulan Maimaiti
- Department of Pathology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yoshiro Maezawa
- Department of Endocrinology, Hematology and Gerontology, Graduate School of Medicine, Chiba University, Chiba, Japan.,Division of Diabetes, Metabolism and Endocrinology, Chiba University Hospital, Chiba, Japan
| | - Yoshitaka Kubota
- Department of Plastic, Reconstructive, and Aesthetic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Koutaro Yokote
- Department of Endocrinology, Hematology and Gerontology, Graduate School of Medicine, Chiba University, Chiba, Japan.,Division of Diabetes, Metabolism and Endocrinology, Chiba University Hospital, Chiba, Japan
| | - Nobuyuki Mitsukawa
- Department of Plastic, Reconstructive, and Aesthetic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yuzuru Ikehara
- Department of Pathology, Graduate School of Medicine, Chiba University, Chiba, Japan.,Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| |
Collapse
|
3
|
Abstract
Significance: Werner syndrome (WS) is a rare autosomal recessive malady typified by a pro-oxidant/proinflammatory status, genetic instability, and by the early onset of numerous age-associated illnesses. The protein malfunctioning in WS individuals (WRN) is a helicase/exonuclease implicated in transcription, DNA replication/repair, and telomere maintenance. Recent Advances: In the last two decades, a series of important biological systems were created to comprehend at the molecular level the effect of a defective WRN protein. Such biological tools include mouse and worm (Caenorhabditis elegans) with a mutation in the Wrn helicase ortholog as well as human WS-induced pluripotent stem cells that can ultimately be differentiated into most cell lineages. Such WS models have identified anomalies related to the hallmarks of aging. Most importantly, vitamin C counteracts these age-related cellular phenotypes in these systems. Critical Issues: Vitamin C is the only antioxidant agent capable of reversing the cellular aging-related phenotypes in those biological systems. Since vitamin C is a cofactor for many hydroxylases and mono- or dioxygenase, it adds another level of complexity in deciphering the exact molecular pathways affected by this vitamin. Moreover, it is still unclear whether a short- or long-term vitamin C supplementation in human WS patients who already display aging-related phenotypes will have a beneficial impact. Future Directions: The discovery of new molecular markers specific to the modified biological pathways in WS that can be used for novel imaging techniques or as blood markers will be necessary to assess the favorable effect of vitamin C supplementation in WS. Antioxid. Redox Signal. 34, 856-874.
Collapse
Affiliation(s)
- Lucie Aumailley
- Centre de Recherche du CHU de Québec, Faculty of Medicine, Université Laval, Québec City, Québec, Canada
| | - Michel Lebel
- Centre de Recherche du CHU de Québec, Faculty of Medicine, Université Laval, Québec City, Québec, Canada
| |
Collapse
|
4
|
Cassidy D, Epiney DG, Salameh C, Zhou LT, Salomon RN, Schirmer AE, McVey M, Bolterstein E. Evidence for premature aging in a Drosophila model of Werner syndrome. Exp Gerontol 2019; 127:110733. [PMID: 31518666 PMCID: PMC6935377 DOI: 10.1016/j.exger.2019.110733] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 08/29/2019] [Accepted: 09/09/2019] [Indexed: 10/26/2022]
Abstract
Werner syndrome (WS) is an autosomal recessive progeroid disease characterized by patients' early onset of aging, increased risk of cancer and other age-related pathologies. WS is caused by mutations in WRN, a RecQ helicase that has essential roles responding to DNA damage and preventing genomic instability. While human WRN has both an exonuclease and helicase domain, Drosophila WRNexo has high genetic and functional homology to only the exonuclease domain of WRN. Like WRN-deficient human cells, Drosophila WRNexo null mutants (WRNexoΔ) are sensitive to replication stress, demonstrating mechanistic similarities between these two models. Compared to age-matched wild-type controls, WRNexoΔ flies exhibit increased physiological signs of aging, such as shorter lifespans, higher tumor incidence, muscle degeneration, reduced climbing ability, altered behavior, and reduced locomotor activity. Interestingly, these effects are more pronounced in females suggesting sex-specific differences in the role of WRNexo in aging. This and future mechanistic studies will contribute to our knowledge in linking faulty DNA repair mechanisms with the process of aging.
Collapse
Affiliation(s)
- Deirdre Cassidy
- Department of Biology, Northeastern Illinois University, 5500 N. Saint Louis Ave, Chicago, IL 60625, United States of America
| | - Derek G Epiney
- Department of Biology, Northeastern Illinois University, 5500 N. Saint Louis Ave, Chicago, IL 60625, United States of America
| | - Charlotte Salameh
- Department of Biology, Northeastern Illinois University, 5500 N. Saint Louis Ave, Chicago, IL 60625, United States of America
| | - Luhan T Zhou
- Department of Biology, Northeastern Illinois University, 5500 N. Saint Louis Ave, Chicago, IL 60625, United States of America
| | - Robert N Salomon
- Department of Pathology, Tufts University School of Medicine, 145 Harrison Ave, Boston, MA 20111, United States of America
| | - Aaron E Schirmer
- Department of Biology, Northeastern Illinois University, 5500 N. Saint Louis Ave, Chicago, IL 60625, United States of America.
| | - Mitch McVey
- Department of Biology, Tufts University, 200 Boston Ave, Ste. 4741, Medford, MA 20155, United States of America.
| | - Elyse Bolterstein
- Department of Biology, Northeastern Illinois University, 5500 N. Saint Louis Ave, Chicago, IL 60625, United States of America.
| |
Collapse
|
5
|
Hui CW, St-Pierre MK, Detuncq J, Aumailley L, Dubois MJ, Couture V, Skuk D, Marette A, Tremblay JP, Lebel M, Tremblay MÈ. Nonfunctional mutant Wrn protein leads to neurological deficits, neuronal stress, microglial alteration, and immune imbalance in a mouse model of Werner syndrome. Brain Behav Immun 2018; 73:450-469. [PMID: 29908963 DOI: 10.1016/j.bbi.2018.06.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 05/25/2018] [Accepted: 06/06/2018] [Indexed: 12/30/2022] Open
Abstract
Werner syndrome (WS) is a premature aging disorder caused by mutations in a RecQ-family DNA helicase, WRN. Mice lacking part of the helicase domain of the WRN orthologue exhibit many phenotypic features of WS, including metabolic abnormalities and a shorter lifespan. Yet, little is known about the impact of WRN mutations on the central nervous system in both humans and mouse models of WS. In the current study, we have performed a longitudinal behavioral assessment on mice bearing a Wrn helicase deletion. Behavioral tests demonstrated a loss of motor activity and coordination, reduction in perception, increase in repetitive behavior, and deficits in both spatial and social novelty memories in Wrn mutant mice compared to age-matched wild type mice. These neurological deficits were associated with biochemical and histological changes in the brain of aged Wrn mutant mice. Microglia, resident immune cells that regulate neuronal plasticity and function in the brain, were hyper-ramified in multiple regions involved with the behavioral deficits of Wrn mutant mice. Furthermore, western analyses indicated that Wrn mutant mice exhibited an increase of oxidative stress markers in the prefrontal cortex. Supporting these findings, electron microscopy studies revealed increased cellular aging and oxidative stress features, among microglia and neurons respectively, in the prefrontal cortex of aged Wrn mutant mice. In addition, multiplex immunoassay of serum identified significant changes in the expression levels of several pro- and anti-inflammatory cytokines. Taken together, these findings indicate that microglial dysfunction and neuronal oxidative stress, associated with peripheral immune system alterations, might be important driving forces leading to abnormal neurological symptoms in WS thus suggesting potential therapeutic targets for interventions.
Collapse
Affiliation(s)
- Chin Wai Hui
- Axe neurosciences, Centre de recherche du CHU de Québec, Centre Hospitalier de l'Université Laval (CHUL), 2705 Laurier Blvd., Québec City, Québec G1V 4G2, Canada
| | - Marie-Kim St-Pierre
- Axe neurosciences, Centre de recherche du CHU de Québec, Centre Hospitalier de l'Université Laval (CHUL), 2705 Laurier Blvd., Québec City, Québec G1V 4G2, Canada
| | - Jérôme Detuncq
- Axe neurosciences, Centre de recherche du CHU de Québec, Centre Hospitalier de l'Université Laval (CHUL), 2705 Laurier Blvd., Québec City, Québec G1V 4G2, Canada
| | - Lucie Aumailley
- Axe endocrinologie/néphrologie, Centre de recherche du CHU de Québec, Centre Hospitalier de l'Université Laval (CHUL), 2705 Laurier Blvd., Québec City, Québec G1V 4G2, Canada
| | - Marie-Julie Dubois
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, 2725 Chemin Sainte-Foy, Québec City, Québec G1V 4G5, Canada
| | - Vanessa Couture
- Axe neurosciences, Centre de recherche du CHU de Québec, Centre Hospitalier de l'Université Laval (CHUL), 2705 Laurier Blvd., Québec City, Québec G1V 4G2, Canada
| | - Daniel Skuk
- Axe neurosciences, Centre de recherche du CHU de Québec, Centre Hospitalier de l'Université Laval (CHUL), 2705 Laurier Blvd., Québec City, Québec G1V 4G2, Canada
| | - André Marette
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, 2725 Chemin Sainte-Foy, Québec City, Québec G1V 4G5, Canada
| | - Jacques P Tremblay
- Axe neurosciences, Centre de recherche du CHU de Québec, Centre Hospitalier de l'Université Laval (CHUL), 2705 Laurier Blvd., Québec City, Québec G1V 4G2, Canada
| | - Michel Lebel
- Axe endocrinologie/néphrologie, Centre de recherche du CHU de Québec, Centre Hospitalier de l'Université Laval (CHUL), 2705 Laurier Blvd., Québec City, Québec G1V 4G2, Canada.
| | - Marie-Ève Tremblay
- Axe neurosciences, Centre de recherche du CHU de Québec, Centre Hospitalier de l'Université Laval (CHUL), 2705 Laurier Blvd., Québec City, Québec G1V 4G2, Canada.
| |
Collapse
|
6
|
Aumailley L, Roux-Dalvai F, Kelly I, Droit A, Lebel M. Vitamin C alters the amount of specific endoplasmic reticulum associated proteins involved in lipid metabolism in the liver of mice synthesizing a nonfunctional Werner syndrome (Wrn) mutant protein. PLoS One 2018; 13:e0193170. [PMID: 29494634 PMCID: PMC5832228 DOI: 10.1371/journal.pone.0193170] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 02/06/2018] [Indexed: 11/19/2022] Open
Abstract
Werner syndrome (WS) is a premature aging disorder caused by mutations in a protein containing both a DNA exonuclease and DNA helicase domain. Mice lacking the helicase domain of the Wrn protein orthologue exhibit transcriptomic and metabolic alterations, some of which are reversed by vitamin C. Recent studies on these animals indicated that the mutant protein is associated with enriched endoplasmic reticulum (ER) fractions of tissues resulting in an ER stress response. In this study, we identified proteins that exhibit actual level differences in the ER enriched fraction between the liver of wild type and Wrn mutant mice using quantitative proteomic profiling with label-free Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS). Multiple Reaction Monitoring (MRM) and immunoblotting were performed to validate findings in a secondary independent cohort of wild type and Wrn mutant mice. DAVID 6.7 (NIH) was used for functional annotation analysis and indicated that the identified proteins exhibiting level changes between untreated wild type, Wrn mutant, and vitamin C treated Wrn mutant mice (ANOVA P–value < 0.05) were involved in fatty acid and steroid metabolism pathways (Bonferroni P-value = 0.0137). Finally, when we compared the transcriptomic and the proteomic data of our mouse cohorts only ~7% of the altered mRNA profiles encoding for ER gene products were consistent with their corresponding protein profiles measured by the label-free quantification methods. These results suggest that a great number of ER gene products are regulated at the post-transcriptional level in the liver of Wrn mutant mice exhibiting an ER stress response.
Collapse
Affiliation(s)
- Lucie Aumailley
- Centre de recherche du CHU de Québec, Faculty of Medicine, Université Laval, Quebec City Québec, Canada
| | - Florence Roux-Dalvai
- Proteomics Platform Center, Centre de recherche du CHU de Québec, Faculty of Medicine, Université Laval, Quebec City Québec, Canada
| | - Isabelle Kelly
- Proteomics Platform Center, Centre de recherche du CHU de Québec, Faculty of Medicine, Université Laval, Quebec City Québec, Canada
| | - Arnaud Droit
- Proteomics Platform Center, Centre de recherche du CHU de Québec, Faculty of Medicine, Université Laval, Quebec City Québec, Canada
| | - Michel Lebel
- Centre de recherche du CHU de Québec, Faculty of Medicine, Université Laval, Quebec City Québec, Canada
- * E-mail:
| |
Collapse
|
7
|
Aumailley L, Dubois MJ, Brennan TA, Garand C, Paquet ER, Pignolo RJ, Marette A, Lebel M. Serum vitamin C levels modulate the lifespan and endoplasmic reticulum stress response pathways in mice synthesizing a nonfunctional mutant WRN protein. FASEB J 2018; 32:3623-3640. [PMID: 29452565 DOI: 10.1096/fj.201701176r] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Werner syndrome (WS) is a premature aging disorder caused by mutations in a RecQ-family DNA helicase (WRN). Mice lacking part of the helicase domain of the WRN ortholog exhibit several phenotypic features of WS. In this study, we generated a Wrn mutant line that, like humans, relies entirely on dietary sources of vitamin C (ascorbate) to survive, by crossing them to mice that lack the gulonolactone oxidase enzyme required for ascorbate synthesis. In the presence of 0.01% ascorbate (w/v) in drinking water, double-mutant mice exhibited a severe reduction in lifespan, small size, sterility, osteopenia, and metabolic profiles different from wild-type (WT) mice. Although increasing the dose of ascorbate to 0.4% improved dramatically the phenotypes of double-mutant mice, the metabolic and cytokine profiles were different from age-matched WT mice. Finally, double-mutant mice treated with 0.01% ascorbate revealed a permanent activation of all the 3 branches of the ER stress response pathways due to a severe chronic oxidative stress in the ER compartment. In addition, markers associated with the ubiquitin-proteasome-dependent ER-associated degradation pathway were increased. Augmenting the dose of ascorbate reversed the activation of this pathway to WT levels rendering this pathway a potential therapeutic target in WS.-Aumailley, L., Dubois, M. J., Brennan, T. A., Garand, C., Paquet, E. R., Pignolo, R. J., Marette, A., Lebel, M. Serum vitamin C levels modulate the lifespan and endoplasmic reticulum stress response pathways in mice synthesizing a nonfunctional mutant WRN protein.
Collapse
Affiliation(s)
- Lucie Aumailley
- Centre de Recherche du Centre Hospitalier de l'Université (CHU) de Québec, Faculté de Médecine, Université Laval, Quebec City, Quebec, Canada
| | - Marie Julie Dubois
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Faculté de Médecine, Université Laval, Quebec City, Quebec, Canada
| | - Tracy A Brennan
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Chantal Garand
- Centre de Recherche du Centre Hospitalier de l'Université (CHU) de Québec, Faculté de Médecine, Université Laval, Quebec City, Quebec, Canada
| | - Eric R Paquet
- Centre de Recherche sur le Cancer de l'Université Laval, Hôpital Hôtel-Dieu de Québec, Quebec City, Quebec, Canada
| | - Robert J Pignolo
- Department of Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - André Marette
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Faculté de Médecine, Université Laval, Quebec City, Quebec, Canada
| | - Michel Lebel
- Centre de Recherche du Centre Hospitalier de l'Université (CHU) de Québec, Faculté de Médecine, Université Laval, Quebec City, Quebec, Canada
| |
Collapse
|
8
|
Lin YH, Jewell BE, Gingold J, Lu L, Zhao R, Wang LL, Lee DF. Osteosarcoma: Molecular Pathogenesis and iPSC Modeling. Trends Mol Med 2017; 23:737-755. [PMID: 28735817 DOI: 10.1016/j.molmed.2017.06.004] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 06/13/2017] [Accepted: 06/15/2017] [Indexed: 12/17/2022]
Abstract
Rare hereditary disorders provide unequivocal evidence of the importance of genes in human disease pathogenesis. Familial syndromes that predispose to osteosarcomagenesis are invaluable in understanding the underlying genetics of this malignancy. Recently, patient-derived induced pluripotent stem cells (iPSCs) have been successfully utilized to model Li-Fraumeni syndrome (LFS)-associated bone malignancy, demonstrating that iPSCs can serve as an in vitro disease model to elucidate osteosarcoma etiology. We provide here an overview of osteosarcoma predisposition syndromes and review recently established iPSC disease models for these familial syndromes. Merging molecular information gathered from these models with the current knowledge of osteosarcoma biology will help us to gain a deeper understanding of the pathological mechanisms underlying osteosarcomagenesis and will potentially aid in the development of future patient therapies.
Collapse
Affiliation(s)
- Yu-Hsuan Lin
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; These authors contributed equally to this work
| | - Brittany E Jewell
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA; These authors contributed equally to this work
| | - Julian Gingold
- Women's Health Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA; These authors contributed equally to this work
| | - Linchao Lu
- Texas Children's Cancer Center, Department of Pediatrics, Section of Hematology/Oncology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ruiying Zhao
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Lisa L Wang
- Texas Children's Cancer Center, Department of Pediatrics, Section of Hematology/Oncology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Dung-Fang Lee
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA; Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; Center for Precision Health, School of Biomedical Informatics and School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| |
Collapse
|
9
|
Vitamin C, Aging and Alzheimer's Disease. Nutrients 2017; 9:nu9070670. [PMID: 28654021 PMCID: PMC5537785 DOI: 10.3390/nu9070670] [Citation(s) in RCA: 151] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 06/01/2017] [Accepted: 06/13/2017] [Indexed: 02/07/2023] Open
Abstract
Accumulating evidence in mice models of accelerated senescence indicates a rescuing role of ascorbic acid in premature aging. Supplementation of ascorbic acid appeared to halt cell growth, oxidative stress, telomere attrition, disorganization of chromatin, and excessive secretion of inflammatory factors, and extend lifespan. Interestingly, ascorbic acid (AA) was also found to positively modulate inflamm-aging and immunosenescence, two hallmarks of biological aging. Moreover, ascorbic acid has been shown to epigenetically regulate genome integrity and stability, indicating a key role of targeted nutrition in healthy aging. Growing in vivo evidence supports the role of ascorbic acid in ameliorating factors linked to Alzheimer’s disease (AD) pathogenesis, although evidence in humans yielded equivocal results. The neuroprotective role of ascorbic acid not only relies on the general free radical trapping, but also on the suppression of pro-inflammatory genes, mitigating neuroinflammation, on the chelation of iron, copper, and zinc, and on the suppression of amyloid-beta peptide (Aβ) fibrillogenesis. Epidemiological evidence linking diet, one of the most important modifiable lifestyle factors, and risk of Alzheimer's disease is rapidly increasing. Thus, dietary interventions, as a way to epigenetically modulate the human genome, may play a role in the prevention of AD. The present review is aimed at providing an up to date overview of the main biological mechanisms that are associated with ascorbic acid supplementation/bioavailability in the process of aging and Alzheimer’s disease. In addition, we will address new fields of research and future directions.
Collapse
|
10
|
Yokote K, Chanprasert S, Lee L, Eirich K, Takemoto M, Watanabe A, Koizumi N, Lessel D, Mori T, Hisama FM, Ladd PD, Angle B, Baris H, Cefle K, Palanduz S, Ozturk S, Chateau A, Deguchi K, Easwar TKM, Federico A, Fox A, Grebe TA, Hay B, Nampoothiri S, Seiter K, Streeten E, Piña-Aguilar RE, Poke G, Poot M, Posmyk R, Martin GM, Kubisch C, Schindler D, Oshima J. WRN Mutation Update: Mutation Spectrum, Patient Registries, and Translational Prospects. Hum Mutat 2016; 38:7-15. [PMID: 27667302 DOI: 10.1002/humu.23128] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 09/16/2016] [Accepted: 09/20/2016] [Indexed: 12/19/2022]
Abstract
Werner syndrome (WS) is a rare autosomal recessive disorder characterized by a constellation of adult onset phenotypes consistent with an acceleration of intrinsic biological aging. It is caused by pathogenic variants in the WRN gene, which encodes a multifunctional nuclear protein with exonuclease and helicase activities. WRN protein is thought to be involved in optimization of various aspects of DNA metabolism, including DNA repair, recombination, replication, and transcription. In this update, we summarize a total of 83 different WRN mutations, including eight previously unpublished mutations identified by the International Registry of Werner Syndrome (Seattle, WA) and the Japanese Werner Consortium (Chiba, Japan), as well as 75 mutations already reported in the literature. The Seattle International Registry recruits patients from all over the world to investigate genetic causes of a wide variety of progeroid syndromes in order to contribute to the knowledge of basic mechanisms of human aging. Given the unusually high prevalence of WS patients and heterozygous carriers in Japan, the major goal of the Japanese Consortium is to develop effective therapies and to establish management guidelines for WS patients in Japan and elsewhere. This review will also discuss potential translational approaches to this disorder, including those currently under investigation.
Collapse
Affiliation(s)
- Koutaro Yokote
- Department of Clinical Cell Biology and Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Sirisak Chanprasert
- Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, Washington
| | - Lin Lee
- Department of Pathology, University of Washington, Seattle, Washington
| | - Katharina Eirich
- Department of Human Genetics, University of Wuerzburg, Wuerzburg, Germany
| | - Minoru Takemoto
- Department of Clinical Cell Biology and Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Aki Watanabe
- Department of Clinical Cell Biology and Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Naoko Koizumi
- Department of Clinical Cell Biology and Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Davor Lessel
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Takayasu Mori
- Department of Pediatrics, Division of Genetic Medicine, University of Washington, Seattle, Washington
| | - Fuki M Hisama
- Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, Washington
| | - Paula D Ladd
- Department of Pathology, University of Washington, Seattle, Washington
| | - Brad Angle
- Advocate Lutheran General Hospital and Advocate Children's Hospital, Park Ridge, Illinois
| | - Hagit Baris
- The Genetics Institute, Rambam Health Care Campus and Rappaport School of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Kivanc Cefle
- Department of Internal Medicine, Division of Medical Genetics, Istanbul Medical Faculty, Istanbul University, Turkey
| | - Sukru Palanduz
- Department of Internal Medicine, Division of Medical Genetics, Istanbul Medical Faculty, Istanbul University, Turkey
| | - Sukru Ozturk
- Department of Internal Medicine, Division of Medical Genetics, Istanbul Medical Faculty, Istanbul University, Turkey
| | - Antoinette Chateau
- Department of Dermatology, Greys Hospital, Pietermaritzburg, South Africa
| | - Kentaro Deguchi
- Department of Neurology, Okayama City Hospital, Okayama, Japan
| | | | - Antonio Federico
- Department of Medicine, Surgery and Neurosciences, Unit Clinical Neurology and Neurometabolic Diseases, Medical School, University of Siena, Siena, Italy
| | - Amy Fox
- Department of Dermatology, University of North Carolina, Chapel Hill, North Carolina
| | - Theresa A Grebe
- Division of Genetics and Metabolism, Phoenix Children's Hospital, Phoenix, Arizona
| | - Beverly Hay
- Division of Genetics, UMass Memorial Medical Center, Worcester, Massachusetts
| | - Sheela Nampoothiri
- Department of Pediatric Genetics, Amrita Institute of Medical Sciences and Research Center, Kochi, Kerala, India
| | - Karen Seiter
- Department of Medicine, New York Medical College, Hawthorne, New York
| | - Elizabeth Streeten
- Division of Genetics, University of Maryland School of Medicine, Baltimore, Maryland
| | | | - Gemma Poke
- Genetic Health Service NZ, Wellington, New Zealand
| | - Martin Poot
- University Medical Center, Utrecht, Netherlands
| | - Renata Posmyk
- Department of Clinical Genetics, Podlaskie Medical Center, Bialystok, Poland
- Department of Perinatology, Medical University of Bialystok, Bialystok, Poland
| | - George M Martin
- Department of Pathology, University of Washington, Seattle, Washington
| | - Christian Kubisch
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Detlev Schindler
- Department of Human Genetics, University of Wuerzburg, Wuerzburg, Germany
| | - Junko Oshima
- Department of Clinical Cell Biology and Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
- Department of Pathology, University of Washington, Seattle, Washington
| |
Collapse
|
11
|
Tokita M, Kennedy SR, Risques RA, Chun SG, Pritchard C, Oshima J, Liu Y, Bryant-Greenwood PK, Welcsh P, Monnat RJ. Werner syndrome through the lens of tissue and tumour genomics. Sci Rep 2016; 6:32038. [PMID: 27559010 PMCID: PMC4997333 DOI: 10.1038/srep32038] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 08/01/2016] [Indexed: 12/11/2022] Open
Abstract
Werner syndrome (WS) is the canonical adult human progeroid ('premature aging') syndrome. Patients with this autosomal recessive Mendelian disorder display constitutional genomic instability and an elevated risk of important age-associated diseases including cancer. Remarkably few analyses of WS patient tissue and tumors have been performed to provide insight into WS disease pathogenesis or the high risk of neoplasia. We used autopsy tissue from four mutation-typed WS patients to characterize pathologic and genomic features of WS, and to determine genomic features of three neoplasms arising in two of these patients. The results of these analyses provide new information on WS pathology and genomics; provide a first genomic characterization of neoplasms arising in WS; and provide new histopathologic and genomic data to test several popular models of WS disease pathogenesis.
Collapse
Affiliation(s)
- Mari Tokita
- Department of Medicine Division of Medical Genetics, University of Washington, Seattle, WA USA
| | - Scott R. Kennedy
- Department of Pathology, University of Washington, Seattle, WA USA
| | - Rosa Ana Risques
- Department of Pathology, University of Washington, Seattle, WA USA
| | - Stephen G. Chun
- Department of Radiation Oncology, MD Anderson Cancer Center, Houston, TX USA
| | - Colin Pritchard
- Department of Laboratory Medicine, University of Washington, Seattle, WA USA
| | - Junko Oshima
- Department of Pathology, University of Washington, Seattle, WA USA
- Department of Medicine, Chiba University, Chiba, Japan
| | - Yan Liu
- Department of Pathology, University of Washington, Seattle, WA USA
| | - Peter K. Bryant-Greenwood
- Department of Pathology, John Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI USA
| | - Piri Welcsh
- Department of Pathology, University of Washington, Seattle, WA USA
| | - Raymond J. Monnat
- Department of Pathology, University of Washington, Seattle, WA USA
- Department of Genome Sciences, University of Washington, Seattle, WA USA
| |
Collapse
|