1
|
Akaarir M, Nicolau MC, Cañellas F, Rubiño JA, Barceló P, Gamundí A, Martin-Reina A, Rial RV. The Disputable Costs of Sleeping. BIOLOGY 2025; 14:352. [PMID: 40282216 PMCID: PMC12024767 DOI: 10.3390/biology14040352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 12/04/2024] [Accepted: 12/12/2024] [Indexed: 04/29/2025]
Abstract
It is currently affirmed that sleep detracts from time for foraging, reproductive, and anti-predatory activities. In contrast, we show that the sleep-related reductions in food intake and reproductive activities may, in fact, be benefits. Furthermore, the present report shows that the optimal prey are the immature, weak, sick, and senescent animals and rarely the sleeping fit adults. Indeed, the reduced sleeping time observed in prey animals occurs, not because of an evolutionary antipredation pressure but because of the time-expensive foraging-related activities and the digestion of the high-cellulose content in the herbivores' diet, an activity that leaves reduced amounts of daily time for sleeping. We conclude that the need for sleep ranks lower than those of foraging, reproduction, and antipredation activities.
Collapse
Affiliation(s)
- Mourad Akaarir
- Balearic Islands Health Research Institute (IUNICS), Universitat de les Illes Balears, 07122 Palma, Spain; (M.A.); (M.C.N.); (P.B.); (A.G.); (A.M.-R.)
| | - M. Cristina Nicolau
- Balearic Islands Health Research Institute (IUNICS), Universitat de les Illes Balears, 07122 Palma, Spain; (M.A.); (M.C.N.); (P.B.); (A.G.); (A.M.-R.)
| | - Francesca Cañellas
- Balearic Islands Health Research Institute (IUNICS), Hospital Universitario Son Espases, Universitat de les Illes Balears, 07122 Palma, Spain; (F.C.)
| | - Jose A. Rubiño
- Balearic Islands Health Research Institute (IUNICS), Universitat de les Illes Balears, 07122 Palma, Spain; (M.A.); (M.C.N.); (P.B.); (A.G.); (A.M.-R.)
| | - Pere Barceló
- Balearic Islands Health Research Institute (IUNICS), Universitat de les Illes Balears, 07122 Palma, Spain; (M.A.); (M.C.N.); (P.B.); (A.G.); (A.M.-R.)
| | - Antonio Gamundí
- Balearic Islands Health Research Institute (IUNICS), Universitat de les Illes Balears, 07122 Palma, Spain; (M.A.); (M.C.N.); (P.B.); (A.G.); (A.M.-R.)
| | - Aida Martin-Reina
- Balearic Islands Health Research Institute (IUNICS), Universitat de les Illes Balears, 07122 Palma, Spain; (M.A.); (M.C.N.); (P.B.); (A.G.); (A.M.-R.)
| | - Rubén V. Rial
- Balearic Islands Health Research Institute (IUNICS), Universitat de les Illes Balears, 07122 Palma, Spain; (M.A.); (M.C.N.); (P.B.); (A.G.); (A.M.-R.)
| |
Collapse
|
2
|
Abstract
Liver diseases, including viral hepatitis, fatty liver, metabolic-associated fatty liver disease, liver cirrhosis, alcoholic liver disease, and liver neoplasms, are major global health challenges. Despite the continued development of new drugs and technologies, the prognosis of end-stage liver diseases, including advanced liver cirrhosis and liver neoplasms, remains poor. Follistatin-like protein 1 (FSTL1), an extracellular glycoprotein, is secreted by various cell types. It is a glycoprotein that belongs to the family of secreted proteins acidic and rich in cysteine (SPARC). It is also known as transforming growth factor-beta inducible TSC-36 and follistatin-related protein (FRP). FSTL1 plays a key role in cell survival, proliferation, differentiation, and migration, as well as the regulation of inflammation and immunity. Studies have demonstrated that FSTL1 significantly affects the occurrence and development of liver diseases. This article reviews the role and mechanism of FSLT1 in liver diseases.
Collapse
Affiliation(s)
- Chuansha Gu
- Xinxiang Key Laboratory of Tumor
Microenvironment and Immunotherapy, School of Laboratory Medicine, Xinxiang Medical
University, Xinxiang 453003, China
| | - Hua Xue
- The Third Affiliated Hospital of Xinxiang
Medical University, Xinxiang 453000, China
| | - Xiaoli Yang
- Xinxiang Key Laboratory of Tumor
Microenvironment and Immunotherapy, School of Laboratory Medicine, Xinxiang Medical
University, Xinxiang 453003, China
| | - Yu Nie
- School of Basic Medicine, Xinxiang Medical
University, Xinxiang 453003, China
| | - Xinlai Qian
- The Third Affiliated Hospital of Xinxiang
Medical University, Xinxiang 453000, China
| |
Collapse
|
3
|
Rochette L, Dogon G, Rigal E, Zeller M, Cottin Y, Vergely C. Growth differentiation factor 11: A proangiogenic drug as a potential antiaging regulating molecule. Arch Cardiovasc Dis 2023; 116:41-46. [PMID: 36572608 DOI: 10.1016/j.acvd.2022.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 12/23/2022]
Abstract
Organs and tissues are subjected to numerous alterations during aging, as a result of complex biochemical changes. Aging is certainly associated with the accumulation of "antiaging" and "proaging" factors in the systemic circulation. The effects of young blood on rejuvenation of regenerative capacity suggest the existence of multiple "proyouthful" factors, such as growth differentiation factor 11 (GDF11), in the young blood of animals. GDF11 is a member of the transforming growth factor beta (TGFβ) superfamily of cytokines, and appears to be a critical rejuvenation factor in aging organs. In the context of aging, GDF11 promotes vascular and neural plasticity of the central nervous system. Parabiosis, the surgical linking of circulations between old and young mice, was employed to identify GDF11 as an antihypertrophic factor that appears to rejuvenate the aging murine heart. Current theories suggest that GDF11 in young blood has beneficial effects on cognitive and cardiovascular functions and wound healing. The cellular mechanisms of GDF11 in cardiovascular, neurological, skin and skeletal muscle diseases are not clearly defined, but evidence indicates that it may function as a proneurogenic and proangiogenic drug. GDF11 binds and activates specific receptor complexes, which transmit signals by two procedures: the TGFβ-Smad pathway and the bone morphogenic protein (BMP)-Smad pathway. GDF11 is perhaps only the first in a series of circulating molecules that will be found to influence the aging of different tissues, and it may be a potential candidate for therapeutic intervention against angiogenesis-related disorders.
Collapse
Affiliation(s)
- Luc Rochette
- Equipe d'Accueil (EA 7460): Physiopathologie et Epidémiologie Cérébro-Cardiovasculaires (PEC2), Faculté des Sciences de Santé, Université Bourgogne-Franche-Comté, 21000 Dijon, France.
| | - Geoffrey Dogon
- Equipe d'Accueil (EA 7460): Physiopathologie et Epidémiologie Cérébro-Cardiovasculaires (PEC2), Faculté des Sciences de Santé, Université Bourgogne-Franche-Comté, 21000 Dijon, France
| | - Eve Rigal
- Equipe d'Accueil (EA 7460): Physiopathologie et Epidémiologie Cérébro-Cardiovasculaires (PEC2), Faculté des Sciences de Santé, Université Bourgogne-Franche-Comté, 21000 Dijon, France
| | - Marianne Zeller
- Equipe d'Accueil (EA 7460): Physiopathologie et Epidémiologie Cérébro-Cardiovasculaires (PEC2), Faculté des Sciences de Santé, Université Bourgogne-Franche-Comté, 21000 Dijon, France
| | - Yves Cottin
- Service de Cardiologie, CHU de Dijon, 21000 Dijon, France
| | - Catherine Vergely
- Equipe d'Accueil (EA 7460): Physiopathologie et Epidémiologie Cérébro-Cardiovasculaires (PEC2), Faculté des Sciences de Santé, Université Bourgogne-Franche-Comté, 21000 Dijon, France
| |
Collapse
|
4
|
de Liyis BG, Halim W, Widyadharma IPE. Potential role of recombinant growth differentiation factor 11 in Alzheimer’s disease treatment. THE EGYPTIAN JOURNAL OF NEUROLOGY, PSYCHIATRY AND NEUROSURGERY 2022. [DOI: 10.1186/s41983-022-00487-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractAlzheimer's disease (AD) is a neurodegenerative disease closely related to the accumulation of beta-amyloid (Aβ) plaques. Growth differentiation factor 11 (GDF11) is one of the proteins that play a role in the aggravation of AD. Decreased concentration of GDF11 disrupts regenerative nervous system, blood vessels, and various vital systems. Low levels of GDF11 with age can be overcome with recombinant GDF11 (rGDF11) to rejuvenate the regenerative effect. Based on research results, rGDF11 enhance the proliferation rate of neuronal precursor cells as well as angiogenesis. rGDF11 can replace lost levels of GDF11, overcome astrogliosis and activation of nerve cell microglia. Therapeutic effect of rGDF11 leads to an improved prognosis in AD patients by neurogenesis and angiogenesis. The prospects of rGDF11 in the treatment of AD have great potential for further research in the future.
Collapse
|
5
|
Su HH, Yen JC, Liao JM, Wang YH, Liu PH, MacDonald IJ, Tsai CF, Chen YH, Huang SS. In situ slow-release recombinant growth differentiation factor 11 exhibits therapeutic efficacy in ischemic stroke. Biomed Pharmacother 2021; 144:112290. [PMID: 34673423 DOI: 10.1016/j.biopha.2021.112290] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/29/2021] [Accepted: 10/05/2021] [Indexed: 10/20/2022] Open
Abstract
Systemic growth differentiation factor 11 (GDF11) treatment improves the vasculature in the hippocampus and cortex in mice in recent studies. However, systemic application of recombinant GDF11 (rGDF11) cannot cross the brain blood barrier (BBB). Thus, large doses and long-term administration are required, while systemically applied high-dose rGDF11 is associated with deleterious effects, such as severe cachexia. This study tested whether in situ low dosage rGDF11 (1 μg/kg) protects the brain against ischemic stroke and it investigated the underlying mechanisms. Fibrin glue mixed with rGDF11 was applied to the surgical cortex for the slow release of rGDF11 in mice after permanent middle cerebral artery occlusion (MCAO). In situ rGDF11 improved cerebral infarction and sensorimotor function by upregulating Smad2/3 and downregulating FOXO3 expression. In situ rGDF11 was associated with reductions in protein and lipid oxidation, Wnt5a, iNOS and COX2 expression, at 24 h after injury. In situ rGDF11 protected hippocampal neurons and subventricular neural progenitor cells against MCAO injury, and increased newborn neurogenesis in the peri-infarct cortex. Systematic profiling and qPCR analysis revealed that Pax5, Sox3, Th, and Cdk5rap2, genes associated with neurogenesis, were increased by in situ rGDF11 treatment. In addition, greater numbers of newborn neurons in the peri-infarct cortex were observed with in situ rGDF11 than with systemic application. Our evidence indicates that in situ rGDF11 effectively decreases the extent of damage after ischemic stroke via antioxidative, anti-inflammatory and proneurogenic activities. We suggest that in situ slow-release rGDF11 with fibrin glue is a potential therapeutic approach against ischemic stroke.
Collapse
Affiliation(s)
- Hsing-Hui Su
- Department of Pharmacology, Chung Shan Medical University, Taichung, Taiwan, ROC; Graduate Institute of Acupuncture Science, China Medical University, Taichung, Taiwan, ROC
| | - Jiin-Cherng Yen
- Department and Institute of Pharmacology, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Jiuan-Miaw Liao
- Department of Physiology, Chung Shan Medical University, Taichung, Taiwan, ROC
| | - Yi-Hsin Wang
- Department of Pharmacology, Chung Shan Medical University, Taichung, Taiwan, ROC
| | - Pei-Hsun Liu
- Department of Pharmacology, Chung Shan Medical University, Taichung, Taiwan, ROC
| | - Iona J MacDonald
- Graduate Institute of Acupuncture Science, China Medical University, Taichung, Taiwan, ROC
| | - Chin-Feng Tsai
- Division of Cardiology, Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan, ROC; School of Medicine, Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan, ROC.
| | - Yi-Hung Chen
- Graduate Institute of Acupuncture Science, China Medical University, Taichung, Taiwan, ROC; Chinese Medicine Research Center, China Medical University, Taichung 40402, Taiwan,ROC; Department of Computer Science and Information Engineering, Asia University, Wufeng, Taichung, 41354, Taiwan.
| | - Shiang-Suo Huang
- Department of Pharmacology, Chung Shan Medical University, Taichung, Taiwan, ROC; School of Medicine, Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan, ROC; Department of Pharmacy, Chung Shan Medical University Hospital, Taichung, Taiwan, ROC.
| |
Collapse
|
6
|
Grigoryan EN. Study of Natural Longlife Juvenility and Tissue Regeneration in Caudate Amphibians and Potential Application of Resulting Data in Biomedicine. J Dev Biol 2021; 9:2. [PMID: 33477527 PMCID: PMC7838874 DOI: 10.3390/jdb9010002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/07/2021] [Accepted: 01/12/2021] [Indexed: 12/14/2022] Open
Abstract
The review considers the molecular, cellular, organismal, and ontogenetic properties of Urodela that exhibit the highest regenerative abilities among tetrapods. The genome specifics and the expression of genes associated with cell plasticity are analyzed. The simplification of tissue structure is shown using the examples of the sensory retina and brain in mature Urodela. Cells of these and some other tissues are ready to initiate proliferation and manifest the plasticity of their phenotype as well as the correct integration into the pre-existing or de novo forming tissue structure. Without excluding other factors that determine regeneration, the pedomorphosis and juvenile properties, identified on different levels of Urodele amphibians, are assumed to be the main explanation for their high regenerative abilities. These properties, being fundamental for tissue regeneration, have been lost by amniotes. Experiments aimed at mammalian cell rejuvenation currently use various approaches. They include, in particular, methods that use secretomes from regenerating tissues of caudate amphibians and fish for inducing regenerative responses of cells. Such an approach, along with those developed on the basis of knowledge about the molecular and genetic nature and age dependence of regeneration, may become one more step in the development of regenerative medicine.
Collapse
Affiliation(s)
- Eleonora N Grigoryan
- Kol'tsov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| |
Collapse
|
7
|
Neuroprotective Potential of GDF11: Myth or Reality? Int J Mol Sci 2019; 20:ijms20143563. [PMID: 31330871 PMCID: PMC6679312 DOI: 10.3390/ijms20143563] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 06/04/2019] [Accepted: 06/05/2019] [Indexed: 12/14/2022] Open
Abstract
In the brain, aging is accompanied by cellular and functional deficiencies that promote vulnerability to neurodegenerative disorders. In blood plasma from young and old animals, various factors such as growth differentiation factor 11 (GDF11), whose levels are elevated in young animals, have been identified. The blood concentrations of these factors appear to be inversely correlated with the age-related decline of neurogenesis. The identification of GDF11 as a "rejuvenating factor" opens up perspectives for the treatment of neurodegenerative diseases. As a pro-neurogenic and pro-angiogenic agent, GDF11 may constitute a basis for novel therapeutic strategies.
Collapse
|
8
|
Woulfe KC, Bruns DR. From pediatrics to geriatrics: Mechanisms of heart failure across the life-course. J Mol Cell Cardiol 2018; 126:70-76. [PMID: 30458169 DOI: 10.1016/j.yjmcc.2018.11.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 10/29/2018] [Accepted: 11/14/2018] [Indexed: 01/08/2023]
Abstract
Heart failure (HF) is a significant public health problem and a disease with high 5-year mortality. Although age is the primary risk factor for development of HF, it is a disease which impacts patients of all ages. Historically, HF has been studied as a one-size fits all strategy- with the majority of both clinical and basic science investigations employing adult male subjects or adult male pre-clinical animal models. We postulate that inclusion of biological variables in HF studies is necessary to improve our understanding of mechanisms of HF and improve outcomes. In this review, we will discuss age-specific differences in HF patients, particularly focusing on the pediatric and geriatric age groups. In addition, we will also discuss the biological variable of sex. Characterizing and understanding the mechanistic differences in these distinct HF populations can provide insights that will benefit and personalize therapeutic interventions. Further, we propose that future investigations into the cellular mechanisms involved in the developing and juvenile heart may provide valuable insights for targets that would be beneficial in aging patients.
Collapse
Affiliation(s)
- Kathleen C Woulfe
- University of Colorado-Denver; Department of Medicine, Division of Cardiology, 12700 E 19th Ave Aurora, CO, USA.
| | - Danielle R Bruns
- University of Wyoming, Division of Kinesiology & Health, Laramie, WY, USA
| |
Collapse
|
9
|
Grigoryan EN. Molecular Factors of the Maintenance and Activation of the Juvenile Phenotype of Cellular Sources for Eye Tissue Regeneration. BIOCHEMISTRY (MOSCOW) 2018; 83:1318-1331. [DOI: 10.1134/s0006297918110032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
10
|
|
11
|
Gu C, Wang X, Long T, Wang X, Zhong Y, Ma Y, Hu Z, Li Z. FSTL1 interacts with VIM and promotes colorectal cancer metastasis via activating the focal adhesion signalling pathway. Cell Death Dis 2018; 9:654. [PMID: 29844309 PMCID: PMC5974179 DOI: 10.1038/s41419-018-0695-6] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 04/30/2018] [Accepted: 05/10/2018] [Indexed: 01/05/2023]
Abstract
Follistatin-like protein 1 (FSTL1) has been reported to have both tumour-promoting and tumour-suppressive characters. However, the role of FSTL1 in colorectal cancer (CRC) remains unclear. Here we showed that FSTL1 expression was significantly up-regulated in CRC tissues compared with the paired normal tissues. In addition, the higher FSTL1 expression was associated with the infiltrating depth, lymph node metastasis and poor prognosis of CRC. Enhanced expression of FSTL1 distinctly increased cell migration and invasion in vitro, as well as promoting liver metastasis of CRC in vivo. Conversely, knockdown of FSTL1 expression significantly repressed invasion and metastasis of CRC. Mechanically, transcription factor Smad3 was involved in FSTL1 protein expression inducing by TGFβ1-Smad2/3 signalling. Furthermore, this effect of FSTL1 in promoting CRC progression was actualised via activating focal adhesions signalling pathway and regulating cytoskeleton rearrangement. We identified VIM, as an interactive protein of FSTL1, participated in FSTL1-mediated aggressive phenotype. We showed the role of FSTL1 in CRC and explored its transcription regulation and downstream signalling molecular mechanisms. In conclusion, our findings suggested that FSTL1 promoted CRC progression and metastasis, making it a novel target for diagnosis and prognostic evaluation of CRC.
Collapse
Affiliation(s)
- Chuansha Gu
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Molecular Tumour Pathology, Guangzhou, China
| | - Xiaoyan Wang
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Molecular Tumour Pathology, Guangzhou, China.,Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ting Long
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Molecular Tumour Pathology, Guangzhou, China
| | - Xia Wang
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Molecular Tumour Pathology, Guangzhou, China
| | - Yan Zhong
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Molecular Tumour Pathology, Guangzhou, China
| | - Yidan Ma
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Molecular Tumour Pathology, Guangzhou, China
| | - Zhiyan Hu
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China. .,Guangdong Provincial Key Laboratory of Molecular Tumour Pathology, Guangzhou, China. .,Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Zuguo Li
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China. .,Guangdong Provincial Key Laboratory of Molecular Tumour Pathology, Guangzhou, China. .,Department of Pathology, Shenzhen Hospital of Southern Medical University, Shenzhen, China.
| |
Collapse
|
12
|
Plotnikov EY, Silachev DN, Popkov VA, Zorova LD, Pevzner IB, Zorov SD, Jankauskas SS, Babenko VA, Sukhikh GT, Zorov DB. Intercellular Signalling Cross-Talk: To Kill, To Heal and To Rejuvenate. Heart Lung Circ 2017; 26:648-659. [DOI: 10.1016/j.hlc.2016.12.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 11/22/2016] [Accepted: 12/06/2016] [Indexed: 12/16/2022]
|