1
|
Moawad MHED, Serag I, Alkhawaldeh IM, Abbas A, Sharaf A, Alsalah S, Sadeq MA, Shalaby MMM, Hefnawy MT, Abouzid M, Meshref M. Exploring the Mechanisms and Therapeutic Approaches of Mitochondrial Dysfunction in Alzheimer's Disease: An Educational Literature Review. Mol Neurobiol 2025; 62:6785-6810. [PMID: 39254911 PMCID: PMC12078384 DOI: 10.1007/s12035-024-04468-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 08/30/2024] [Indexed: 09/11/2024]
Abstract
Alzheimer's disease (AD) presents a significant challenge to global health. It is characterized by progressive cognitive deterioration and increased rates of morbidity and mortality among older adults. Among the various pathophysiologies of AD, mitochondrial dysfunction, encompassing conditions such as increased reactive oxygen production, dysregulated calcium homeostasis, and impaired mitochondrial dynamics, plays a pivotal role. This review comprehensively investigates the mechanisms of mitochondrial dysfunction in AD, focusing on aspects such as glucose metabolism impairment, mitochondrial bioenergetics, calcium signaling, protein tau and amyloid-beta-associated synapse dysfunction, mitophagy, aging, inflammation, mitochondrial DNA, mitochondria-localized microRNAs, genetics, hormones, and the electron transport chain and Krebs cycle. While lecanemab is the only FDA-approved medication to treat AD, we explore various therapeutic modalities for mitigating mitochondrial dysfunction in AD, including antioxidant drugs, antidiabetic agents, acetylcholinesterase inhibitors (FDA-approved to manage symptoms), nutritional supplements, natural products, phenylpropanoids, vaccines, exercise, and other potential treatments.
Collapse
Affiliation(s)
- Mostafa Hossam El Din Moawad
- Faculty of Pharmacy, Clinical Department, Alexandria Main University Hospital, Alexandria, Egypt
- Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Ibrahim Serag
- Faculty of Medicine, Mansoura University, Mansoura, Egypt.
| | | | - Abdallah Abbas
- Faculty of Medicine, Al-Azhar University, Damietta, Egypt
| | - Abdulrahman Sharaf
- Department of Clinical Pharmacy, Salmaniya Medical Complex, Government Hospital, Manama, Bahrain
| | - Sumaya Alsalah
- Ministry of Health, Primary Care, Governmental Health Centers, Manama, Bahrain
| | | | | | | | - Mohamed Abouzid
- Department of Physical Pharmacy and Pharmacokinetics, Faculty of Pharmacy, Poznan University of Medical Sciences, Rokietnicka 3 St., 60-806, Poznan, Poland.
- Doctoral School, Poznan University of Medical Sciences, 60-812, Poznan, Poland.
| | - Mostafa Meshref
- Department of Neurology, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
2
|
Rustage K, Rai N, Sinha SK, Goyal J, Chouhan P, Baniya B, Dubey D, Singhal R, Malani P, Pareek A, Pant M, Jain S, Bisht A, Pareek A, Ratan Y, Ashraf GM, Jain V. Evaluation of the Sporadic Anti-Alzheimer's Activity of Purpurin Using In Silico, In Vitro, and In Vivo Approaches. Mol Neurobiol 2025:10.1007/s12035-025-04910-9. [PMID: 40210836 DOI: 10.1007/s12035-025-04910-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 04/01/2025] [Indexed: 04/12/2025]
Abstract
Purpurin, a naturally occurring compound found in certain plants, has demonstrated promising neuroprotective effects in the context of Alzheimer's disease (AD). This study investigated the efficacy of purpurin in mitigating neurodegenerative changes induced by streptozotocin (3 mg/kg ICV) and amyloid beta (20 μM) in murine models. Neuroprotective effects were assessed through in vitro and in vivo experiments complemented by in silico simulation studies. SH-SY5Y cell viability, behavioral, biochemical, and histopathological studies were also conducted. The results revealed that purpurin interacts with acetylcholinesterase (AChE) and amyloid-beta (Aβ), exhibiting glide scores of - 10.72 and - 3.05 kcal/mol, respectively. Purpurin (8 μM) significantly alleviated Aβ-induced cellular damage by decreasing malondialdehyde production and enhancing superoxide dismutase and Thio barbituric acid reactive substances levels in a dose-dependent manner. Intraperitoneal administration of purpurin at 50 mg/kg significantly improved both long-term and short-term memory and enhanced social interactions. These benefits were linked to the reductions in AChE activity and oxidative and inflammatory marker levels triggered by streptozotocin. Neuroprotective effects were also supported by restoring neuronal DNA content in the hippocampus, cerebellum and prefrontal cortex. Histological findings further corroborated the reduction in neurodegenerative marker levels. In silico simulations supported these findings by indicating that purpurin primarily binds to the Trp 286 and Tyr 341 residues of AChE, inhibiting its catalytic activity at the peripheral anionic site. In conclusion, the neuroprotective activity of purpurin in AD models is attributed to its inhibitory effects on AChE, coupled with reductions in inflammation and oxidative stress and the restoration of neuronal DNA integrity in critical brain regions.
Collapse
Affiliation(s)
- Kajol Rustage
- Department of Pharmaceutical Sciences, Mohan Lal Sukhadia University, Udaipur, 313001, India
| | - Nitish Rai
- Department of Biotechnology, Mohan Lal Sukhadia University, Udaipur, 313001, India
| | - Saurabh Kumar Sinha
- Department of Pharmaceutical Sciences, Mohan Lal Sukhadia University, Udaipur, 313001, India
| | - Juhi Goyal
- Department of Biotechnology, Mohan Lal Sukhadia University, Udaipur, 313001, India
| | - Pragati Chouhan
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, 304022, India
| | - Bhuvanesh Baniya
- Department of Pharmaceutical Sciences, Mohan Lal Sukhadia University, Udaipur, 313001, India
| | - Deepti Dubey
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, 304022, India
| | - Runjhun Singhal
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, 304022, India
| | - Pooja Malani
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, 304022, India
| | - Aaushi Pareek
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, 304022, India
| | - Malvika Pant
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, 304022, India
| | - Smita Jain
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, 304022, India
| | - Akansha Bisht
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, 304022, India
| | - Ashutosh Pareek
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, 304022, India.
| | - Yashumati Ratan
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, 304022, India
| | - Ghulam Md Ashraf
- Department of Biosciences and Bioinformatics, School of Science, Xi'an Jiaotong-Liverpool University, 111 Ren'ai Road, SIP, Suzhou, Jiangsu Province, 215123, People's Republic of China
| | - Vivek Jain
- Department of Pharmaceutical Sciences, Mohan Lal Sukhadia University, Udaipur, 313001, India.
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, 304022, India.
| |
Collapse
|
3
|
Sargsyan T, Simonyan HM, Stepanyan L, Tsaturyan A, Vicidomini C, Pastore R, Guerra G, Roviello GN. Neuroprotective Properties of Clove ( Syzygium aromaticum): State of the Art and Future Pharmaceutical Applications for Alzheimer's Disease. Biomolecules 2025; 15:452. [PMID: 40149988 PMCID: PMC11940766 DOI: 10.3390/biom15030452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/13/2025] [Accepted: 03/14/2025] [Indexed: 03/29/2025] Open
Abstract
This study explores the neuropharmacological potential of various molecular and amino acid components derived from Syzygium aromaticum (clove), an aromatic spice with a long history of culinary and medicinal use. Key bioactive compounds such as eugenol, α-humulene, β-caryophyllene, gallic acid, quercetin, and luteolin demonstrate antioxidant, anti-inflammatory, and neuroprotective properties by scavenging free radicals, modulating calcium channels, and reducing neuroinflammation and oxidative stress. Moreover, gallic acid and asiatic acid may exhibit protective effects, including neuronal apoptosis inhibition, while other useful properties of clove phytocompounds include NF-κB pathway inhibition, membrane stabilization, and suppression of pro-inflammatory pathways, possibly in neurons or other relevant cell types, further contributing to neuroprotection and cognitive enhancement. Amino acid analysis revealed essential and non-essential amino acids such as aspartic acid, serine, glutamic acid, glycine, histidine, and arginine in various clove parts (buds, fruits, branches, and leaves). These amino acids play crucial roles in neurotransmitter synthesis, immune modulation, antioxidant defense, and metabolic regulation. Collectively, these bioactive molecules and amino acids contribute to clove's antioxidant, anti-inflammatory, neurotrophic, and neurotransmitter-modulating effects, highlighting its potential as a preventive and therapeutic candidate for neurodegenerative disorders. While preliminary preclinical studies support these neuroprotective properties, further research, including clinical trials, is needed to validate the efficacy and safety of clove-based interventions in neuroprotection.
Collapse
Affiliation(s)
- Tatevik Sargsyan
- Scientific and Production Center “Armbiotechnology” NAS RA, 14 Gyurjyan Str., Yerevan 0056, Armenia; (T.S.); (L.S.)
- Institute of Pharmacy, Yerevan State University, 1 Alex Manoogian Str., Yerevan 0025, Armenia
| | - Hayarpi M. Simonyan
- Institute of Pharmacy, Yerevan State University, 1 Alex Manoogian Str., Yerevan 0025, Armenia
| | - Lala Stepanyan
- Scientific and Production Center “Armbiotechnology” NAS RA, 14 Gyurjyan Str., Yerevan 0056, Armenia; (T.S.); (L.S.)
| | - Avetis Tsaturyan
- Scientific and Production Center “Armbiotechnology” NAS RA, 14 Gyurjyan Str., Yerevan 0056, Armenia; (T.S.); (L.S.)
- Institute of Pharmacy, Yerevan State University, 1 Alex Manoogian Str., Yerevan 0025, Armenia
| | - Caterina Vicidomini
- Institute of Biostructures and Bioimaging, Italian National Council for Research (IBB-CNR), Area di Ricerca Site and Headquarters, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Raffaele Pastore
- Department of Medicine and Health Sciences “Vincenzo Tiberio”, University of Molise, Via F. De Santis, 86100 Campobasso, Italy
| | - Germano Guerra
- Department of Medicine and Health Sciences “Vincenzo Tiberio”, University of Molise, Via F. De Santis, 86100 Campobasso, Italy
| | - Giovanni N. Roviello
- Institute of Biostructures and Bioimaging, Italian National Council for Research (IBB-CNR), Area di Ricerca Site and Headquarters, Via Pietro Castellino 111, 80131 Naples, Italy
| |
Collapse
|
4
|
AlHayani DA, Kubaev A, Uthirapathy S, Mandaliya V, Ballal S, Kalia R, Arya R, Gabble BC, Alasheqi MQ, Kadhim AJ. Insights Into the Therapeutic Potential of SIRT1-modifying Compounds for Alzheimer's Disease: A Focus on Molecular Mechanisms. J Mol Neurosci 2025; 75:29. [PMID: 40000535 DOI: 10.1007/s12031-025-02324-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 02/15/2025] [Indexed: 02/27/2025]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by cognitive decline and memory loss, significantly impacting patients' quality of life. Recent studies have highlighted the roles of sirtuin 1 (SIRT1), a NAD + -dependent deacetylase, in regulating various biological pathways associated with AD pathology, including amyloid-beta metabolism, tau hyperphosphorylation, and neuroinflammation. This review focuses on the therapeutic potential of synthetic and natural compounds that modulate SIRT1 levels, emphasizing their molecular mechanisms of action. We explore a range of SIRT1-modifying agents, including polyphenols such as resveratrol, as well as synthetic analogs and novel pharmaceuticals that aim to enhance SIRT1 activity. Additionally, we discuss emerging innovative therapies, including pharmacological agents that improve SIRT1 signaling through mechanisms like photobiomodulation and nutritional interventions. These compounds not only target SIRT1 but also integrate into broader metabolic and neuroprotective pathways, presenting a promising approach to ameliorating AD symptoms. By elucidating the intricate interactions between SIRT1-modifying compounds and their effects on AD pathology, this review aims to advance the understanding of potential therapeutic strategies that could delay or prevent the progression of AD.
Collapse
Affiliation(s)
- Dhyauldeen Aftan AlHayani
- Department of Medical Laboratories Techniques, College of Health and Medical Technology, University of Al Maarif, 31003, Ramadi, Al Anbar, Iraq
| | - Aziz Kubaev
- Department of Maxillofacial Surgery, Samarkand State Medical University, 18 Amir Temur Street, 140100, Samarkand, Uzbekistan.
| | - Subasini Uthirapathy
- Pharmacy Department, Tishk International University, Erbil, Kurdistan Region, Iraq
| | - Viralkumar Mandaliya
- Marwadi University Research Center, Department of Microbiology, Faculty of Science, Marwadi University, Rajkot, 360003, Gujarat, India
| | - Suhas Ballal
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | - Rishiv Kalia
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140401, Punjab, India
| | - Renu Arya
- Department of Pharmacy, Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali, 140307, Punjab, India
| | - Baneen C Gabble
- Medical Laboratory Technique College, the Islamic University, Najaf, Iraq
- Medical Laboratory Technique College, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Medical Laboratory Technique College, the Islamic University of Babylon, Babylon, Iraq
| | | | - Abed J Kadhim
- Department of Medical Engineering/Al, Nisour University College, Baghdad, Iraq
| |
Collapse
|
5
|
Thapa R, Moglad E, Afzal M, Gupta G, Bhat AA, Hassan Almalki W, Kazmi I, Alzarea SI, Pant K, Singh TG, Singh SK, Ali H. The role of sirtuin 1 in ageing and neurodegenerative disease: A molecular perspective. Ageing Res Rev 2024; 102:102545. [PMID: 39423873 DOI: 10.1016/j.arr.2024.102545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 09/27/2024] [Accepted: 10/09/2024] [Indexed: 10/21/2024]
Abstract
Sirtuin 1 (SIRT1), an NAD+-dependent deacetylase, has emerged as a key regulator of cellular processes linked to ageing and neurodegeneration. SIRT1 modulates various signalling pathways, including those involved in autophagy, oxidative stress, and mitochondrial function, which are critical in the pathogenesis of neurodegenerative diseases. This review explores the therapeutic potential of SIRT1 in several neurodegenerative disorders, including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and Amyotrophic Lateral Sclerosis (ALS). Preclinical studies have demonstrated that SIRT1 activators, such as resveratrol, SRT1720, and SRT2104, can alleviate disease symptoms by reducing oxidative stress, enhancing autophagic flux, and promoting neuronal survival. Ongoing clinical trials are evaluating the efficacy of these SIRT1 activators, providing hope for future therapeutic strategies targeting SIRT1 in neurodegenerative diseases. This review explores the role of SIRT1 in ageing and neurodegenerative diseases, with a particular focus on its molecular mechanisms, therapeutic potential, and clinical applications.
Collapse
Affiliation(s)
- Riya Thapa
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Ehssan Moglad
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Gaurav Gupta
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India.
| | - Asif Ahmad Bhat
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al-Jouf 72341, Saudi Arabia
| | - Kumud Pant
- Graphic Era (Deemed to be University), Clement Town, Dehradun 248002, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Department of Pharmacology, Kyrgyz State Medical College, Bishkek, Kyrgyzstan
| |
Collapse
|
6
|
Sarkar S, Pandey A, Yadav SK, Raghuwanshi P, Siddiqui MH, Srikrishna S, Pant AB, Yadav S. MicroRNA-29b-3p degenerates terminally differentiated dopaminergic SH-SY5Y cells by perturbation of mitochondrial functions. J Neurochem 2024; 168:1297-1316. [PMID: 38413218 DOI: 10.1111/jnc.16086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/31/2023] [Accepted: 01/28/2024] [Indexed: 02/29/2024]
Abstract
Mitochondrial dysfunction is the main cause of gradual deterioration of structure and function of neuronal cells, eventually resulting in neurodegeneration. Studies have revealed a complex interrelationship between neurotoxicant exposure, mitochondrial dysfunction, and neurodegenerative diseases. Alteration in the expression of microRNAs (miRNAs) has also been linked with disruption in mitochondrial homeostasis and bioenergetics. In our recent research (Cellular and Molecular Neurobiology (2023) https://doi.org/10.1007/s10571-023-01362-4), we have identified miR-29b-3p as one of the most significantly up-regulated miRNAs in the blood of Parkinson's patients. The findings of the present study revealed that neurotoxicants of two different natures, that is, arsenic or rotenone, dramatically increased miR-29b-3p expression (18.63-fold and 12.85-fold, respectively) in differentiated dopaminergic SH-SY5Y cells. This dysregulation of miR-29b-3p intricately modulated mitochondrial morphology, induced oxidative stress, and perturbed mitochondrial membrane potential, collectively contributing to the degeneration of dopaminergic cells. Additionally, using assays for mitochondrial bioenergetics in live and differentiated SH-SY5Y cells, a reduction in oxygen consumption rate (OCR), maximal respiration, basal respiration, and non-mitochondrial respiration was observed in cells transfected with mimics of miR-29b-3p. Inhibition of miR-29b-3p by transfecting inhibitor of miR-29b-3p prior to exposure to neurotoxicants significantly restored OCR and other respiration parameters. Furthermore, we observed that induction of miR-29b-3p activates neuronal apoptosis via sirtuin-1(SIRT-1)/YinYang-1(YY-1)/peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC-1α)-regulated Bcl-2 interacting protein 3-like-dependent mechanism. Collectively, our studies have shown the role of miR-29b-3p in dysregulation of mitochondrial bioenergetics during degeneration of dopaminergic neurons via regulating SIRT-1/YY-1/PGC-1α axis.
Collapse
Affiliation(s)
- Sana Sarkar
- Systems Toxicology Group, Food, Drug & Chemical, Environment and Systems Toxicology (FEST) Division, CSIR- Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, UP, India
- Department of Bioengineering, Faculty of Engineering, Integral University, Lucknow, UP, India
| | - Anuj Pandey
- Systems Toxicology Group, Food, Drug & Chemical, Environment and Systems Toxicology (FEST) Division, CSIR- Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, UP, India
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, UP, India
| | - Sanjeev Kumar Yadav
- Systems Toxicology Group, Food, Drug & Chemical, Environment and Systems Toxicology (FEST) Division, CSIR- Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, UP, India
| | - Pragati Raghuwanshi
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Raebareli, UP, India
| | - Mohammed Haris Siddiqui
- Department of Bioengineering, Faculty of Engineering, Integral University, Lucknow, UP, India
| | - Saripella Srikrishna
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, UP, India
| | - Aditya Bhushan Pant
- Systems Toxicology Group, Food, Drug & Chemical, Environment and Systems Toxicology (FEST) Division, CSIR- Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, UP, India
| | - Sanjay Yadav
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Raebareli, UP, India
| |
Collapse
|
7
|
Kaur P, Dey A, Rawat K, Dey S. Novel antioxidant protein target therapy to counter the prevalence and severity of SARS-CoV-2. Front Immunol 2024; 14:1241313. [PMID: 38235136 PMCID: PMC10791803 DOI: 10.3389/fimmu.2023.1241313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 12/06/2023] [Indexed: 01/19/2024] Open
Abstract
Background This review analyzed the magnitude of the COVID-19 pandemic globally and in India and the measures to counter its effect using natural and innate immune booster molecules. The study focuses on two phases: the first focuses on the magnitude, and the second on the effect of antioxidants (natural compounds) on SARS-CoV-2. Methods The magnitude of the prevalence, mortality, and comorbidities was acquired from the World Health Organization (WHO) report, media, a report from the Ministry of Health and Family Welfare (MoHFW), newspapers, and the National Centre of Disease Control (NCDC). Research articles from PubMed as well as other sites/journals and databases were accessed to gather literature on the effect of antioxidants. Results In the elderly and any chronic diseases, the declined level of antioxidant molecules enhanced the reactive oxygen species, which in turn deprived the immune system. Conclusion Innate antioxidant proteins like sirtuin and sestrin play a vital role in enhancing immunity. Herbal products and holistic approaches can also be alternative solutions for everyday life to boost the immune system by improving the redox balance in COVID-19 attack. This review analyzed the counteractive effect of alternative therapy to boost the immune system against the magnitude of the COVID-19 pandemic.
Collapse
Affiliation(s)
- Priyajit Kaur
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Akash Dey
- Clinton Health Access Initiative, New Delhi, India
| | - Kartik Rawat
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Sharmistha Dey
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
8
|
Aljarari RM. Neuroprotective effects of a combination of Boswellia papyrifera and Syzygium aromaticum on AlCl3 induced Alzheimer's disease in male albino rat. BRAZ J BIOL 2023; 83:e272466. [PMID: 37851769 DOI: 10.1590/1519-6984.272466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/24/2023] [Indexed: 10/20/2023] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease characterized by hippocampal, and cortical neuron deterioration, oxidative stress, and severe cognitive dysfunction. Aluminum is a neurotoxin inducer for cognitive impairments associated with AD. The treatment approaches for AD are unsatisfactory. Boswellia papyrifera and Syzygium aromaticum are known for their pharmacological assets, including antioxidant activity. Therefore, the current study explored the possible mitigating effects of a combination of Boswellia papyrifera and Syzygium aromaticum against aluminum chloride (AlCl3) induced AD. The AD model was established using AlCl3 (100 mg/kg), and the rats were orally administrated with Boswellia papyrifera or Syzygium aromaticum or a combination of them daily for 8 weeks. The Y-maze test was used to test cognition in the rats, while acetylcholinesterase (AChE) and oxidative stress markers were estimated in homogenates of the cerebral cortex and hippocampus. Also, the histopathological examination of the cortex and hippocampus were investigated. The results revealed that administration of either B. papyrifera or S. aromaticum extracts significantly improved the cognitive functions of AD rats, enhanced AChE levels, increased oxidative enzymes levels, including SOD and GSH, and reduced MDA levels in homogenates of the cerebral cortex and hippocampus and confirmed by improvement in histological examination. However, using a combination therapy gave better results compared to a single treatment. In conclusion, the present study provided primary evidence for using a combination of B. papyrifera and S. aromaticum to treat cognitive dysfunction associated with AlCl3 Induced AD by improving the AChE levels and modulating oxidative stress in the brain.
Collapse
Affiliation(s)
- R M Aljarari
- University of Jeddah, College of Science, Department of Biology, Jeddah, Saudi Arabia
| |
Collapse
|
9
|
Kulkarni R, Mehta R, Goswami SK, Hammock BD, Morisseau C, Hwang SH, Mallappa O, Azeemuddin MM, Rafiq M, S N M. Neuroprotective effect of herbal extracts inhibiting soluble epoxide hydrolase (sEH) and cyclooxygenase (COX) against chemotherapy-induced cognitive impairment in mice. Biochem Biophys Res Commun 2023; 667:64-72. [PMID: 37209564 PMCID: PMC10849156 DOI: 10.1016/j.bbrc.2023.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 04/18/2023] [Accepted: 05/02/2023] [Indexed: 05/22/2023]
Abstract
Chemotherapy-induced cognitive impairment (CICI) is a novel clinical condition characterized by memory, learning, and motor function deficits. Oxidative stress and inflammation are potential factors contributing to chemotherapy's adverse effects on the brain. Inhibition of soluble epoxide hydrolase (sEH) has been proven effective in neuroinflammation and reversal of memory impairment. The research aims to evaluate the memory protective effect of sEH inhibitor and dual inhibitor of sEH and COX and compare its impact with herbal extracts with known nootropic activity in an animal model of CICI. In vitro sEH, the inhibitory activity of hydroalcoholic extracts of Sizygium aromaticum, Nigella sativa, and Mesua ferrea was tested on murine and human sEH enzyme as per the protocol, and IC50 was determined. Cyclophosphamide (50 mg/kg), methotrexate (5 mg/kg), and fluorouracil (5 mg/kg) combination (CMF) were administered intraperitoneally to induce CICI. The known herbal sEH inhibitor, Lepidium meyenii and the dual inhibitor of COX and sEH (PTUPB) were tested for their protective effect in the CICI model. The herbal formulation with known nootropic activity viz Bacopa monnieri and commercial formulation (Mentat) were also used to compare the efficacy in the CICI model. Behavioral parameter such as cognitive function was assessed by Morris Water Maze besides investigating oxidative stress (GSH and LPO) and inflammatory (TNFα, IL-6, BDNF and COX-2) markers in the brain. CMF-induced CICI, which was associated with increased oxidative stress and inflammation in the brain. However, treatment with PTUPB or herbal extracts inhibiting sEH preserved spatial memory via ameliorating oxidative stress and inflammation. S. aromaticum and N. sativa inhibited COX2, but M. Ferrea did not affect COX2 activity. Lepidium meyenii was the least effective, and mentat showed superior activity over Bacopa monnieri in preserving memory. Compared to untreated animals, the mice treated with PTUPB or hydroalcoholic extracts showed a discernible improvement in cognitive function in CICI.
Collapse
Affiliation(s)
- Rachana Kulkarni
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, 570015, India
| | - Richa Mehta
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, 570015, India
| | - Sumanta Kumar Goswami
- Department of Entomology and Nematology, UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA, United States
| | - Bruce D Hammock
- Department of Entomology and Nematology, UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA, United States
| | - Christophe Morisseau
- Department of Entomology and Nematology, UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA, United States
| | - Sung Hee Hwang
- Department of Entomology and Nematology, UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA, United States
| | - Onkaramurthy Mallappa
- Discovery Sciences Group, R&D Centre, Himalaya Wellness Company, Makali, Bengaluru, 562162, India
| | | | - Mohamed Rafiq
- Discovery Sciences Group, R&D Centre, Himalaya Wellness Company, Makali, Bengaluru, 562162, India
| | - Manjula S N
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, 570015, India.
| |
Collapse
|
10
|
Sharma H, Kim DY, Shim KH, Sharma N, An SSA. Multi-Targeting Neuroprotective Effects of Syzygium aromaticum Bud Extracts and Their Key Phytocompounds against Neurodegenerative Diseases. Int J Mol Sci 2023; 24:8148. [PMID: 37175851 PMCID: PMC10178913 DOI: 10.3390/ijms24098148] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 04/20/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease that causes a gradual loss of normal motor and cognitive function. The complex AD pathophysiology involves various factors such as oxidative stress, neuroinflammation, amyloid-beta (Aβ) aggregation, disturbed neurotransmission, and apoptosis. The available drugs suffer from a range of side effects and are not able to cover different aspects of the disease. Therefore, finding a safer therapeutic approach that can affect multiple targets at a time is highly desirable. In the present study, the underlying neuroprotective mechanism of an important culinary spice, Syzygium aromaticum (Clove) extract, and major bioactive compounds were studied in hydrogen peroxide-induced oxidative stress in human neuroblastoma SH-SY5Y cell lines as a model. The extracts were subjected to GC-MS to identify important bioactive components. The extracts and key bio-actives reduced reactive oxygen species (ROS), restored mitochondrial membrane potential (MMP), and provided neuroprotection from H2O2-induced oxidative stress in cell-based assays due to the antioxidant action. They also reduced lipid peroxidation significantly and restored GSH content. Clove extracts have also displayed anti-acetylcholinesterase (AChE) activity, anti-glycation potential, and Aβ aggregation/fibrilization inhibition. The multitarget neuroprotective approach displayed by Clove makes it a potential candidate for AD drug development.
Collapse
Affiliation(s)
| | | | | | - Niti Sharma
- Department of Bionano Technology, Gachon Bionano Research Institute, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 461-701, Gyeonggi-do, Republic of Korea
| | - Seong Soo A. An
- Department of Bionano Technology, Gachon Bionano Research Institute, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 461-701, Gyeonggi-do, Republic of Korea
| |
Collapse
|
11
|
Li Y, Zhang C, Xu W, Chen J, Tuo J, Wen Y, Huang Z, Zeng R. Serum Sirtuin1 level decreases in Parkinson's disease and vascular parkinsonism: A prospective observational study. Clin Neurol Neurosurg 2023; 225:107595. [PMID: 36709622 DOI: 10.1016/j.clineuro.2023.107595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 12/07/2022] [Accepted: 01/13/2023] [Indexed: 01/15/2023]
Abstract
OBJECTIVE The present study aimed to investigate levels and clinical significance of serum SIRT1 in Parkinson's disease (PD) and Vascular parkinsonism (VP). METHODS This prospective observational research enrolled a total of 165 VP and 159 PD patients who were admitted during March 2018 to December 2021. Blood samples and medical characteristics were also obtained from 160 healthy volunteers. The serum Sirtuin1 (SIRT1) and cytokines levels of all subjects were measured by enzyme-linked immunosorbent assay (ELISA) method. Demographic and clinical data were also collected. Statistical analysis was conducted using SPSS software with P < 0.05 as statistically different. RESULTS The mean age, the UPDRSIII score of VP patients was significantly higher compared with the PD patients (p<0.05), while the MMSE score of VP patients was significantly lower than the PD patients (p<0.001). The serum SIRT1 levels of the VP patients were remarkably lower than the PD patients or the healthy persons (p<0.05). Pearson's analysis showed that SIRT1 levels were negatively correlated with levels of IL-6, TNF- α and hcy. The UPDRSIII of SIRT1 low levels group was remarkably higher than the SIRT1 high levels group (p=0.048), while the MMSE score was lower than the SIRT1 high levels group (p<0.001). In addition, ROC curves showed that SIRT1 could be a potential diagnostic biomarker of VP. SIRT1 was a risk factor for VP. CONCLUSION Our present study indicated that SIRT1 associated with disease severity and could discriminate PD from VP.
Collapse
Affiliation(s)
- Yifeng Li
- Department of Neurology, Chenzhou First People's Hospital, Chenzhou 423000, China
| | - Chengmei Zhang
- Department of Endocrinology, Chenzhou First People's Hospital, Chenzhou 423000, íChina
| | - Wei Xu
- Department of Neurology, Chenzhou First People's Hospital, Chenzhou 423000, China
| | - Jihua Chen
- Department of Neurology, Chenzhou First People's Hospital, Chenzhou 423000, China
| | - Jia Tuo
- Department of Neurology, Chenzhou First People's Hospital, Chenzhou 423000, China
| | - Ying Wen
- Department of Neurology, Chenzhou First People's Hospital, Chenzhou 423000, China
| | - Zhongxiong Huang
- Pet-ct center, Chenzhou First People's Hospital, Chenzhou 423000, China.
| | - Rong Zeng
- Department of Neurology, Chenzhou First People's Hospital, Chenzhou 423000, China.
| |
Collapse
|
12
|
Othman MS, Obeidat ST, Aleid GM, Al-Bagawi AH, Fareid MA, Hameed RA, Mohamed KM, Abdelfattah MS, Fehaid A, Hussein MM, Aboelnaga SMH, Abdel Moneim AE. Green Synthetized Selenium Nanoparticles Using Syzygium aromaticum (Clove) Extract Reduce Pentylenetetrazol-Induced Epilepsy and Associated Cortical Damage in Rats. APPLIED SCIENCES 2023; 13:1050. [DOI: 10.3390/app13021050] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
We aimed to investigate the potential anticonvulsant effect of green synthetized selenium nanoparticles (SeNPs) using Syzygium aromaticum extract (SAE) (SAE-SeNPs) against epileptic seizures and cortical damage induced by pentylenetetrazole (PTZ) injection in rats and its mechanism. A total of 84 rats were divided into six groups; control, PTZ-exposed group, SAE + PTZ-treated group, sodium selenite (Na2SeO3) + PTZ-treated group, SAE-SeNPs + PTZ-treated group, and diazepam + PTZ-treated group. SAE-SeNPs significantly increase (p < 0.05) the latency time to seizures and reduce both the seizure duration and death rate, which were enhanced by the PTZ injection. SAE-SeNPs counteracted the PTZ-induced changes in the oxidants and antioxidants. Furthermore, SAE-SeNPs significantly restored (p < 0.05) the pro-inflammatory cytokines (interleukin-1β, interleukin-6, and tumor necrosis factor-α) to their normal levels and suppressed the activity of the glial fibrillary acidic protein showing their inhibitory effect on the epilepsy-associated inflammation. In addition, SAE-SeNPs significantly reduced (p < 0.05) PTZ-induced cortical cell apoptosis, as revealed by a reduction in the pro-apoptotic Bax and caspase-3 levels, and an elevation of the anti-apoptotic Bcl-2 level. Moreover, SAE-SeNPs significantly modulate (p < 0.05) the PTZ-induced changes in the neurotransmitter norepinephrine level and acetylcholinesterase enzymatic activity. These data concluded the anticonvulsant activity of SAE-SeNPs via their antioxidant, anti-inflammatory, and anti-apoptotic effects, along with their ability to modulate neurotransmitters.
Collapse
Affiliation(s)
- Mohamed S. Othman
- Basic Sciences Department, Deanship of Preparatory Year, University of Ha’il, Hail 2440, Saudi Arabia
- Faculty of Biotechnology, October University for Modern Science and Arts (MSA), Giza 12566, Egypt
| | - Sofian T. Obeidat
- Basic Sciences Department, Deanship of Preparatory Year, University of Ha’il, Hail 2440, Saudi Arabia
| | - Ghada M. Aleid
- Basic Sciences Department, Deanship of Preparatory Year, University of Ha’il, Hail 2440, Saudi Arabia
| | - Amal H. Al-Bagawi
- Chemistry Department, Faculty of Science, University of Ha’il, Hail 2440, Saudi Arabia
| | - Mohamed A. Fareid
- Basic Sciences Department, Deanship of Preparatory Year, University of Ha’il, Hail 2440, Saudi Arabia
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo 11651, Egypt
| | - Reda Abdel Hameed
- Basic Sciences Department, Deanship of Preparatory Year, University of Ha’il, Hail 2440, Saudi Arabia
- Chemistry Department, Faculty of Science, Al-Azhar University, Cairo 11651, Egypt
| | - Kareem M. Mohamed
- Chemistry Department, Faculty of Science, Helwan University, Cairo 11795, Egypt
| | | | - Alaa Fehaid
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, Mansoura University, Dakahlia 35516, Egypt
| | - Manal M. Hussein
- Zoology and Entomology Department, Faculty of Science, Helwan University, Cairo 11795, Egypt
| | - Shimaa M. H. Aboelnaga
- Basic Sciences Department, Deanship of Preparatory Year, University of Ha’il, Hail 2440, Saudi Arabia
| | - Ahmed E. Abdel Moneim
- Zoology and Entomology Department, Faculty of Science, Helwan University, Cairo 11795, Egypt
| |
Collapse
|
13
|
Xue Q, Xiang Z, Wang S, Cong Z, Gao P, Liu X. Recent advances in nutritional composition, phytochemistry, bioactive, and potential applications of Syzygium aromaticum L. (Myrtaceae). Front Nutr 2022; 9:1002147. [PMID: 36313111 PMCID: PMC9614275 DOI: 10.3389/fnut.2022.1002147] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 09/13/2022] [Indexed: 01/24/2023] Open
Abstract
Syzygium aromaticum is an aromatic plant native to Indonesia, and introduced to tropical regions worldwide. As an ingredient in perfumes, lotions, and food preservation, it is widely used in the food and cosmetic industries. Also, it is used to treat toothache, ulcers, type 2 diabetes, etc. A variety of nutrients such as amino acids, proteins, fatty acids, and vitamins are found in S. aromaticum. In addition to eugenol, isoeugenol, eugenol acetate, β-caryophyllene and α-humulene are the main chemical constituents. The chemical constituents of S. aromaticum exhibit a wide range of bioactivities, such as antioxidant, antitumor, hypoglycemic, immunomodulatory, analgesic, neuroprotective, anti-obesity, antiulcer, etc. This review aims to comprehend the information on its taxonomy and botany, nutritional composition, chemical composition, bioactivities and their mechanisms, toxicity, and potential applications. This review will be a comprehensive scientific resource for those interested in pursuing further research to explore its value in food.
Collapse
Affiliation(s)
- Qing Xue
- College of Pharmaceutical Science, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Zedong Xiang
- College of Pharmaceutical Science, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Shengguang Wang
- College of Pharmaceutical Science, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Zhufeng Cong
- Shandong Provincial Institute of Cancer Prevention and Treatmen, Jinan, Shandong, China
| | - Peng Gao
- College of Pharmaceutical Science, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China,Peng Gao,
| | - Xiaonan Liu
- Chinese Medicine Innovation Research Institute, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China,*Correspondence: Xiaonan Liu,
| |
Collapse
|
14
|
Abbotto E, Scarano N, Piacente F, Millo E, Cichero E, Bruzzone S. Virtual Screening in the Identification of Sirtuins’ Activity Modulators. Molecules 2022; 27:molecules27175641. [PMID: 36080416 PMCID: PMC9457788 DOI: 10.3390/molecules27175641] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 11/23/2022] Open
Abstract
Sirtuins are NAD+-dependent deac(et)ylases with different subcellular localization. The sirtuins’ family is composed of seven members, named SIRT-1 to SIRT-7. Their substrates include histones and also an increasing number of different proteins. Sirtuins regulate a wide range of different processes, ranging from transcription to metabolism to genome stability. Thus, their dysregulation has been related to the pathogenesis of different diseases. In this review, we discussed the pharmacological approaches based on sirtuins’ modulators (both inhibitors and activators) that have been attempted in in vitro and/or in in vivo experimental settings, to highlight the therapeutic potential of targeting one/more specific sirtuin isoform(s) in cancer, neurodegenerative disorders and type 2 diabetes. Extensive research has already been performed to identify SIRT-1 and -2 modulators, while compounds targeting the other sirtuins have been less studied so far. Beside sections dedicated to each sirtuin, in the present review we also included sections dedicated to pan-sirtuins’ and to parasitic sirtuins’ modulators. A special focus is dedicated to the sirtuins’ modulators identified by the use of virtual screening.
Collapse
Affiliation(s)
- Elena Abbotto
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV 1, 16132 Genoa, Italy
| | - Naomi Scarano
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy
| | - Francesco Piacente
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV 1, 16132 Genoa, Italy
| | - Enrico Millo
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV 1, 16132 Genoa, Italy
| | - Elena Cichero
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy
| | - Santina Bruzzone
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV 1, 16132 Genoa, Italy
- Correspondence:
| |
Collapse
|
15
|
Wang Z. Peri-implant crevicular fluid SIRT1 levels decrease in patients with peri-implant inflammatory: A prospective observational study. Transpl Immunol 2022; 74:101659. [PMID: 35781023 DOI: 10.1016/j.trim.2022.101659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 11/18/2022]
Abstract
BACKGROUND A dental Implant is a prosthetic device made of alloplastic materials implanted into the bone to provide retention and support for a dental prosthesis. Sirtuin1 (SIRT1) molecule, a nicotinamide adenine dinucleotide (NAD)-dependent histone deacetylase, regulates a variety of physiological and pathological processes, including oxidative stress, metabolism, cell proliferation, cell differentiation, inflammatory, and apoptosis. We explored whether the expression of SIRT1 correlates in patients receiving implants with peri-implant mucositis (PIM) and peri-implantitis (PI) in comparison to patients with healthy peri-implant area (PIH). METHODS A number of 198 patients with dentition defects were enrolled in the study after their implants were functional for at least 6 months. All 198 subjects were divided into 3 groups: 1) control patients with PIH healthy implants; 2) patients with PIM mucositis; and 3) patients with PI implantitis. To distinguish these three groups, peri-implant crevicular fluid (PICF) was collected by inserting a sterile paper strip into the gap around the implant and the levels of SIRT1 and cytokines were measured by the enzyme linked immunosorbent assay (ELISA). Demographic and clinical data included age, sex, Body Mass Index (BMI), probing depth (PD), plaque index (PLI), bleeding on probing (BOP), oral health impact profile (OHIP-14), history of periodontitis and the use time of implants. RESULTS The PD, PLI, OHIP-14 evaluation scores in patients with periodontitis of PIM mucositis and PI implantitis were all significantly higher than in patients with PIH healthy implants. Overall, the SIRT1 levels in PICF of the PIM and PI patients were significantly lower than of the PIH patients. In comparison with PIM patients, SIRT1 levels of the PI patients were remarkably lower than the PIH patients. Pearson's analysis showed that SIRT1 levels were negatively correlated with levels of interleukin (IL)-6, C-reactive protein (CRP) and IL-1β in patients with PIM and PI. We suggest that SIRT1 levels could serve as a potential diagnostic biomarker of PI or PIM. The PICF levels of SIRT1, CRP, IL-6, IL-1β and the history of periodontitis were the risk factors for patients with peri-implant inflammatory process. CONCLUSION The measurement of SIRT1 expression in PICF may serve as a biomarker for the ongoing inflammatory process in patients with dental implants. The low SIRT1 levels correlated with PI implantitis and PIM mucositis as well as the elevated levels of pro-inflammatory cytokines (CRP, IL-6 and IL-1β).
Collapse
Affiliation(s)
- Zhuo Wang
- Department of Stomatology, Shanghai Oriental Hospital, Shanghai 200120, China.
| |
Collapse
|
16
|
Amir Rawa MS, Mazlan MKN, Ahmad R, Nogawa T, Wahab HA. Roles of Syzygium in Anti-Cholinesterase, Anti-Diabetic, Anti-Inflammatory, and Antioxidant: From Alzheimer's Perspective. PLANTS (BASEL, SWITZERLAND) 2022; 11:1476. [PMID: 35684249 PMCID: PMC9183156 DOI: 10.3390/plants11111476] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/21/2022] [Accepted: 05/26/2022] [Indexed: 11/16/2022]
Abstract
Alzheimer's disease (AD) causes progressive memory loss and cognitive dysfunction. It is triggered by multifaceted burdens such as cholinergic toxicity, insulin resistance, neuroinflammation, and oxidative stress. Syzygium plants are ethnomedicinally used in treating inflammation, diabetes, as well as memory impairment. They are rich in antioxidant phenolic compounds, which can be multi-target neuroprotective agents against AD. This review attempts to review the pharmacological importance of the Syzygium genus in neuroprotection, focusing on anti-cholinesterase, anti-diabetic, anti-inflammatory, and antioxidant properties. Articles published in bibliographic databases within recent years relevant to neuroprotection were reviewed. About 10 species were examined for their anti-cholinesterase capacity. Most studies were conducted in the form of extracts rather than compounds. Syzygium aromaticum (particularly its essential oil and eugenol component) represents the most studied species owing to its economic significance in food and therapy. The molecular mechanisms of Syzygium species in neuroprotection include the inhibition of AChE to correct cholinergic transmission, suppression of pro-inflammatory mediators, oxidative stress markers, RIS production, enhancement of antioxidant enzymes, the restoration of brain ions homeostasis, the inhibition of microglial invasion, the modulation of ß-cell insulin release, the enhancement of lipid accumulation, glucose uptake, and adiponectin secretion via the activation of the insulin signaling pathway. Additional efforts are warranted to explore less studied species, including the Australian and Western Syzygium species. The effectiveness of the Syzygium genus in neuroprotective responses is markedly established, but further compound isolation, in silico, and clinical studies are demanded.
Collapse
Affiliation(s)
- Mira Syahfriena Amir Rawa
- Collaborative Laboratory of Herbal Standardization (CHEST), School of Pharmaceutical Sciences, Universiti Sains Malaysia, Bayan Lepas 11900, Malaysia; (M.S.A.R.); (M.K.N.M.); (R.A.)
- USM-RIKEN Interdisciplinary Collaboration for Advanced Sciences (URICAS), Universiti Sains Malaysia, Gelugor 11800, Malaysia;
| | - Mohd Khairul Nizam Mazlan
- Collaborative Laboratory of Herbal Standardization (CHEST), School of Pharmaceutical Sciences, Universiti Sains Malaysia, Bayan Lepas 11900, Malaysia; (M.S.A.R.); (M.K.N.M.); (R.A.)
| | - Rosliza Ahmad
- Collaborative Laboratory of Herbal Standardization (CHEST), School of Pharmaceutical Sciences, Universiti Sains Malaysia, Bayan Lepas 11900, Malaysia; (M.S.A.R.); (M.K.N.M.); (R.A.)
| | - Toshihiko Nogawa
- USM-RIKEN Interdisciplinary Collaboration for Advanced Sciences (URICAS), Universiti Sains Malaysia, Gelugor 11800, Malaysia;
- Molecular Structure Characterization Unit, RIKEN Center for Sustainable Resource Science, Technology Platform Division, 2-1 Hirosawa, Saitama 351-0198, Japan
| | - Habibah A. Wahab
- Collaborative Laboratory of Herbal Standardization (CHEST), School of Pharmaceutical Sciences, Universiti Sains Malaysia, Bayan Lepas 11900, Malaysia; (M.S.A.R.); (M.K.N.M.); (R.A.)
- USM-RIKEN Interdisciplinary Collaboration for Advanced Sciences (URICAS), Universiti Sains Malaysia, Gelugor 11800, Malaysia;
| |
Collapse
|
17
|
Pradhan R, Singh AK, Kumar P, Bajpai S, Pathak M, Chatterjee P, Dwivedi S, Dey AB, Dey S. Blood Circulatory Level of Seven Sirtuins in Alzheimer's Disease: Potent Biomarker Based on Translational Research. Mol Neurobiol 2022; 59:1440-1451. [PMID: 34993847 DOI: 10.1007/s12035-021-02671-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 11/25/2021] [Indexed: 11/28/2022]
Abstract
Alzheimer's disease (AD) is an accelerating neurodegenerative disorder. Dysfunction of mitochondria and oxidative stress contributes to the pathogenesis of AD. Sirtuins play a role in this pathway and can be a potential marker to study neurodegenerative changes. This study evaluated serum levels of all seven sirtuin (SIRT1-SIRT7) proteins in three study groups: AD, mild cognitive impairment (MCI) and geriatric control (GC) by surface plasmon resonance (SPR) technique. Further, it was validated by the Western blot experiment. ROC analysis was performed to differentiate the study group based on the concentration of serum SIRT proteins. Out of seven sirtuins, serum SIRT1, SIRT3 and SIRT6 levels (mean ± SD) were significantly decreased in AD (1.65 ± 0.56, 3.15 ± 0.28, 3.36 ± 0.32 ng/µl), compared to MCI (2.17 ± 0.39, 3.60 ± 0.51, 3.73 ± 0.48 ng/µl) and GC (2.84 ± 0.47, 4.55 ± 0.48, 4.65 ± 0.55 ng/µl). ROC analysis showed the cut-off value with high sensitivity and specificity for cognitive impairment (AD and MCI). The concentration declined significantly with the disease progression. No specific difference was observed in the case of other SIRTs between the study groups. This study reveals an inverse relation of serum SIRT1, SIRT3 and SIRT6 concentration with AD. ROC analysis showed that these serum proteins have greater accuracy in diagnosing of AD. This is the first report of estimation of all seven serum sirtuins and the clinical relevance of SIRT3 and SIRT6 as serum protein markers for AD.
Collapse
Affiliation(s)
- Rashmita Pradhan
- Department of Geriatric Medicine, AIIMS, Ansari Nagar, New Delhi, 110029, India.
| | | | - Pramod Kumar
- Department of Geriatric Medicine, AIIMS, Ansari Nagar, New Delhi, 110029, India
| | - Swati Bajpai
- Department of Geriatric Medicine, AIIMS, Ansari Nagar, New Delhi, 110029, India
| | - Mona Pathak
- Department of Biostatistics, AIIMS, New Delhi, India
| | - Prasun Chatterjee
- Department of Geriatric Medicine, AIIMS, Ansari Nagar, New Delhi, 110029, India
| | | | - A B Dey
- Department of Geriatric Medicine, AIIMS, Ansari Nagar, New Delhi, 110029, India
| | - Sharmistha Dey
- Department of Biophysics, AIIMS, Ansari Nagar, New Delhi, 110029, India.
| |
Collapse
|
18
|
Kumari S, Singh A, Singh AK, Yadav Y, Bajpai S, Kumar P, Upadhyay AD, Shekhar S, Dwivedi S, Dey AB, Dey S. Circulatory GSK-3β: Blood-Based Biomarker and Therapeutic Target for Alzheimer's Disease. J Alzheimers Dis 2021; 85:249-260. [PMID: 34776454 DOI: 10.3233/jad-215347] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is the progressive brain disorder which degenerates brain cells connection and causes memory loss. Although AD is irreversible, it is not impossible to arrest or slow down the progression of the disease. However, this would only be possible if the disease is diagnosed at an early stage, and early diagnosis requires clear understanding of the pathogenesis at molecular level. Overactivity of GSK-3β and p53 accounts for tau hyperphosphorylation and the formation of amyloid-β plaques. OBJECTIVE Here, we explored GSK-3β and p53 as blood-based biomarkers for early detection of AD. METHODS The levels of GSK-3β, p53, and their phosphorylated states were measured using surface plasmon resonance and verified using western blot in serum from AD, mild cognitive impairment (MCI), and geriatric-control (GC) subjects. The neurotoxic SH-SY5Y cell line was treated with antioxidant Emblica Officinalis (EO) for rescue effect. RESULTS GSK-3β, p53, and their phosphorylated states were significantly over expressed (p > 0.001) in AD and MCI compared to GC and can differentiate AD and MCI from GC. The expression level of GSK-3β and p53 proteins were found to be downregulated in a dose-dependent manner after the treatment with EO in amyloid-b-induced neurotoxic cells. CONCLUSION These proteins can serve as potential blood markers for the diagnosis of AD and EO can suppress their level. This work has translational value and clinical utility in the future.
Collapse
Affiliation(s)
- Shiwani Kumari
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Ambica Singh
- Department of Geriatric Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Abhinay Kumar Singh
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Yudhishthir Yadav
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Swati Bajpai
- Department of Geriatric Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Pramod Kumar
- Department of Geriatric Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Ashish Datt Upadhyay
- Department of Biostatistics, All India Institute of Medical Sciences, New Delhi, India
| | - Shashank Shekhar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Sadanand Dwivedi
- Department of Biostatistics, All India Institute of Medical Sciences, New Delhi, India
| | - A B Dey
- Department of Geriatric Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Sharmistha Dey
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
19
|
Gupta R, Ambasta RK, Kumar P. Multifaced role of protein deacetylase sirtuins in neurodegenerative disease. Neurosci Biobehav Rev 2021; 132:976-997. [PMID: 34742724 DOI: 10.1016/j.neubiorev.2021.10.047] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/28/2021] [Accepted: 10/28/2021] [Indexed: 01/07/2023]
Abstract
Sirtuins, a class III histone/protein deacetylase, is a central regulator of metabolic function and cellular stress response. This plays a pivotal role in the pathogenesis and progression of diseases such as cancer, neurodegeneration, metabolic syndromes, and cardiovascular disease. Sirtuins regulate biological and cellular processes, for instance, mitochondrial biogenesis, lipid and fatty acid oxidation, oxidative stress, gene transcriptional activity, apoptosis, inflammatory response, DNA repair mechanism, and autophagic cell degradation, which are known components for the progression of the neurodegenerative diseases (NDDs). Emerging evidence suggests that sirtuins are the useful molecular targets against NDDs like, Alzheimer's Disease (AD), Parkinson's Disease (PD), Huntington's Disease (HD), and Amyotrophic Lateral Sclerosis (ALS). However, the exact mechanism of neuroprotection mediated through sirtuins remains unsettled. The manipulation of sirtuins activity with its modulators, calorie restriction (CR), and micro RNAs (miR) is a novel therapeutic approach for the treatment of NDDs. Herein, we reviewed the current putative therapeutic role of sirtuins in regulating synaptic plasticity and cognitive functions, which are mediated through the different molecular phenomenon to prevent neurodegeneration. We also explained the implications of sirtuin modulators, and miR based therapies for the treatment of life-threatening NDDs.
Collapse
Affiliation(s)
- Rohan Gupta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042, India
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042, India.
| |
Collapse
|
20
|
Rai N, Upadhyay AD, Goyal V, Dwivedi S, Dey AB, Dey S. Sestrin2 as Serum Protein Marker and Potential Therapeutic Target for Parkinson's Disease. J Gerontol A Biol Sci Med Sci 2021; 75:690-695. [PMID: 31598652 DOI: 10.1093/gerona/glz234] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Indexed: 11/12/2022] Open
Abstract
Sestrin2 (Sesn2) appears to mediate neuroprotection against Parkinson's disease (PD)-associated pathophysiology, however, the mechanism is unknown. This pilot study examines serum Sesn2 level in PD patients and older adult control and also interrogates the rescue effect of Syzygium aromaticum extract on the neurotoxicity by paraquat in neuroblastoma cells. The blood sample was collected from 36 PD patients and 54 older adult control and concentration of serum Sesn2 was measured by surface plasmon resonance and western blot. A significantly elevated level of Sesn2 (p < .0001) was observed in sera of PD group (15.96 ± 2.428 ng/μL) than the control (13.65 ± 2.125 ng/μL) which was further confirmed by western blotting. The receiver operating characteristic (ROC) curve (0.76) determined the threshold value of ≥14.58 ng/μL for differentiating PD from control. The S aromaticum extract exhibited the rescue effect from paraquat induced toxicity in SH-SY5Y cells. Further, these cells showed dose-dependent downregulation of p53, Sesn2, and phosphorylated-AMPK with concomitant increase in phosphorylated-p70S6K level than paraquat-treated cells. The differential level of Sesn2 in study subjects proposes its utility as one of the potential serum markers in PD. The ethanolic extract of S aromaticum may serve as a novel platform for management of PD-associated neurotoxicity.
Collapse
Affiliation(s)
- Nitish Rai
- Department of Biophysics, New Delhi, India
| | | | | | | | - Aparajit Ballav Dey
- Department of Geriatric Medicine, All India Institute of Medical Sciences, New Delhi, India
| | | |
Collapse
|
21
|
Li X, Feng Y, Wang XX, Truong D, Wu YC. The Critical Role of SIRT1 in Parkinson's Disease: Mechanism and Therapeutic Considerations. Aging Dis 2020; 11:1608-1622. [PMID: 33269110 PMCID: PMC7673849 DOI: 10.14336/ad.2020.0216] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 02/16/2020] [Indexed: 12/13/2022] Open
Abstract
Silence information regulator 1 (SIRT1), a member of the sirtuin family, targets histones and many non-histone proteins and participates in various physiological functions. The enzymatic activity of SIRT1 is decreased in patients with Parkinson’s disease (PD), which may reduce their ability to resist neuronal damage caused by various neurotoxins. As far as we know, SIRT1 can induce autophagy by regulating autophagy related proteins such as AMP-activated protein kinase, light chain 3, mammalian target of rapamycin, and forkhead transcription factor 1. Furthermore, SIRT1 can regulate mitochondrial function and inhibit oxidative stress mainly by maintaining peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) in a deacetylated state and thus maintaining a constant level of PGC-1α. Other studies have demonstrated that SIRT1 may play a role in the pathophysiology of PD by regulating neuroinflammation. SIRT1 deacetylases nuclear factor-kappa B and thus reduces its transcriptional activity, inhibits inducible nitric oxide synthase expression, and decreases tumor necrosis factor-alpha and interleukin-6 levels. SIRT1 can also upregulate heat shock protein 70 by deacetylating heat shock factor 1 to increase the degradation of α-synuclein oligomers. Few studies have focused on the relationship between SIRT1 single nucleotide polymorphisms and PD risk, so this topic requires further research. Based on the neuroprotective effects of SIRT1 on PD, many in vitro and in vivo experiments have demonstrated that some SIRT1 activators, notably resveratrol, have potential neuroprotective effects against dopaminergic neuronal damage caused by various neurotoxins. Thus, SIRT1 plays a critical role in PD development and might be a potential target for PD therapy.
Collapse
Affiliation(s)
- Xuan Li
- 1Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Ya Feng
- 1Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Xi-Xi Wang
- 1Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Daniel Truong
- 2The Truong Neurosciences Institute, Orange Coast Memorial Medical Center, Fountain Valley, CA, USA.,3Department of Neurosciences and Psychiatry, University of California, Riverside, CA, USA
| | - Yun-Cheng Wu
- 1Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| |
Collapse
|
22
|
Rajendran K, Chellappan DR, Sankaranarayanan S, Ramakrishnan V, Krishnan UM. Investigations on a polyherbal formulation for treatment of cognitive impairment in a cholinergic dysfunctional rodent model. Neurochem Int 2020; 141:104890. [PMID: 33122033 DOI: 10.1016/j.neuint.2020.104890] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 02/07/2023]
|
23
|
Cao K, Dong YT, Xiang J, Xu Y, Li Y, Song H, Yu WF, Qi XL, Guan ZZ. The neuroprotective effects of SIRT1 in mice carrying the APP/PS1 double-transgenic mutation and in SH-SY5Y cells over-expressing human APP670/671 may involve elevated levels of α7 nicotinic acetylcholine receptors. Aging (Albany NY) 2020; 12:1792-1807. [PMID: 32003755 PMCID: PMC7053601 DOI: 10.18632/aging.102713] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 01/02/2020] [Indexed: 12/20/2022]
Abstract
The aim was to determine whether the neuroprotective effect of SIRT1 in Alzheimer’s disease (AD), due to inhibition of aggregation of the β-amyloid peptide (Aβ), involves activation of α7 nAChR. In present study, four-month-old APP/PS1 mice were administered resveratrol (RSV) or suramin once daily for two months, following which their spatial learning and memory were assessed using the Morris water maze test. Deposits of Aβ in vivo were detected by near-infrared imaging (NIRI) and confocal laser scanning. SH-SY5Y/APPswe cells were treated with RSV, suramin, U0126 or methyllycaconitine (MLA). Levels of proteins and mRNA were determined by Western blotting and qRT-PCR, respectively. The results show that activation of SIRT1 improved their spatial learning and memory and reduced the production and aggregation of Aβ in the hippocampus and cerebral cortex; whereas inhibition of SIRT1 had the opposite effects. In addition, activation of SIRT1 increased the levels of both α7 nAChR and αAPP in the brains these animals. Finally, activation of SIRT1 elevated the levels of pERK1/2, while inhibition of ERK1/2 counteracted the increase in α7 nAChR caused by RSV. These findings indicate that neuroprotection by SIRT1 may involve increasing levels of α7 nAChR through activation of the MAPK/ERK1/2 signaling pathway.
Collapse
Affiliation(s)
- Kun Cao
- Department of Pathology at Guizhou Medical University and Pathology Department in Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, P. R. of China
| | - Yang-Ting Dong
- Key Laboratory of Endemic and Ethnic Diseases of the Ministry of Education of P. R. China (Guizhou Medical University), Guiyang, Guizhou, P. R. of China.,Key Laboratory of Medical Molecular Biology, Guiyang, Guizhou, P. R. of China
| | - Jie Xiang
- Department of Pathology at Guizhou Medical University and Pathology Department in Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, P. R. of China
| | - Yi Xu
- Department of Pathology at Guizhou Medical University and Pathology Department in Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, P. R. of China.,Key Laboratory of Endemic and Ethnic Diseases of the Ministry of Education of P. R. China (Guizhou Medical University), Guiyang, Guizhou, P. R. of China.,Key Laboratory of Medical Molecular Biology, Guiyang, Guizhou, P. R. of China
| | - Yi Li
- Key Laboratory of Endemic and Ethnic Diseases of the Ministry of Education of P. R. China (Guizhou Medical University), Guiyang, Guizhou, P. R. of China.,Key Laboratory of Medical Molecular Biology, Guiyang, Guizhou, P. R. of China
| | - Hui Song
- Key Laboratory of Endemic and Ethnic Diseases of the Ministry of Education of P. R. China (Guizhou Medical University), Guiyang, Guizhou, P. R. of China.,Key Laboratory of Medical Molecular Biology, Guiyang, Guizhou, P. R. of China
| | - Wen-Feng Yu
- Key Laboratory of Endemic and Ethnic Diseases of the Ministry of Education of P. R. China (Guizhou Medical University), Guiyang, Guizhou, P. R. of China.,Key Laboratory of Medical Molecular Biology, Guiyang, Guizhou, P. R. of China
| | - Xiao-Lan Qi
- Key Laboratory of Endemic and Ethnic Diseases of the Ministry of Education of P. R. China (Guizhou Medical University), Guiyang, Guizhou, P. R. of China.,Key Laboratory of Medical Molecular Biology, Guiyang, Guizhou, P. R. of China
| | - Zhi-Zhong Guan
- Department of Pathology at Guizhou Medical University and Pathology Department in Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, P. R. of China.,Key Laboratory of Endemic and Ethnic Diseases of the Ministry of Education of P. R. China (Guizhou Medical University), Guiyang, Guizhou, P. R. of China.,Key Laboratory of Medical Molecular Biology, Guiyang, Guizhou, P. R. of China
| |
Collapse
|
24
|
Induction of p73, Δ133p53, Δ160p53, pAKT lead to neuroprotection via DNA repair by 5-LOX inhibition. Mol Biol Rep 2019; 47:269-274. [PMID: 31659693 DOI: 10.1007/s11033-019-05127-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 10/09/2019] [Indexed: 12/19/2022]
Abstract
The inflammatory process plays a key role in neurodegenerative disorder. The inflammatory molecule, 5-lipooxygenase (5-LOX), protein is involved in the pathologic phenotype of AD which includes Aβ amyloid deposition and tau hyperphosphorylation. This study aims to identify the mechanistic role in neuroprotection by 5-LOX inhibitor in neurotoxic SH-SY5Y cell line model by evaluating different cell survival pathway. The neurotoxic SH-SY5Y cells were developed by the treatment of Aβ25-35. The cells were then treated with 5-LOX peptide inhibitor, YWCS to prevent neurotoxicity reported earlier from our lab. The effect of 5-LOX inhibition on cell survival pathways were determined by western blot experiment with different doses of peptide by using polyclonal anti body of p53, anti-Akt and anti-phosphorylated Akt. Immunoprecipitation and mass spectroscopic studies were done to identify the altered proteins appeared on the blot. Over expression of phosphorylated Akt and 3 bands on p53 lane blot other than p53 were observed. Three bands were identified as isoforms of p53 which correspond to p73, Δ133p53 and Δ160p53 in the cells treated only with 80 µM of YWCS compare to untreated cells. However, no alteration of total p53 and Akt were observed in treated cells. The results exposed the novel mechanistic pathway of neuroprotection by 5-LOX inhibition is likely to be mediated by DNA DSB repair through p53 isoforms and PI3K/Akt pathway. Our finding has opened a new window in the therapeutic approach for the prevention of AD.
Collapse
|