1
|
Melo JEC, Santos TFO, Santos RS, Franco HS, Monteiro MCN, Bispo JMM, Mendonça MS, Ribeiro AM, Silva RH, Gois AM, Marchioro M, Lins LCRF, Santos JR. Aging accentuates decrease in tyrosine hydroxylase immunoreactivity associated with the increase in the motor impairment in a model of reserpine-induced parkinsonism. J Chem Neuroanat 2022; 125:102162. [PMID: 36115503 DOI: 10.1016/j.jchemneu.2022.102162] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/26/2022]
Abstract
Parkinson's disease (PD) is an age-related neurodegenerative disorder characterized by progressive dopaminergic neuron loss. Animal models have been used to develop a better understanding of the pathophysiologic mechanisms of PD. However, these models are usually conducted with young animals diverging of the age of PD patients, suggesting a bias in translational science. Thus, the aim of the study was to evaluate the effect of the age on rats in a progressive parkinsonism model induced by reserpine (RES). Adult (6 - 8 month-old) or elderly (18 - 24 month-old) male rats were assigned to six groups: control-elderly (CTL-ELDERLY), reserpine-elderly (RES-ELDERLY), reserpine-elderly withdrawal (RES-ELDERLY WITHDRAWAL), control-adult (CTL-ADULT), reserpine-adult (RES-ADULT), and reserpine-adult withdrawal (RES-ADULT WITHDRAWAL). Animals received 15 injections every other day of RES (0.1 mg / kg) or vehicle during 30 days. Throughout treatment, animals were evaluated in the catalepsy test (every 48 h) and open field test (24 h after the second injection), and weight assessment (every 4 days) was also made. Upon completion of behavioral tests, rat brains were collected for tyrosine hydroxylase (TH) immunohistochemical analysis. Main results demonstrated that RES-treated animals spent more time in the catalepsy bar compared with control groups, moreover the RES-elderly group showed a longer catalepsy time compared with the RES-ADULT group. A shorter time from RES treatment to the development of symptoms was observed in the RES-ADULT group, compared with the RES-ELDERLY group. In addition, RES-induced weight loss in both RES-ELDERLY and RES-ADULT when compared with their corresponding controls. Cessation of RES treatment was followed by weight gain only in the RES-ADULT group. A significant decrease in TH-immunoreactive cells was observed in the substantia nigra pars compacta (SNpc) and dorsal striatum (STR) in the rats in both the RES-ADULT and RES-ELDERLY groups and in the ventral tegmental area in rats in the RES-ADULT group. Furthermore, TH immunoreactivity decrease was not reversible in SNpc and STR in the RES-ELDERLY. These results show that RES has an age-dependent effect in rats, suggesting a greater sensitivity of the dopaminergic pathway to RES with advancing age. These suggest that the RES rat model of parkinsonism can be useful in improving our knowledge on the effect of aging on neurodegeneration.
Collapse
Affiliation(s)
- João E C Melo
- Behavioral and Evolutionary Neurobiology Laboratory Department of Biosciences, Federal University of Sergipe, Itabaiana, SE, Brazil
| | - Thassya F O Santos
- Behavioral and Evolutionary Neurobiology Laboratory Department of Biosciences, Federal University of Sergipe, Itabaiana, SE, Brazil
| | - Rodolfo S Santos
- Behavioral and Evolutionary Neurobiology Laboratory Department of Biosciences, Federal University of Sergipe, Itabaiana, SE, Brazil
| | - Heitor S Franco
- Behavioral and Evolutionary Neurobiology Laboratory Department of Biosciences, Federal University of Sergipe, Itabaiana, SE, Brazil
| | - Milena C N Monteiro
- Behavioral and Evolutionary Neurobiology Laboratory Department of Biosciences, Federal University of Sergipe, Itabaiana, SE, Brazil
| | - José M M Bispo
- Behavioral and Evolutionary Neurobiology Laboratory Department of Biosciences, Federal University of Sergipe, Itabaiana, SE, Brazil
| | - Mylaine S Mendonça
- Behavioral and Evolutionary Neurobiology Laboratory Department of Biosciences, Federal University of Sergipe, Itabaiana, SE, Brazil
| | | | - Regina H Silva
- Department of Pharmacology, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Auderlan M Gois
- Behavioral and Evolutionary Neurobiology Laboratory Department of Biosciences, Federal University of Sergipe, Itabaiana, SE, Brazil
| | - Murilo Marchioro
- Behavioral and Evolutionary Neurobiology Laboratory Department of Biosciences, Federal University of Sergipe, Itabaiana, SE, Brazil; Department of Physiology, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Lívia C R F Lins
- Behavioral and Evolutionary Neurobiology Laboratory Department of Biosciences, Federal University of Sergipe, Itabaiana, SE, Brazil; Department of Physiology, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - José R Santos
- Behavioral and Evolutionary Neurobiology Laboratory Department of Biosciences, Federal University of Sergipe, Itabaiana, SE, Brazil; Department of Biosciences, Federal University of São Paulo, Santos, SP, Brazil.
| |
Collapse
|
2
|
Bispo JMM, Melo JEC, Gois AM, Medeiros KAAL, Silva RS, Leal PC, Franco HS, Souza MF, Lins LCRF, Ribeiro AM, Silva RH, Santos JR. Testosterone propionate improves motor alterations and dopaminergic damage in the reserpine-induced progressive model of Parkinson's disease. Brain Res Bull 2022; 187:162-168. [PMID: 35781030 DOI: 10.1016/j.brainresbull.2022.06.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/27/2022] [Accepted: 06/29/2022] [Indexed: 11/16/2022]
Abstract
Parkinson's disease (PD) is a chronic and progressive neurodegenerative disorder with a higher susceptibility to occur in men. Studies suggest that this susceptibility is related to the hormonal differences observed between men and women, being a risk factor for PD. In addition, testosterone supplementation has shown controversial results in animal models of PD and parkinsonian patients. This study evaluated the effect of chronic administration of testosterone propionate (TP) on motor behavior and neurochemical parameters in the reserpine-induced rat model of parkinsonism. Male Wistar rats received 15 injections of reserpine (RES - 0.1 mg/kg) every other day and were concomitantly treated with different doses (0.1, 1.0, or 5.0 mg/kg) of daily TP for 30 days. The rats were euthanized 48 h after the 15th injection of RES or vehicle. Brains were removed and subjected to Tyrosine hydroxylase (TH) immunohistochemistry. TP at 1.0 mg/kg reduced the damages caused by reserpine in the vacuous chewing and tong protrusion behaviors and prevented dopaminergic damage in the SNpc, VTA, and Striatum. TP at 5.0 mg/kg reduced the damages caused by reserpine in the catalepsy and tong protrusion behaviors, prevented the weight loss, and prevented dopaminergic damage in the VTA. Our results suggest that chronic administration of TP has a protective effect in a rat model of parkinsonism, improving motor alterations and dopamine depletion induced by RES.
Collapse
Affiliation(s)
- José M M Bispo
- Behavioral and Evolutionary Neurobiology Laboratory, Department of Biosciences, Federal University of Sergipe, Itabaiana, SE, Brazil.
| | - João E C Melo
- Behavioral and Evolutionary Neurobiology Laboratory, Department of Biosciences, Federal University of Sergipe, Itabaiana, SE, Brazil.
| | - Auderlan M Gois
- Behavioral and Evolutionary Neurobiology Laboratory, Department of Biosciences, Federal University of Sergipe, Itabaiana, SE, Brazil.
| | - Katty A A L Medeiros
- Behavioral and Evolutionary Neurobiology Laboratory, Department of Biosciences, Federal University of Sergipe, Itabaiana, SE, Brazil.
| | - Rodolfo Santos Silva
- Behavioral and Evolutionary Neurobiology Laboratory, Department of Biosciences, Federal University of Sergipe, Itabaiana, SE, Brazil.
| | - Pollyana C Leal
- Behavioral and Evolutionary Neurobiology Laboratory, Department of Biosciences, Federal University of Sergipe, Itabaiana, SE, Brazil; Graduate Program in Dentistry / Federal University of Sergipe, Aracaju, SE, Brazil.
| | - Heitor S Franco
- Behavioral and Evolutionary Neurobiology Laboratory, Department of Biosciences, Federal University of Sergipe, Itabaiana, SE, Brazil.
| | - Marina F Souza
- Behavioral and Evolutionary Neurobiology Laboratory, Department of Biosciences, Federal University of Sergipe, Itabaiana, SE, Brazil.
| | - Lívia C R F Lins
- Department of Physiology, Federal University of Sergipe, São Cristóvão, SE, Brazil.
| | | | - Regina H Silva
- Department of Pharmacology, Federal University of São Paulo, São Paulo, SP, Brazil.
| | - José R Santos
- Behavioral and Evolutionary Neurobiology Laboratory, Department of Biosciences, Federal University of Sergipe, Itabaiana, SE, Brazil.
| |
Collapse
|
3
|
Faria M, Prats E, Rosas Ramírez JR, Bellot M, Bedrossiantz J, Pagano M, Valls A, Gomez-Canela C, Porta JM, Mestres J, Garcia-Reyero N, Faggio C, Gómez Oliván LM, Raldua D. Androgenic activation, impairment of the monoaminergic system and altered behavior in zebrafish larvae exposed to environmental concentrations of fenitrothion. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 775:145671. [PMID: 33621872 DOI: 10.1016/j.scitotenv.2021.145671] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/11/2021] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
Fenitrothion is an organophosphorus insecticide usually found in aquatic ecosystems at concentrations in the range of low ng/L. In this manuscript we show that 24 h exposure to environmental concentrations of fenitrothion, from ng/L to low μg/L, altered basal locomotor activity, visual-motor response and acoustic/vibrational escape response of zebrafish larvae. Furthermore, fenitrothion and expression of gap43a, gfap, atp2b1a, and mbp exhibited a significant non-monotonic concentration-response relationship. Once determined that environmental concentrations of fenitrothion were neurotoxic for zebrafish larvae, a computational analysis identified potential protein targets of this compound. Some of the predictions, including interactions with acetylcholinesterase, monoamine-oxidases and androgen receptor (AR), were experimentally validated. Binding to AR was the most suitable candidate for molecular initiating event, as indicated by both the up-regulation of cyp19a1b and sult2st3 and the non-monotonic relationship found between fenitrothion and the observed responses. Finally, when the integrity of the monoaminergic system was evaluated, altered levels of L-DOPA, DOPAC, HVA and 5-HIAA were found, as well as a significant up-regulation of slc18a2 expression at the lowest concentrations of fenitrothion. These data strongly suggest that concentrations of fenitrothion commonly found in aquatic ecosystems present a significant environmental risk for fish communities.
Collapse
Affiliation(s)
- Melissa Faria
- Institute for Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona, 18, 08034 Barcelona, Spain
| | - Eva Prats
- Research and Development Center (CID-CSIC), Jordi Girona 18, 08034 Barcelona, Spain
| | - Jonathan Ricardo Rosas Ramírez
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n. Col. Residencial Colón, 50120 Toluca, Estado de México, Mexico
| | - Marina Bellot
- Department of Analytical Chemistry and Applied (Chromatography section), School of Engineering, Institut Químic de Sarrià-Universitat Ramon Llull, Via Augusta 390, 08017 Barcelona, Spain
| | - Juliette Bedrossiantz
- Institute for Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona, 18, 08034 Barcelona, Spain
| | - Maria Pagano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres, 31, 98166 Agata-Messina, Italy
| | - Arnau Valls
- Institut de Robòtica i Informàtica Industrial, CSIC-UPC, Barcelona, Spain
| | - Cristian Gomez-Canela
- Department of Analytical Chemistry and Applied (Chromatography section), School of Engineering, Institut Químic de Sarrià-Universitat Ramon Llull, Via Augusta 390, 08017 Barcelona, Spain
| | - Josep M Porta
- Institut de Robòtica i Informàtica Industrial, CSIC-UPC, Barcelona, Spain
| | - Jordi Mestres
- Systems Pharmacology, Research Group on Biomedical Informatics (GRIB), IMIM Hospital del Mar Medical Research Institute and Universitat Pompeu Fabra, Parc de Recerca Biomèdica, Chemotargets SL, Parc Científic de Barcelona, Barcelona, Spain
| | - Natalia Garcia-Reyero
- Environmental Laboratory, US Army Engineer Research and Development Center, Vicksburg, MS, USA
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres, 31, 98166 Agata-Messina, Italy
| | - Leobardo Manuel Gómez Oliván
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n. Col. Residencial Colón, 50120 Toluca, Estado de México, Mexico
| | - Demetrio Raldua
- Institute for Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona, 18, 08034 Barcelona, Spain.
| |
Collapse
|
4
|
Parecoxib alleviates the motor behavioral decline of aged rats by ameliorating mitochondrial dysfunction in the substantia nigra via COX-2/PGE2 pathway inhibition. Neuropharmacology 2021; 194:108627. [PMID: 34089729 DOI: 10.1016/j.neuropharm.2021.108627] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 05/15/2021] [Accepted: 05/19/2021] [Indexed: 12/17/2022]
Abstract
Mitochondrial dysfunction manifests as an early event in the substantia nigra (SN) in aging and Parkinson disease. Cyclooxygenase 2 (COX-2), the rate-limiting enzyme in the prostaglandin E2 (PGE2) synthesis pathway, is implicated in aging and age-related neurodegenerative diseases; moreover, inhibition of COX-2 expression has been shown to be neuroprotective for nigrostriatal dopaminergic neurons. However, it is not known whether the neuroprotective effect of COX-2 inhibition is related to improved mitochondrial function during the aging process. To this end, we explored the effects of the selective COX-2 inhibitor parecoxib on mitochondrial function in the SN of aged rats. We found that parecoxib administration to aged rats for 10 weeks decreased COX-2/PGE2 expression, increased tyrosine hydroxylase and dopamine transporter expression in nigrostriatal dopaminergic neurons, and alleviated motor behavioral decline. Decreased malondialdehyde levels and an increased GSH/GSSG ratio as well as enhanced enzymatic activities of catalase and manganese superoxide dismutase in parecoxib-treated aged rats indicate that parecoxib administration elevated antioxidative ability in the SN during the aging process. Parecoxib treatment to aged rats promoted mitochondrial biogenesis by upregulating PGC-1α/NRF-1/TFAM, enhancing mitochondrial fusion by decreasing Drp1 levels and increasing Mfn1 and OPA1 levels, and activated mitophagy by increasing PINK1/Parkin levels while reducing p62/SQSTM1 levels, thereby coordinating mitochondrial homeostasis via inhibiting the COX-2/PGE2 pathway. Thus, our results strongly support the conclusion that parecoxib treatment is conducive to improving mitochondrial dysfunction in the SN upon aging in rats.
Collapse
|
5
|
Testosterone enhances mitochondrial complex V function in the substantia nigra of aged male rats. Aging (Albany NY) 2020; 12:10398-10414. [PMID: 32445551 PMCID: PMC7346067 DOI: 10.18632/aging.103265] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 04/20/2020] [Indexed: 01/21/2023]
Abstract
Deficits in coordinated motor behavior and mitochondrial complex V activity have been observed in aged males. Testosterone supplementation can improve coordinated motor behavior in aged males. We investigated the effects of testosterone supplementation on mitochondrial complex V function in the substantia nigra (a brain region that regulates motor activity) in aged male rats. These rats exhibited diminished ATP levels, attenuated mitochondrial complex V activity, and reduced expression of 3 of the 17 mitochondrial complex V subunits (ATP6, ATP8 and ATP5C1) in the substantia nigra. Testosterone supplementation increased ATP levels, mitochondrial complex V activity, and ATP6, ATP8 and ATP5C1 expression in the substantia nigra of the rats. Conversely, orchiectomy reduced mitochondrial complex V activity, downregulated ATP6 and ATP8 expression, and upregulated ATP5C1, ATP5I and ATP5L expression in the substantia nigra. Testosterone replacement reversed those effects. Thus, testosterone enhanced mitochondrial complex V function in the substantia nigra of aged male rats by upregulating ATP6 and ATP8. As potential testosterone targets, these two subunits may to some degree maintain nigrostriatal dopaminergic function in aged males.
Collapse
|
6
|
Neumannova K, Machova-Urdzikova L, Kwok JCF, Fawcett JW, Jendelova P. Adaptation of tape removal test for measurement of sensitivity in perineal area of rat. Exp Neurol 2019; 324:113097. [PMID: 31707082 DOI: 10.1016/j.expneurol.2019.113097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 10/02/2019] [Accepted: 11/05/2019] [Indexed: 11/20/2022]
Abstract
Regeneration after spinal cord injury is a goal of many studies. Although the most obvious target is to recover motor function, restoration of sensation can also improve the quality of life after spinal cord injury. For many patients, recovery of sensation in the perineal and genital area is a high priority. Currently there is no experimental test in rodents for measuring changes in sensation in the perineal and genital area after spinal cord injury. The aim of our study was to develop a behavioural test for measuring the sensitivity of the perineal and genital area in rats. We have modified the tape removal test used routinely to test sensorimotor deficits after stroke and spinal cord injury to test the perineal area with several variations. A small piece of tape (approximately 1 cm2) was attached to the perineal area. Time to first contact and to the removal of the tape was measured. Each rat was trained for 5 consecutive days and then tested weekly. We compared different rat strains (Wistar, Sprague-Dawley, Long-Evans and Lewis), both genders, shaving and non-shaving and different types of tape. We found that the test was suitable for all tested strains, however, Lewis rats achieved the lowest contact times, but this difference was significant only for the first few days of learning the task. There were no significant differences between gender and different types of tape or shaving. After training the animals underwent dorsal column lesion at T10 and were tested at day 3, 8, 14 and 21. The test detected a sensory deficit, the average time across all animals to sense the stimulus increased from 1'32 up to 3'20. There was a strong relationship between lesion size and tape detection time, and only lesions that extended laterally to the dorsal root entry zone produced significant sensory deficits. Other standard behavioural tests (BBB, von Frey, ladder and Plantar test) were performed in the same animals. There was a correlation between lesion size and deficit for the ladder and BBB tests, but not for the von Frey and Plantar tests. We conclude that the tape removal test is suitable for testing perineal sensation in rats, can be used in different strains and is appropriate for monitoring changes in sensation after spinal cord injury.
Collapse
Affiliation(s)
- K Neumannova
- Institute of Experimental Medicine, Czech Academy of Science, Videnska 1083, 14220 Prague, Czech Republic; 2nd Faculty of Medicine, Charles University, V Uvalu 84, 15006 Prague, Czech Republic
| | - L Machova-Urdzikova
- Institute of Experimental Medicine, Czech Academy of Science, Videnska 1083, 14220 Prague, Czech Republic; 2nd Faculty of Medicine, Charles University, V Uvalu 84, 15006 Prague, Czech Republic
| | - J C F Kwok
- Institute of Experimental Medicine, Czech Academy of Science, Videnska 1083, 14220 Prague, Czech Republic; Faculty of Biological Sciences, University of Leeds, UK
| | - J W Fawcett
- Institute of Experimental Medicine, Czech Academy of Science, Videnska 1083, 14220 Prague, Czech Republic; John van Geest Centre for Brain Repair, University of Cambridge, UK
| | - P Jendelova
- Institute of Experimental Medicine, Czech Academy of Science, Videnska 1083, 14220 Prague, Czech Republic; 2nd Faculty of Medicine, Charles University, V Uvalu 84, 15006 Prague, Czech Republic.
| |
Collapse
|
7
|
A meta-analytical evaluation of the dual-hormone hypothesis: Does cortisol moderate the relationship between testosterone and status, dominance, risk taking, aggression, and psychopathy? Neurosci Biobehav Rev 2019; 96:250-271. [DOI: 10.1016/j.neubiorev.2018.12.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 12/04/2018] [Accepted: 12/04/2018] [Indexed: 12/28/2022]
|
8
|
Jardí F, Laurent MR, Dubois V, Kim N, Khalil R, Decallonne B, Vanderschueren D, Claessens F. Androgen and estrogen actions on male physical activity: a story beyond muscle. J Endocrinol 2018; 238:R31-R52. [PMID: 29743340 DOI: 10.1530/joe-18-0125] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 05/09/2018] [Indexed: 12/15/2022]
Abstract
Physical inactivity is a pandemic that contributes to several chronic diseases and poses a significant burden on health care systems worldwide. The search for effective strategies to combat sedentary behavior has led to an intensification of the research efforts to unravel the biological substrate controlling activity. A wide body of preclinical evidence makes a strong case for sex steroids regulating physical activity in both genders, albeit the mechanisms implicated remain unclear. The beneficial effects of androgens on muscle as well as on other peripheral functions might play a role in favoring adaptation to exercise. Alternatively or in addition, sex steroids could act on specific brain circuitries to boost physical activity. This review critically discusses the evidence supporting a role for androgens and estrogens stimulating male physical activity, with special emphasis on the possible role of peripheral and/or central mechanisms. Finally, the potential translation of these findings to humans is briefly discussed.
Collapse
Affiliation(s)
- Ferran Jardí
- Clinical and Experimental EndocrinologyDepartment of Chronic Diseases, Metabolism and Ageing (CHROMETA), KU Leuven, Leuven, Belgium
| | - Michaël R Laurent
- Molecular Endocrinology LaboratoryDepartment of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
- Gerontology and GeriatricsDepartment of Chronic Diseases, Metabolism and Ageing (CHROMETA), KU Leuven, Leuven, Belgium
| | - Vanessa Dubois
- Molecular Endocrinology LaboratoryDepartment of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Nari Kim
- Clinical and Experimental EndocrinologyDepartment of Chronic Diseases, Metabolism and Ageing (CHROMETA), KU Leuven, Leuven, Belgium
| | - Rougin Khalil
- Clinical and Experimental EndocrinologyDepartment of Chronic Diseases, Metabolism and Ageing (CHROMETA), KU Leuven, Leuven, Belgium
| | - Brigitte Decallonne
- Clinical and Experimental EndocrinologyDepartment of Chronic Diseases, Metabolism and Ageing (CHROMETA), KU Leuven, Leuven, Belgium
| | - Dirk Vanderschueren
- Clinical and Experimental EndocrinologyDepartment of Chronic Diseases, Metabolism and Ageing (CHROMETA), KU Leuven, Leuven, Belgium
| | - Frank Claessens
- Molecular Endocrinology LaboratoryDepartment of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| |
Collapse
|
9
|
Qi C, Ji X, Zhang G, Kang Y, Huang Y, Cui R, Li S, Cui H, Shi G. Haloperidol ameliorates androgen-induced behavioral deficits in developing male rats. J Endocrinol 2018; 237:193-205. [PMID: 29563235 DOI: 10.1530/joe-17-0642] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Accepted: 03/21/2018] [Indexed: 01/06/2023]
Abstract
The purpose of present study was to infer the potential effects of testosterone increase in some male-based childhood-onset neuropsychiatric disorders, such as Tourette syndrome. Thus, the influence of early postnatal androgen exposure upon the neurobehaviors and its possible neural basis were investigated in the study. Male pup rats received consecutive 14-day testosterone propionate (TP) subcutaneous injection from postnatal day (PND) 7. The TP treatment produced the hyperactive motor behavior and grooming behavior as well as the increased levels of dopamine, tyrosine hydroxylase and dopamine transporter in the mesodopaminergic system and the elevated levels of serotonin in the nucleus accumbens, without affecting the levels of glutamate, γ-aminobutyric acid, norepinephrine and histamine in the caudate putamen and nucleus accumbens of PND21 and PND49 rats. Dopamine D2 receptor antagonist haloperidol was administered to the early postnatal TP-exposed PND21 and PND49 male rats 30 min prior to open field test. Haloperidol significantly ameliorated the motor behavioral and grooming behavioral defects induced by early postnatal TP exposure. The results demonstrated that early postnatal androgen exposure significantly disturbed the brain activity of developing male rats via enhancing the mesodopaminergic activity. It was suggested that abnormal increments of testosterone levels during the early postnatal development might be a potential risk factor for the incidence of some male-based childhood-onset neuropsychiatric disorders by affecting the mesodopaminergic system.
Collapse
Affiliation(s)
- Chunxiao Qi
- Department of NeurobiologyHebei Medical University, Shijiazhuang, People's Republic of China
- Department of Human AnatomyHebei Medical University, Shijiazhuang, People's Republic of China
| | - Xiaoming Ji
- Department of NeurobiologyHebei Medical University, Shijiazhuang, People's Republic of China
| | - Guoliang Zhang
- Department of Human AnatomyHebei Medical University, Shijiazhuang, People's Republic of China
| | - Yunxiao Kang
- Department of NeurobiologyHebei Medical University, Shijiazhuang, People's Republic of China
| | - Yuanxiang Huang
- Grade 2015 Eight-year Clinical Medicine ProgramSchool of Basic Medical Sciences, Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Rui Cui
- Department of Human AnatomyHebei Medical University, Shijiazhuang, People's Republic of China
| | - Shuangcheng Li
- Department of Human AnatomyHebei Medical University, Shijiazhuang, People's Republic of China
| | - Huixian Cui
- Department of Human AnatomyHebei Medical University, Shijiazhuang, People's Republic of China
- Neuroscience Research CenterHebei Medical University, Shijiazhuang, People's Republic of China
| | - Geming Shi
- Department of NeurobiologyHebei Medical University, Shijiazhuang, People's Republic of China
- Department of Human AnatomyHebei Medical University, Shijiazhuang, People's Republic of China
- Neuroscience Research CenterHebei Medical University, Shijiazhuang, People's Republic of China
| |
Collapse
|
10
|
Ivermectin reduces motor coordination, serum testosterone, and central neurotransmitter levels but does not affect sexual motivation in male rats. Reprod Toxicol 2017; 74:195-203. [DOI: 10.1016/j.reprotox.2017.10.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 10/03/2017] [Accepted: 10/17/2017] [Indexed: 12/17/2022]
|
11
|
Testosterone Upregulates the Expression of Mitochondrial ND1 and ND4 and Alleviates the Oxidative Damage to the Nigrostriatal Dopaminergic System in Orchiectomized Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:1202459. [PMID: 29138672 PMCID: PMC5613679 DOI: 10.1155/2017/1202459] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 08/01/2017] [Accepted: 08/07/2017] [Indexed: 11/17/2022]
Abstract
Testosterone deficiency, as a potential risk factor for aging and aging-related neurodegenerative disorders, might induce mitochondrial dysfunction and facilitate the declines of the nigrostriatal dopaminergic system by exacerbating the mitochondrial defects and increasing the oxidative damage. Thus, how testosterone levels influence the mitochondrial function in the substantia nigra was investigated in the study. The present studies showed that testosterone deficiency impaired the mitochondrial function in the substantia nigra and induced the oxidative damage to the substantia nigra as well as the deficits in the nigrostriatal dopaminergic system. Of four mitochondrial respiratory chain complexes, castration of male rats reduced the activity of mitochondrial complex I and downregulated the expression of ND1 and ND4 of 7 mitochondrial DNA- (mtDNA-) encoded subunits of complex I in the substantia nigra. Supplements of testosterone propionate to castrated male rats ameliorated the activity of mitochondrial complex I and upregulated the expression of mitochondrial ND1 and ND4. These results suggest an important role of testosterone in maintaining the mitochondrial function in the substantia nigra and the vulnerability of mitochondrial complex I to testosterone deficiency. Mitochondrial ND1 and ND4, as potential testosterone targets, were implicated in the oxidative damage to the nigrostriatal dopaminergic system.
Collapse
|
12
|
Cui R, Kang Y, Wang L, Li S, Ji X, Yan W, Zhang G, Cui H, Shi G. Testosterone Propionate Exacerbates the Deficits of Nigrostriatal Dopaminergic System and Downregulates Nrf2 Expression in Reserpine-Treated Aged Male Rats. Front Aging Neurosci 2017; 9:172. [PMID: 28620296 PMCID: PMC5449473 DOI: 10.3389/fnagi.2017.00172] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 05/16/2017] [Indexed: 12/27/2022] Open
Abstract
There is a controversy over the effects of testosterone supplements on dopaminergic function. Both neuroprotective and toxic effects of testosterone supplements are reported. The status of oxidative stress seems to explain the neuroprotective or toxic properties of testosterone. To determine the efficacy of testosterone supplements in different status of oxidative stress, the present studies analyzed the dopamine (DA)-related behaviors and neurochemical indices, as well as markers of nigrostriatal dopaminergic (NSDA) system in reserpine-treated aged male rats followed by testosterone propionate (TP) supplements. The status of oxidative stress of experimental animals was evaluated by analyzing oxidative stress parameters and nuclear factor erythroid 2-related factor 2 (Nrf2)-antioxidant response element (ARE) signaling pathway in substantia nigra (SN). Consistent with our previous studies, TP supplements to 21-month old aged male rats had the beneficial effects on NSDA system and DA-related behaviors and enhanced the antioxidative capabilities in SN. However, the beneficial effects of TP supplements on NSDA system and DA-related behaviors in aged male rats were reversed by reserpine pretreatment to them. Reserpine treatment induced the severe oxidative stress and reduced the expressions of Nrf2, heme oxygenase-1 (HO-1) and NAD(P)H:quinone oxidoreductase-1 (NQO1) in the SN of aged male rats. The TP supplements to reserpine-pretreated aged male rats exacerbated the defects in NSDA system and DA-related behaviors, aggravated oxidative damages and downregulated the expression of Nrf2, HO-1 and NQO1 in the SN. These results suggested that the efficacy of TP supplements on impaired NSDA system was related to the status of oxidative stress in experimental rats.
Collapse
Affiliation(s)
- Rui Cui
- Department of Neurobiology, Hebei Medical UniversityShijiazhuang, China.,Department of Human Anatomy, Hebei Medical UniversityShijiazhuang, China
| | - Yunxiao Kang
- Department of Neurobiology, Hebei Medical UniversityShijiazhuang, China
| | - Li Wang
- Department of Neurobiology, Hebei Medical UniversityShijiazhuang, China
| | - Shuangcheng Li
- Department of Human Anatomy, Hebei Medical UniversityShijiazhuang, China
| | - Xiaoming Ji
- Department of Neurobiology, Hebei Medical UniversityShijiazhuang, China
| | - Wensheng Yan
- Department of Neurobiology, Hebei Medical UniversityShijiazhuang, China
| | - Guoliang Zhang
- Department of Neurobiology, Hebei Medical UniversityShijiazhuang, China.,Department of Human Anatomy, Hebei Medical UniversityShijiazhuang, China
| | - Huixian Cui
- Department of Human Anatomy, Hebei Medical UniversityShijiazhuang, China
| | - Geming Shi
- Department of Neurobiology, Hebei Medical UniversityShijiazhuang, China
| |
Collapse
|