1
|
Chiappara G, Di Vincenzo S, Cascio C, Pace E. Stem cells, Notch-1 signaling, and oxidative stress: a hellish trio in cancer development and progression within the airways. Is there a role for natural compounds? Carcinogenesis 2024; 45:621-629. [PMID: 39046986 DOI: 10.1093/carcin/bgae049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/22/2024] [Accepted: 07/20/2024] [Indexed: 07/27/2024] Open
Abstract
Notch-1 signaling plays a crucial role in stem cell maintenance and in repair mechanisms in various mucosal surfaces, including airway mucosa. Persistent injury can induce an aberrant activation of Notch-1 signaling in stem cells leading to an increased risk of cancer initiation and progression. Chronic inflammatory respiratory disorders, including chronic obstructive pulmonary disease (COPD) is associated with both overactivation of Notch-1 signaling and increased lung cancer risk. Increased oxidative stress, also due to cigarette smoke, can further contribute to promote cancer initiation and progression by amplifying inflammatory responses, by activating the Notch-1 signaling, and by blocking regulatory mechanisms that inhibit the growth capacity of stem cells. This review offers a comprehensive overview of the effects of aberrant Notch-1 signaling activation in stem cells and of increased oxidative stress in lung cancer. The putative role of natural compounds with antioxidant properties is also described.
Collapse
Affiliation(s)
- Giuseppina Chiappara
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), Palermo, via Ugo La Malfa 153, 90146, Italy
| | - Serena Di Vincenzo
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), Palermo, via Ugo La Malfa 153, 90146, Italy
| | - Caterina Cascio
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), Palermo, via Ugo La Malfa 153, 90146, Italy
| | - Elisabetta Pace
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), Palermo, via Ugo La Malfa 153, 90146, Italy
| |
Collapse
|
2
|
Di Sano C, Di Vincenzo S, Lo Piparo D, D'Anna C, Taverna S, Lazzara V, Pinto P, Sortino F, Pace E. Effects of condensates from volcanic fumaroles and cigarette smoke extracts on airway epithelial cells. Hum Cell 2023; 36:1689-1702. [PMID: 37308740 PMCID: PMC10390407 DOI: 10.1007/s13577-023-00927-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 05/26/2023] [Indexed: 06/14/2023]
Abstract
The impact of volcanic airborne products on airway epithelium homeostasis is largely unknown. This study assessed the effects of volcanic Fumarole Condensates (FC) alone or combined with Cigarette Smoke Extracts (CSE) on airway epithelial cells (16HBE and A549). Chemical composition of FC was analyzed by gas chromatography and HPLC. Cells were exposed to FC and IL-33 and IL-8 were assessed. The effects of FC and CSE on cell injury were evaluated assessing cell metabolism/cell viability, mitochondrial stress, cell apoptosis/cell necrosis, and cell proliferation. FC contained: water vapor (70-97%), CO2 (3-30%), acid gases (H2S, SO2, HCl, HF) around 1%. FC increased the intracellular IL-33 but differently modulated IL-33 and IL-8 gene expression and IL-8 release in the tested cell lines. FC without/with CSE: (a) increased cell metabolism/cell viability in 16HBE, while decreased it in A549; (b) increased mitochondrial stress in both cell types. FC with CSE increased cell necrosis in A549 in comparison to CSE alone. CSE reduced cell proliferation in 16HB,E while increased it in A549 and FC counteracted these effects in both cell types. Overall, FC induce a pro-inflammatory profile associated to a metabolic reprogramming without a relevant toxicity also in presence of CSE in airway epithelial cells.
Collapse
Affiliation(s)
- Caterina Di Sano
- Istituto di Farmacologia Traslazionale (IFT), Consiglio Nazionale delle Ricerche, Via Ugo La Malfa, 153, 90146, Palermo, Italy
| | - Serena Di Vincenzo
- Istituto di Farmacologia Traslazionale (IFT), Consiglio Nazionale delle Ricerche, Via Ugo La Malfa, 153, 90146, Palermo, Italy.
| | - Doriana Lo Piparo
- Istituto per la Ricerca e l'Innovazione Biomedica (IRIB), Consiglio Nazionale delle Ricerche, Palermo, Italy
| | - Claudia D'Anna
- Istituto di Farmacologia Traslazionale (IFT), Consiglio Nazionale delle Ricerche, Via Ugo La Malfa, 153, 90146, Palermo, Italy
| | - Simona Taverna
- Istituto di Farmacologia Traslazionale (IFT), Consiglio Nazionale delle Ricerche, Via Ugo La Malfa, 153, 90146, Palermo, Italy
| | - Valentina Lazzara
- Dipartimento Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza "G. D'Alessandro" (PROMISE), Università degli Studi di Palermo, Palermo, Italy
| | - Paola Pinto
- Dipartimento Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza "G. D'Alessandro" (PROMISE), Università degli Studi di Palermo, Palermo, Italy
| | - Francesco Sortino
- Istituto Nazionale di Geofisica e Vulcanologia (INGV), Palermo, Italy
| | - Elisabetta Pace
- Istituto di Farmacologia Traslazionale (IFT), Consiglio Nazionale delle Ricerche, Via Ugo La Malfa, 153, 90146, Palermo, Italy.
| |
Collapse
|
3
|
Pace E, Cerveri I, Lacedonia D, Paone G, Sanduzzi Zamparelli A, Sorbo R, Allegretti M, Lanata L, Scaglione F. Clinical Efficacy of Carbocysteine in COPD: Beyond the Mucolytic Action. Pharmaceutics 2022; 14:pharmaceutics14061261. [PMID: 35745833 PMCID: PMC9227620 DOI: 10.3390/pharmaceutics14061261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/31/2022] [Accepted: 06/06/2022] [Indexed: 12/14/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a heterogeneous disease with a versatile and complicated profile, being the fourth most common single cause of death worldwide. Several research groups have been trying to identify possible therapeutic approaches to treat COPD, such as the use of mucoactive drugs, which include carbocysteine. However, their role in the treatment of patients suffering from COPD remains controversial due to COPD's multifaceted profile. In the present review, 72 articles, published in peer-reviewed journals with high impact factors, are analyzed in order to provide significant insight and increase the knowledge about COPD considering the important contribution of carbocysteine in reducing exacerbations via multiple mechanisms. Carbocysteine is in fact able to modulate mucins and ciliary functions, and to counteract viral and bacterial infections as well as oxidative stress, offering cytoprotective effects. Furthermore, carbocysteine improves steroid responsiveness and exerts anti-inflammatory activity. This analysis demonstrates that the use of carbocysteine in COPD patients represents a well-tolerated treatment with a favorable safety profile, and might contribute to a better quality of life for patients suffering from this serious illness.
Collapse
Affiliation(s)
- Elisabetta Pace
- Institute of Translational Pharmacology (IFT), National Research Council, Via Ugo la Malfa, 153, 90146 Palermo, Italy;
| | - Isa Cerveri
- Department of Internal Medicine and Medical Therapy, University of Pavia, 27100 Pavia, Italy;
| | - Donato Lacedonia
- Institute of Respiratory Diseases, Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy;
| | - Gregorino Paone
- Department of Cardiovascular and Respiratory Sciences, Sapienza University of Rome, 00185 Rome, Italy;
| | - Alessandro Sanduzzi Zamparelli
- UOC Pneumotisiologia, Scuola di Specializzazione in Malattie Respiratorie, Università degli Studi di Napoli Federico II A.O.R.N. Monaldi-Cotugno-CTO Piazzale Ettore Ruggieri, 80138 Napoli, Italy;
| | - Rossella Sorbo
- Dompé Farmaceutici SpA, 20122 Milan, Italy; (R.S.); (M.A.); (L.L.)
| | | | - Luigi Lanata
- Dompé Farmaceutici SpA, 20122 Milan, Italy; (R.S.); (M.A.); (L.L.)
| | - Francesco Scaglione
- Department of Oncology and Onco-Hematology, University of Milan, 20122 Milan, Italy
- Correspondence:
| |
Collapse
|
4
|
High Mobility Group Box 1: Biological Functions and Relevance in Oxidative Stress Related Chronic Diseases. Cells 2022; 11:cells11050849. [PMID: 35269471 PMCID: PMC8909428 DOI: 10.3390/cells11050849] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 02/03/2022] [Accepted: 02/26/2022] [Indexed: 01/27/2023] Open
Abstract
In the early 1970s, a group of non-histone nuclear proteins with high electrophoretic mobility was discovered and named high-mobility group (HMG) proteins. High-mobility group box 1 (HMGB1) is the most studied HMG protein that detects and coordinates cellular stress response. The biological function of HMGB1 depends on its subcellular localization and expression. It plays a critical role in the nucleus and cytoplasm as DNA chaperone, chromosome gatekeeper, autophagy maintainer, and protector from apoptotic cell death. HMGB1 also functions as an extracellular alarmin acting as a damage-associated molecular pattern molecule (DAMP). Recent findings describe HMGB1 as a sophisticated signal of danger, with a pleiotropic function, which is useful as a clinical biomarker for several disorders. HMGB1 has emerged as a mediator in acute and chronic inflammation. Furthermore, HMGB1 targeting can induce beneficial effects on oxidative stress related diseases. This review focus on HMGB1 redox status, localization, mechanisms of release, binding with receptors, and its activities in different oxidative stress-related chronic diseases. Since a growing number of reports show the key role of HMGB1 in socially relevant pathological conditions, to our knowledge, for the first time, here we analyze the scientific literature, evaluating the number of publications focusing on HMGB1 in humans and animal models, per year, from 2006 to 2021 and the number of records published, yearly, per disease and category (studies on humans and animal models).
Collapse
|
5
|
Jiang H, Jiang Y, Xu Y, Yuan D, Li Y. Bronchial epithelial SIRT1 deficiency exacerbates cigarette smoke induced emphysema in mice through the FOXO3/PINK1 pathway. Exp Lung Res 2022:1-16. [PMID: 35132913 DOI: 10.1080/01902148.2022.2037169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/17/2022] [Accepted: 01/29/2022] [Indexed: 11/04/2022]
Abstract
Purpose: Cellular senescence and mitochondrial fragmentation are thought to be crucial components of the cigarette smoke(CS)-induced responses that contribute to the chronic obstructive pulmonary disease (COPD) development as a result of accelerated premature aging of the lung. Although there have been a few reports on the role of sirtuin 1(SIRT1) in mitochondrial homeostasis, senescence and inflammation, whether SIRT1/FOXO3/PINK1 signaling mediated mitophagy ameliorates cellular senescence in COPD is still unclear. This study aimed to ascertain whether SIRT1 regulates cellular senescence via FOXO3/PINK1-mediated mitophagy in COPD. Methods: To investigate the effect of CS exposure and SIRT1 deficiency on mitophagy and senescence in the lung, a SIRT1 knockout(KO) mouse model was used. Airway resistance, cellular senescence mitochondrial injury, mitophagy, cellular architecture and protein expression levels in lung tissues, from SIRT1 KO and wild-type(WT) COPD model mice exposed to CS for 6 months were examined by western blotting, histochemistry, immunofluorescence and transmission electron microscopy(TEM). Results: In CS exposed mice, SIRT1 deficiency exacerbated airway resistance and cellular senescence, increased FOXO3 acetylation and decreased PINK1 protein levels and attenuated mitophagy. Mechanistically, the damaging effect of SIRT1 deficiency on lung tissue was attributed to increased FOXO3 acetylation and decreased PINK1 levels, and attenuated mitophagy. In vitro, mitochondrial damage and cellular sensitivity in response to CS exposure were more severe in control cells than in cells treated with aSIRT1 activator. SIRT1 activation SIRT1 activation decreased FOXO3 acetylation and increased the protein levels of PINK1 and enhanced mitophagy. Conclusion: These results demonstrated that the detrimental effects of SIRT1 deficiency on cell senescence associated with insufficient mitophagy, and involved the FOXO3/PINK1 signaling pathway.
Collapse
Affiliation(s)
- Hui Jiang
- Department of Clinical Medicine, Medical College of Soochow University, Suzhou, Jiangsu, China
- Department of Internal Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yaona Jiang
- Department of Internal Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
- Graduate Department, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yuanri Xu
- Department of Internal Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
- Graduate Department, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Dong Yuan
- Department of Internal Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yaqing Li
- Department of Internal Medicine, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, China
| |
Collapse
|
6
|
Cipollina C, Bruno A, Fasola S, Cristaldi M, Patella B, Inguanta R, Vilasi A, Aiello G, La Grutta S, Torino C, Pace E. Cellular and Molecular Signatures of Oxidative Stress in Bronchial Epithelial Cell Models Injured by Cigarette Smoke Extract. Int J Mol Sci 2022; 23:1770. [PMID: 35163691 PMCID: PMC8836577 DOI: 10.3390/ijms23031770] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 02/06/2023] Open
Abstract
Exposure of the airways epithelium to environmental insults, including cigarette smoke, results in increased oxidative stress due to unbalance between oxidants and antioxidants in favor of oxidants. Oxidative stress is a feature of inflammation and promotes the progression of chronic lung diseases, including Chronic Obstructive Pulmonary Disease (COPD). Increased oxidative stress leads to exhaustion of antioxidant defenses, alterations in autophagy/mitophagy and cell survival regulatory mechanisms, thus promoting cell senescence. All these events are amplified by the increase of inflammation driven by oxidative stress. Several models of bronchial epithelial cells are used to study the molecular mechanisms and the cellular functions altered by cigarette smoke extract (CSE) exposure, and to test the efficacy of molecules with antioxidant properties. This review offers a comprehensive synthesis of human in-vitro and ex-vivo studies published from 2011 to 2021 describing the molecular and cellular mechanisms evoked by CSE exposure in bronchial epithelial cells, the most used experimental models and the mechanisms of action of cellular antioxidants systems as well as natural and synthetic antioxidant compounds.
Collapse
Affiliation(s)
- Chiara Cipollina
- Ri.MED Foundation, 90133 Palermo, Italy; (C.C.); (M.C.)
- Institute for Biomedical Research and Innovation, National Research Council, 90146 Palermo, Italy; (A.B.); (S.F.); (S.L.G.); (E.P.)
| | - Andreina Bruno
- Institute for Biomedical Research and Innovation, National Research Council, 90146 Palermo, Italy; (A.B.); (S.F.); (S.L.G.); (E.P.)
- Institute of Translational Pharmacology, National Research Council, 90146 Palermo, Italy
| | - Salvatore Fasola
- Institute for Biomedical Research and Innovation, National Research Council, 90146 Palermo, Italy; (A.B.); (S.F.); (S.L.G.); (E.P.)
- Institute of Translational Pharmacology, National Research Council, 90146 Palermo, Italy
| | | | - Bernardo Patella
- Department of Engineering, University of Palermo, 90128 Palermo, Italy; (B.P.); (R.I.); (G.A.)
| | - Rosalinda Inguanta
- Department of Engineering, University of Palermo, 90128 Palermo, Italy; (B.P.); (R.I.); (G.A.)
| | - Antonio Vilasi
- Institute of Clinical Physiology, National Research Council, 89124 Reggio Calabria, Italy;
| | - Giuseppe Aiello
- Department of Engineering, University of Palermo, 90128 Palermo, Italy; (B.P.); (R.I.); (G.A.)
| | - Stefania La Grutta
- Institute for Biomedical Research and Innovation, National Research Council, 90146 Palermo, Italy; (A.B.); (S.F.); (S.L.G.); (E.P.)
- Institute of Translational Pharmacology, National Research Council, 90146 Palermo, Italy
| | - Claudia Torino
- Institute of Clinical Physiology, National Research Council, 89124 Reggio Calabria, Italy;
| | - Elisabetta Pace
- Institute for Biomedical Research and Innovation, National Research Council, 90146 Palermo, Italy; (A.B.); (S.F.); (S.L.G.); (E.P.)
- Institute of Translational Pharmacology, National Research Council, 90146 Palermo, Italy
| |
Collapse
|
7
|
Cigarette smoke upregulates Notch-1 signaling pathway and promotes lung adenocarcinoma progression. Toxicol Lett 2021; 355:31-40. [PMID: 34748854 DOI: 10.1016/j.toxlet.2021.11.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 10/04/2021] [Accepted: 11/02/2021] [Indexed: 12/29/2022]
Abstract
Notch-1 pathway plays an important role in lung carcinoma, stem cell regulation, cellular communication, growth and differentiation. Cigarette smoke is involved in the regulation of Notch signaling. However, current data regarding the impact of cigarette smoke on the Notch pathway in lung cancer progression are limited. The present study aimed to explore whether cigarette smoke exposure altered Notch-1 pathway in ex-vivo (surgical samples of lung parenchyma from non-smoker and smoker patients with lung adenocarcinoma) and in vitro (adenocarcinoma A549 cell line) approaches. The expression of Notch-1, Jagged-1 and CD133 in surgical samples was evaluated by immunohistochemistry. A549 were exposed to cigarette smoke extracts (2.5% and 5% CSE for 6, 24 and 48 h) and the expression of Notch-1, Jagged-1 and Hes-1 was evaluated by Real-Time PCR and Western Blot (nuclear fractions). Expression and localization of Notch-1, Hes-1, CD133 and ABCG2 were assessed by immunofluorescence. The expression of survivin and Ki-67 was assessed by flow cytometry following CSE exposure and inhibition of Notch-1 signaling. Smokers lung parenchyma exhibited higher expression of Notch-1. CSE exposure increased Notch-1 and Hes-1 gene and nuclear protein expression in A549. Immunofluorescence confirmed higher expression of nuclear Hes-1 in CSE-stimulated A549 cells. CSE increased both survivin and Ki-67 expression and this effect was reverted by inhibition of the Notch-1 pathway. In conclusion, these data show that cigarette smoke may promote adenocarcinoma progression by activating the Notch-1 pathway thus supporting its role as hallmark of lung cancer progression and as a new target for lung cancer treatment.
Collapse
|
8
|
Sano CD, D'Anna C, Scurria A, Lino C, Pagliaro M, Ciriminna R, Pace E. Mesoporous silica particles functionalized with newly extracted fish oil (Omeg@Silica) inhibit lung cancer cell growth. Nanomedicine (Lond) 2021; 16:2061-2074. [PMID: 34533057 DOI: 10.2217/nnm-2021-0202] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Aim: To assess whether Omeg@Silica microparticles - fish oil from anchovy fillet leftovers (AnchoisOil) encapsulated within mesoporous silica particles - are effective in promoting antitumor effects in lung cancer cells. Methods: Three human non-small-cell lung cancer cell lines (A549, Colo 699 and SK-MES-1) were used. Cells were treated with AnchoisOil dispersed in ethanol (10 and 15 μg/ml) or encapsulated in silica and further formulated in aqueous ethanol. Cell cycle, reactive oxygen species, mitochondrial stress and long-term proliferation were assessed. Results & conclusion: Omeg@Silica microparticles were more effective than fish oil in increasing reactive oxygen species and mitochondrial damage, and in altering the cell cycle and reducing cell proliferation, in lung cancer cells. These in vitro antitumor effects of Omeg@Silica support its investigation in lung cancer therapy.
Collapse
Affiliation(s)
- Caterina Di Sano
- Istituto per la Ricerca e l'Innovazione Biomedica, CNR, Via U. La Malfa 153, Palermo, 90146, Italy
| | - Claudia D'Anna
- Istituto per la Ricerca e l'Innovazione Biomedica, CNR, Via U. La Malfa 153, Palermo, 90146, Italy
| | - Antonino Scurria
- Istituto per lo Studio dei Materiali Nanostrutturati, CNR, Via U. La Malfa 153, Palermo, 90146, Italy
| | - Claudia Lino
- Istituto per lo Studio dei Materiali Nanostrutturati, CNR, Via U. La Malfa 153, Palermo, 90146, Italy
| | - Mario Pagliaro
- Istituto per lo Studio dei Materiali Nanostrutturati, CNR, Via U. La Malfa 153, Palermo, 90146, Italy
| | - Rosaria Ciriminna
- Istituto per lo Studio dei Materiali Nanostrutturati, CNR, Via U. La Malfa 153, Palermo, 90146, Italy
| | - Elisabetta Pace
- Istituto per la Ricerca e l'Innovazione Biomedica, CNR, Via U. La Malfa 153, Palermo, 90146, Italy
| |
Collapse
|
9
|
Steventon GB, Mitchell SC. S-Carboxymethyl-l-cysteine: a multiple dosing study using pharmacokinetic modelling. Xenobiotica 2021; 51:865-870. [PMID: 33974496 DOI: 10.1080/00498254.2021.1928330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
S-Carboxymethyl-l-cysteine is a mucolytic agent used as adjunctive therapy in the treatment of respiratory disorders. Various mechanisms of action have been proposed but few studies have attempted to link the required in vitro concentrations with those achieved actually in vivo during clinical therapy.The data from several published studies has been re-analysed by WinNonlin using non-compartmental analysis modelling, Phoenix modelling and Classic PK compartmental modelling for both single (500-1500 mg) and multiple oral administration of the drug.Multiple dose modelling indicated maximum peak concentrations (Cmax) ranging from 1.29 to 11.22 μg/ml and those at steady state (Css(av)) from 1.30 to 8.40 μg/ml. For the standard therapeutic regimen of 3 × 750 mg (2250 mg/day) these values were 1.29-5.22 μg/ml (Cmax) and 1.30-3.50 μg/ml (Css(av)). No accumulation was observed.Hence, only the pharmacodynamic studies reporting significant effects below c.10 μg/ml were likely to occur in vivo and these were mainly gene-related mechanisms. The majority of events, although demonstrable in vitro, required levels much greater than possible to achieve in the clinical situation.Such unappreciated disregard for in vitro-in vivo 'concentration matching' may lead to erroneous conclusions regarding mechanisms of action for many drugs as well as for S-carboxymethyl-l-cysteine.
Collapse
Affiliation(s)
| | - Stephen C Mitchell
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| |
Collapse
|
10
|
Di Vincenzo S, Pace E. Exploring the Influence of Cigarette Smoke on TROP2 Expression in Chronic Obstructive Pulmonary Disease. Am J Respir Cell Mol Biol 2021; 64:655-656. [PMID: 33784217 PMCID: PMC8456884 DOI: 10.1165/rcmb.2021-0107ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Serena Di Vincenzo
- Institute for Biomedical Research and Innovation-National Research Council Palermo, Italy
| | - Elisabetta Pace
- Institute for Biomedical Research and Innovation-National Research Council Palermo, Italy
| |
Collapse
|
11
|
Cigarette smoke extract reduces FOXO3a promoting tumor progression and cell migration in lung cancer. Toxicology 2021; 454:152751. [PMID: 33737139 DOI: 10.1016/j.tox.2021.152751] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/08/2021] [Accepted: 03/12/2021] [Indexed: 12/31/2022]
Abstract
Lung cancer is the leading cause of cancer death worldwide, and the carcinogens in tobacco smoke play a role in its progression and metastasis. The related molecular events are largely unknown. FOXO3a is a transcription factor considered a tumor suppressor. Its inhibition leads to cell transformation, tumor progression and metastasis. The aim of this study was to investigate, in different types of lung cancer cell lines (A549, COLO 699 N, SK-MES-1), the effects of cigarette smoke on mitochondrial status and cell metabolism and on key pathways involved in tumor progression and cell migration, looking at the role of FOXO3a in these mechanisms. The different lung cancer cells were exposed to cigarette smoke extract (CSE) and TGF-β1. Reactive oxygen species (ROS), mitochondrial superoxide, intracellular ATP, extracellular lactate, FOXO3a, p21, survivin, epithelial-to-mesenchymal transition (EMT) markers (E-cadherin, SNAIL1), MMP-9 and cellular migration were assessed by flow-cytometry, fluorimetry, western blot analysis, Real-Time PCR and scratch test. Our results showed that exposure to CSE: (i) increased ROS, mitochondrial superoxide, lactate release while reducing intracellular ATP; (ii) decreased FOXO3a and increased survivin and p21 in the cytoplasm; (iii) decreased E-cadherin, increased SNAIL1 and MMP-9 and promoted cell migration like TGF-β1 did. These effects could be partly explained by downregulation of FOXO3a, as demonstrated by silencing experiments. These data suggest that cigarette smoke induces oxidative stress and mitochondrial damage leading to metabolic reprogramming associated with increased glycolytic flux. This is accompanied with a downregulation of FOXO3a contributing to EMT processes and cell migration therefore promoting tumor progression.
Collapse
|
12
|
Yuan D, Liu Y, Li M, Zhou H, Cao L, Zhang X, Li Y. Senescence associated long non-coding RNA 1 regulates cigarette smoke-induced senescence of type II alveolar epithelial cells through sirtuin-1 signaling. J Int Med Res 2021; 49:300060520986049. [PMID: 33535826 PMCID: PMC7869169 DOI: 10.1177/0300060520986049] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE The primary aim of our study was to explore the mechanisms through which long non-coding RNA (lncRNA)-mediated sirtuin-1 (SIRT1) signaling regulates type II alveolar epithelial cell (AECII) senescence induced by a cigarette smoke-media suspension (CSM). METHODS Pharmacological SIRT1 activation was induced using SRT2104 and senescence-associated lncRNA 1 (SAL-RNA1) was overexpressed. The expression of SIRT1, FOXO3a, p53, p21, MMP-9, and TIMP-1 in different groups was detected by qRT-PCR and Western blotting; the activity of SA-β gal was detected by staining; the binding of SIRT1 to FOXO3a and p53 gene transcription promoters was detected by Chip. RESULTS We found that CSM increased AECII senescence, while SAL-RNA1 overexpression and SIRT1 activation significantly decreased levels of AECII senescence induced by CSM. Using chromatin immunoprecipitation, we found that SIRT1 bound differentially to transcriptional complexes on the FOXO3a and p53 promoters. CONCLUSION Our results suggested that lncRNA-SAL1-mediated SIRT1 signaling reduces senescence of AECIIs induced by CSM. These findings suggest a new therapeutic target to limit the irreversible apoptosis of lung epithelial cells in COPD patients.
Collapse
Affiliation(s)
- Dong Yuan
- Department of Respiratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College Hangzhou, Zhejiang, P.R. China.,Graduate Department, Bengbu Medical College, Bengbu, Anhui, P. R. China
| | - Yuanshun Liu
- Department of Respiratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College Hangzhou, Zhejiang, P.R. China
| | - Mengyu Li
- Department of Respiratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College Hangzhou, Zhejiang, P.R. China.,Graduate Department, Bengbu Medical College, Bengbu, Anhui, P. R. China
| | - Hongbin Zhou
- Department of Respiratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College Hangzhou, Zhejiang, P.R. China
| | - Liming Cao
- Department of Respiratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College Hangzhou, Zhejiang, P.R. China
| | - Xiaoqin Zhang
- Department of Respiratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College Hangzhou, Zhejiang, P.R. China
| | - Yaqing Li
- Department of Respiratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College Hangzhou, Zhejiang, P.R. China.,Department of Internal Medicine, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, P. R. China
| |
Collapse
|
13
|
Wu X, Huang Q, Javed R, Zhong J, Gao H, Liang H. Effect of tobacco smoking on the epigenetic age of human respiratory organs. Clin Epigenetics 2019; 11:183. [PMID: 31801625 PMCID: PMC6894291 DOI: 10.1186/s13148-019-0777-z] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 11/12/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Smoking leads to the aging of organs. However, no studies have been conducted to quantify the effect of smoking on the aging of respiratory organs and the aging-reversing ability of smoking cessation. RESULTS We collected genome-wide methylation datasets of buccal cells, airway cells, esophagus tissue, and lung tissue from non-smokers, smokers, and ex-smokers. We used the "epigenetic clock" method to quantify the epigenetic age acceleration in the four organs. The statistical analyses showed the following: (1) Smoking increased the epigenetic age of airway cells by an average of 4.9 years and lung tissue by 4.3 years. (2) After smoking ceased, the epigenetic age acceleration in airway cells (but not in lung tissue) slowed to a level that non-smokers had. (3) The epigenetic age acceleration in airway cells and lung tissue showed no gender difference. CONCLUSIONS Smoking can accelerate the epigenetic age of human respiratory organs, but the effect varies among organs and can be reversed by smoking cessation. Our study provides a powerful incentive to reduce tobacco consumption autonomously.
Collapse
Affiliation(s)
- Xiaohui Wu
- Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 9 Jinsui Road, Guangzhou, 510623, Guangdong, China.,Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China.,Guangdong Technology and Engineering Research Center for Molecular Diagnostics of Human Genetic Diseases, Guangzhou, Guangdong, China.,Guangdong Province Key Laboratory of Psychiatric Disorders, Guangzhou, Guangdong, China
| | - Qingsheng Huang
- Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 9 Jinsui Road, Guangzhou, 510623, Guangdong, China
| | - Ruheena Javed
- Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 9 Jinsui Road, Guangzhou, 510623, Guangdong, China
| | - Jiayong Zhong
- Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 9 Jinsui Road, Guangzhou, 510623, Guangdong, China
| | - Huan Gao
- Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 9 Jinsui Road, Guangzhou, 510623, Guangdong, China
| | - Huiying Liang
- Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 9 Jinsui Road, Guangzhou, 510623, Guangdong, China.
| |
Collapse
|
14
|
Zong D, Liu X, Li J, Ouyang R, Chen P. The role of cigarette smoke-induced epigenetic alterations in inflammation. Epigenetics Chromatin 2019; 12:65. [PMID: 31711545 PMCID: PMC6844059 DOI: 10.1186/s13072-019-0311-8] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 10/23/2019] [Indexed: 12/19/2022] Open
Abstract
Background Exposure to cigarette smoke (CS) is a major threat to human health worldwide. It is well established that smoking increases the risk of respiratory diseases, cardiovascular diseases and different forms of cancer, including lung, liver, and colon. CS-triggered inflammation is considered to play a central role in various pathologies by a mechanism that stimulates the release of pro-inflammatory cytokines. During this process, epigenetic alterations are known to play important roles in the specificity and duration of gene transcription. Main text Epigenetic alterations include three major modifications: DNA modifications via methylation; various posttranslational modifications of histones, namely, methylation, acetylation, phosphorylation, and ubiquitination; and non-coding RNA sequences. These modifications work in concert to regulate gene transcription in a heritable fashion. The enzymes that regulate these epigenetic modifications can be activated by smoking, which further mediates the expression of multiple inflammatory genes. In this review, we summarize the current knowledge on the epigenetic alterations triggered by CS and assess how such alterations may affect smoking-mediated inflammatory responses. Conclusion The recognition of the molecular mechanisms of the epigenetic changes in abnormal inflammation is expected to contribute to the understanding of the pathophysiology of CS-related diseases such that novel epigenetic therapies may be identified in the near future.
Collapse
Affiliation(s)
- Dandan Zong
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.,Research Unit of Respiratory Disease, Central South University, Changsha, 410011, Hunan, China
| | - Xiangming Liu
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.,Research Unit of Respiratory Disease, Central South University, Changsha, 410011, Hunan, China
| | - Jinhua Li
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.,Research Unit of Respiratory Disease, Central South University, Changsha, 410011, Hunan, China
| | - Ruoyun Ouyang
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.,Research Unit of Respiratory Disease, Central South University, Changsha, 410011, Hunan, China
| | - Ping Chen
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China. .,Research Unit of Respiratory Disease, Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
15
|
Song Y, Wang W, Xie Y, Xiang B, Huang X, Guan W, Zheng J. Carbocisteine inhibits the expression of Muc5b in COPD mouse model. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:3259-3268. [PMID: 31571828 PMCID: PMC6754527 DOI: 10.2147/dddt.s198874] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 07/12/2019] [Indexed: 12/27/2022]
Abstract
Background Cigarette smoke (CS) results in chronic mucus hypersecretion and airway inflammation, contributing to COPD pathogenesis. Mucin 5B (MUC5B) and mucin 5 AC (MUC5AC) are major mucins implicated in COPD pathogenesis. Carbocisteine can reduce mucus viscosity and elasticity. Although carbocisteine decreased human elastase-induced MUC5AC expression in vitro and reduced MUC5AC expression that alleviated bacteria adhesion and improved mucus clearance in vivo, the roles of carbocisteine in inducing MUC5B expression in COPD remain unclear. Methods To investigate the Muc5b/Muc5ac ratio and the gene and protein levels of Muc5b in COPD and carbocisteine intervention models. C57B6J mice were used to develop COPD model by instilling intratracheally with lipopolysaccharide on days 1 and 14 and were exposed to CS for 2 hr twice a day for 12 weeks. Low and high doses of carbocisteine 112.5 and 225 mg/kg/d, respectively, given by gavage administration were applied for the treatment in COPD models for the same duration, and carboxymethylcellulose was used as control. Carbocisteine significantly attenuated inflammation in bronchoalveolar lavage fluid and pulmonary tissue, improved pulmonary function and protected against emphysema. Results High-dose carbocisteine significantly decreased the overproduction of Muc5b (P<0.01) and Muc5ac (P<0.001), and restored Muc5b/Muc5ac ratio in COPD model group (P<0.001). Moreover, the Muc5b/Muc5ac ratio negatively correlated with pro-inflammatory cytokines such as IL-6 and keratinocyte-derived cytokine, mean linear intercept, functional residual capacity and airway resistance, but positively correlated with dynamic compliance. Conclusions These findings suggest that carbocisteine attenuated Muc5b and Muc5ac secretion and restored Muc5b protein levels, which may improve mucus clearance in COPD.
Collapse
Affiliation(s)
- Yan Song
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, People's Republic of China
| | - Wei Wang
- Drug Research Institute of Guangzhou BaiYunShan Pharmaceutical General Factory, Guangzhou, 510515, People's Republic of China
| | - Yanqing Xie
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, People's Republic of China
| | - Bin Xiang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, People's Republic of China
| | - Xuan Huang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, People's Republic of China
| | - Weijie Guan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, People's Republic of China
| | - Jinping Zheng
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, People's Republic of China
| |
Collapse
|
16
|
Pace E, Di Vincenzo S, Di Salvo E, Genovese S, Dino P, Sangiorgi C, Ferraro M, Gangemi S. MiR-21 upregulation increases IL-8 expression and tumorigenesis program in airway epithelial cells exposed to cigarette smoke. J Cell Physiol 2019; 234:22183-22194. [PMID: 31054160 DOI: 10.1002/jcp.28786] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 04/17/2019] [Accepted: 04/22/2019] [Indexed: 12/27/2022]
Abstract
BACKGROUND Cigarette smoke exposure, increasing Toll-like receptor 4 (TLR4) and reactive oxygen species (ROS), promotes inflammatory responses in airway epithelial cells. Chronic inflammation, microRNA (miRNA), and oxidative stress are associated with cancer development. AIMS The present study was aimed to explore whether cigarette smoke exposure, altering miR-21 expression, promoted inflammatory responses and tumorigenesis processes in airway epithelial cells. METHODS Airway normal and cancer epithelial cells (16HBE and A549) were exposed to cigarette smoke extracts (CSE) or with/without agomiR-21, and then it was assessed: a) miR-21 expression; b) signal transducer and activator of transcription 3 (STAT3) nuclear protein expression and ERK1/2 activation; c) IL-8 gene expression and protein release. An antagonist of TLR4 (CLI-095) and the antioxidant flavonoid, apigenin, were also included to evaluate miR-21 expression in CSE exposed cells. RESULTS It was demonstrated that: a) A549 cells constitutively expressed higher levels of miR-21 and IL-8; b) CSE increased STAT3 nuclear expression in 16HBE; c) in both cell lines, CSE and agomiR-21 increased: miR-21 expression; ERK1/2 activation and IL-8 gene expression and protein release; d) TLR4 inhibition counteracted the effects of CSE on miR-21 in A549; e) apigenin reduced miR-21 and IL-8 gene expression in both cell lines. CONCLUSIONS Data herein provided identified for the first time new mechanisms supporting the crucial role of cigarette smoke-induced miR-21 expression in the amplification of inflammatory responses and in tumorigenesis processes within the airways.
Collapse
Affiliation(s)
- Elisabetta Pace
- Institute of Biomedicine and Molecular Immunology "A. Monroy" (IBIM), National Research Council of Italy (CNR), Palermo, Italy
| | - Serena Di Vincenzo
- Institute of Biomedicine and Molecular Immunology "A. Monroy" (IBIM), National Research Council of Italy (CNR), Palermo, Italy
| | - Eleonora Di Salvo
- Institute of Biological Resources and Marine Biotechnology (IRBIM), CNR of Messina, Messina, Italy.,Institute of Applied Sciences & Intelligent Systems "Eduardo Caianiello" (ISASI)-CNR of Messina, Messina, Italy
| | - Sara Genovese
- Institute for Marine and Coastal Environment (IAMC-CNR), National Research Council of Italy (CNR), Messina, Italy
| | - Paola Dino
- Institute of Biomedicine and Molecular Immunology "A. Monroy" (IBIM), National Research Council of Italy (CNR), Palermo, Italy
| | - Claudia Sangiorgi
- Institute of Biomedicine and Molecular Immunology "A. Monroy" (IBIM), National Research Council of Italy (CNR), Palermo, Italy
| | - Maria Ferraro
- Institute of Biomedicine and Molecular Immunology "A. Monroy" (IBIM), National Research Council of Italy (CNR), Palermo, Italy
| | - Sebastiano Gangemi
- Department of Clinical and Experimental Medicine, School and Division of Allergy and Clinical Immunology, University of Messina, Messina, Italy
| |
Collapse
|
17
|
Ferraro M, Di Vincenzo S, Dino P, Bucchieri S, Cipollina C, Gjomarkaj M, Pace E. Budesonide, Aclidinium and Formoterol in combination limit inflammaging processes in bronchial epithelial cells exposed to cigarette smoke. Exp Gerontol 2019; 118:78-87. [PMID: 30659954 DOI: 10.1016/j.exger.2019.01.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 11/21/2018] [Accepted: 01/14/2019] [Indexed: 12/31/2022]
Abstract
Inflammation and cellular senescence (also called inflammaging) are involved in the pathogenesis of premature lung aging, a key driver of chronic obstructive pulmonary disease (COPD). Downregulation of histone deacetylases and FoxO3 expression, activation of the ERK 1/2 pathway and IL-8 increase are hallmarks of lung inflammaging. The effects of Budesonide (BUD), Aclidinium (ACL) and Formoterol (FO) on lung inflammaging are unknown. This study was aimed to assess the effects of BUD, ACL and FO in bronchial epithelial cells exposed to cigarette smoke extract (CSE) by evaluating: a) Expression of TLR4 and survivin and LPS binding by flow cytometry; b) expression of HDAC2, HDAC3, SIRT1 and FoxO3 and activation of the ERK 1/2 pathway by western blot; c) IL-8 mRNA levels and release by Real Time-PCR and ELISA, respectively. Reported results show that CSE increased TLR4 and survivin, LPS binding, ERK 1/2 activation, IL-8 release and mRNA levels but decreased SIRT1, HDAC2, HDAC3 and FoxO3 nuclear expression. Combined therapy with BUD, ACL and FO counteracted the effects of CSE on LPS binding, FoxO3 nuclear expression, ERK 1/2 activation, survivin and IL-8 release and mRNA levels. These findings suggest a new role of combination therapy with BUD, ACL and FO in counteracting inflammaging processes induced by cigarette smoke exposure.
Collapse
Affiliation(s)
- M Ferraro
- Istituto di Biomedicina e Immunologia Molecolare, Consiglio Nazionale delle Ricerche, Palermo, Italy
| | - S Di Vincenzo
- Istituto di Biomedicina e Immunologia Molecolare, Consiglio Nazionale delle Ricerche, Palermo, Italy
| | - P Dino
- Istituto di Biomedicina e Immunologia Molecolare, Consiglio Nazionale delle Ricerche, Palermo, Italy
| | - S Bucchieri
- Istituto di Biomedicina e Immunologia Molecolare, Consiglio Nazionale delle Ricerche, Palermo, Italy
| | - C Cipollina
- Istituto di Biomedicina e Immunologia Molecolare, Consiglio Nazionale delle Ricerche, Palermo, Italy; Fondazione Ri.MED, Palermo, Italy
| | - M Gjomarkaj
- Istituto di Biomedicina e Immunologia Molecolare, Consiglio Nazionale delle Ricerche, Palermo, Italy
| | - E Pace
- Istituto di Biomedicina e Immunologia Molecolare, Consiglio Nazionale delle Ricerche, Palermo, Italy.
| |
Collapse
|
18
|
Di Vincenzo S, Heijink IH, Noordhoek JA, Cipollina C, Siena L, Bruno A, Ferraro M, Postma DS, Gjomarkaj M, Pace E. SIRT1/FoxO3 axis alteration leads to aberrant immune responses in bronchial epithelial cells. J Cell Mol Med 2018; 22:2272-2282. [PMID: 29411515 PMCID: PMC5867095 DOI: 10.1111/jcmm.13509] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 11/25/2017] [Indexed: 12/13/2022] Open
Abstract
Inflammation and ageing are intertwined in chronic obstructive pulmonary disease (COPD). The histone deacetylase SIRT1 and the related activation of FoxO3 protect from ageing and regulate inflammation. The role of SIRT1/FoxO3 in COPD is largely unknown. This study evaluated whether cigarette smoke, by modulating the SIRT1/FoxO3 axis, affects airway epithelial pro-inflammatory responses. Human bronchial epithelial cells (16HBE) and primary bronchial epithelial cells (PBECs) from COPD patients and controls were treated with/without cigarette smoke extract (CSE), Sirtinol or FoxO3 siRNA. SIRT1, FoxO3 and NF-κB nuclear accumulation, SIRT1 deacetylase activity, IL-8 and CCL20 expression/release and the release of 12 cytokines, neutrophil and lymphocyte chemotaxis were assessed. In PBECs, the constitutive FoxO3 expression was lower in patients with COPD than in controls. Furthermore, CSE reduced FoxO3 expression only in PBECs from controls. In 16HBE, CSE decreased SIRT1 activity and nuclear expression, enhanced NF-κB binding to the IL-8 gene promoter thus increasing IL-8 expression, decreased CCL20 expression, increased the neutrophil chemotaxis and decreased lymphocyte chemotaxis. Similarly, SIRT1 inhibition reduced FoxO3 expression and increased nuclear NF-κB. FoxO3 siRNA treatment increased IL-8 and decreased CCL20 expression in 16HBE. In conclusion, CSE impairs the function of SIRT1/FoxO3 axis in bronchial epithelium, dysregulating NF-κB activity and inducing pro-inflammatory responses.
Collapse
Affiliation(s)
- Serena Di Vincenzo
- Istituto di Biomedicina e Immunologia Molecolare‐Consiglio Nazionale delle RicerchePalermoItaly
| | - Irene H. Heijink
- Department of Pathology and Medical BiologyUniversity Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| | - Jacobien A. Noordhoek
- Department of Pathology and Medical BiologyUniversity Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| | - Chiara Cipollina
- Istituto di Biomedicina e Immunologia Molecolare‐Consiglio Nazionale delle RicerchePalermoItaly
- Fondazione Ri.MEDPalermoItaly
| | - Liboria Siena
- Istituto di Biomedicina e Immunologia Molecolare‐Consiglio Nazionale delle RicerchePalermoItaly
| | - Andreina Bruno
- Istituto di Biomedicina e Immunologia Molecolare‐Consiglio Nazionale delle RicerchePalermoItaly
| | - Maria Ferraro
- Istituto di Biomedicina e Immunologia Molecolare‐Consiglio Nazionale delle RicerchePalermoItaly
| | - Dirkje S. Postma
- Department of Pathology and Medical BiologyUniversity Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| | - Mark Gjomarkaj
- Istituto di Biomedicina e Immunologia Molecolare‐Consiglio Nazionale delle RicerchePalermoItaly
| | - Elisabetta Pace
- Istituto di Biomedicina e Immunologia Molecolare‐Consiglio Nazionale delle RicerchePalermoItaly
| |
Collapse
|
19
|
Polyaspartamide-Based Nanoparticles Loaded with Fluticasone Propionate and the In Vitro Evaluation towards Cigarette Smoke Effects. NANOMATERIALS 2017; 7:nano7080222. [PMID: 28805713 PMCID: PMC5575704 DOI: 10.3390/nano7080222] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 08/04/2017] [Accepted: 08/10/2017] [Indexed: 12/18/2022]
Abstract
This paper describes the evaluation of polymeric nanoparticles (NPs) as a potential carrier for lung administration of fluticasone propionate (FP). The chosen polymeric material to produce NPs was a copolymer based on α,β-poly(N-2-hydroxyethyl)-d,l-aspartamide (PHEA) whose backbone was derivatised with different molecules, such as poly(lactic acid) (PLA) and polyethylenglycol (PEG). The chosen method to produce NPs from PHEA-PLA-PEG2000 was the method based on high-pressure homogenization and subsequent solvent evaporation by adding Pluronic F68 during the process and trehalose before lyophilisation. Obtained colloidal FP-loaded NPs showed a slightly negative surface charge and nanometric dimensions that are maintained after storage for one year at −20 °C and 5 °C. The FP loading was about 2.9 wt % and the drug was slowly released in simulated lung fluid. Moreover, the obtained NPs, containing the drug or not, were biocompatible and did not induce cell necrosis and cell apoptosis on bronchial epithelial cells (16-HBE). Further in vitro testing on cigarette smoke extract (CSE)-stimulated 16-HBE revealed that FP-loaded NPs were able to reduce the survivin expression, while either free FP or empty NPs were not able to significantly reduce this effect.
Collapse
|