1
|
Eroz I, Kakkar PK, Lazar RA, El-Jawhari J. Mesenchymal Stem Cells in Myelodysplastic Syndromes and Leukaemia. Biomedicines 2024; 12:1677. [PMID: 39200142 PMCID: PMC11351218 DOI: 10.3390/biomedicines12081677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/17/2024] [Accepted: 07/24/2024] [Indexed: 09/01/2024] Open
Abstract
Mesenchymal stem cells (MSCs) are one of the main residents in the bone marrow (BM) and have an essential role in the regulation of haematopoietic stem cell (HSC) differentiation and proliferation. Myelodysplastic syndromes (MDSs) are a group of myeloid disorders impacting haematopoietic stem and progenitor cells (HSCPs) that are characterised by BM failure, ineffective haematopoiesis, cytopenia, and a high risk of transformation through the expansion of MDS clones together with additional genetic defects. It has been indicated that MSCs play anti-tumorigenic roles such as in cell cycle arrest and pro-tumorigenic roles including the induction of metastasis in MDS and leukaemia. Growing evidence has shown that MSCs have impaired functions in MDS, such as decreased proliferation capacity, differentiation ability, haematopoiesis support, and immunomodulation function and increased inflammatory alterations within the BM through some intracellular pathways such as Notch and Wnt and extracellular modulators abnormally secreted by MSCs, including increased expression of inflammatory factors and decreased expression of haematopoietic factors, contributing to the development and progression of MDSs. Therefore, MSCs can be targeted for the treatment of MDSs and leukaemia. However, it remains unclear what drives MSCs to behave abnormally. In this review, dysregulations in MSCs and their contributions to myeloid haematological malignancies will be discussed.
Collapse
Affiliation(s)
- Ilayda Eroz
- Biosciences Department, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK (P.K.K.); (R.A.L.)
| | - Prabneet Kaur Kakkar
- Biosciences Department, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK (P.K.K.); (R.A.L.)
| | - Renal Antoinette Lazar
- Biosciences Department, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK (P.K.K.); (R.A.L.)
| | - Jehan El-Jawhari
- Biosciences Department, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK (P.K.K.); (R.A.L.)
- Clinical Pathology Department, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
2
|
Akbar N, Razzaq SS, Salim A, Haneef K. Mesenchymal Stem Cell-Derived Exosomes and Their MicroRNAs in Heart Repair and Regeneration. J Cardiovasc Transl Res 2024; 17:505-522. [PMID: 37875715 DOI: 10.1007/s12265-023-10449-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/06/2023] [Indexed: 10/26/2023]
Abstract
Mesenchymal stem cells (MSCs) can be differentiated into cardiac, endothelial, and smooth muscle cells. Therefore, MSC-based therapeutic approaches have the potential to deal with the aftermaths of cardiac diseases. However, transplanted stem cells rarely survive in damaged myocardium, proposing that paracrine factors other than trans-differentiation may involve in heart regeneration. Apart from cytokines/growth factors, MSCs secret small, single-membrane organelles named exosomes. The MSC-secreted exosomes are enriched in lipids, proteins, nucleic acids, and microRNA (miRNA). There has been an increasing amount of data that confirmed that MSC-derived exosomes and their active molecule microRNA (miRNAs) regulate signaling pathways involved in heart repair/regeneration. In this review, we systematically present an overview of MSCs, their cardiac differentiation, and the role of MSC-derived exosomes and exosomal miRNAs in heart regeneration. In addition, biological functions regulated by MSC-derived exosomes and exosomal-derived miRNAs in the process of heart regeneration are reviewed.
Collapse
Affiliation(s)
- Nukhba Akbar
- Dr. Zafar H. Zaidi Center for Proteomics, University of Karachi, Karachi, 75270, Pakistan
| | - Syeda Saima Razzaq
- Dr. Zafar H. Zaidi Center for Proteomics, University of Karachi, Karachi, 75270, Pakistan
| | - Asmat Salim
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Kanwal Haneef
- Dr. Zafar H. Zaidi Center for Proteomics, University of Karachi, Karachi, 75270, Pakistan.
| |
Collapse
|
3
|
Yang GD, Ma DS, Ma CY, Bai Y. Research Progress on Cardiac Tissue Construction of Mesenchymal Stem Cells for Myocardial Infarction. Curr Stem Cell Res Ther 2024; 19:942-958. [PMID: 37612870 DOI: 10.2174/1574888x18666230823091017] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/13/2023] [Accepted: 07/26/2023] [Indexed: 08/25/2023]
Abstract
Heart failure is still the main complication affecting the prognosis of acute myocardial infarction (AMI), and mesenchymal stem cells (MSCs) are an effective treatment to replace necrotic myocardium and improve cardiac functioning. However, the transplant survival rate of MSCs still presents challenges. In this review, the biological characteristics of MSCs, the progress of mechanism research in the treatment of myocardial infarction, and the advances in improving the transplant survival rate of MSCs in the replacement of necrotic myocardial infarction are systematically described. From a basic to advanced clinical research, MSC transplants have evolved from a pure injection, an exosome injection, the genetic modification of MSCs prior to injection to the cardiac tissue engineering of MSC patch grafting. This study shows that MSCs have wide clinical applications in the treatment of AMI, suggesting improved myocardial tissue creation. A broader clinical application prospect will be explored and developed to improve the survival rate of MSC transplants and myocardial vascularization.
Collapse
Affiliation(s)
- Guo-Dong Yang
- Department of Cardiac Surgery, The First Hospital of Jilin University, Changchun, 130021, China
| | - Da-Shi Ma
- Department of Cardiac Surgery, The First Hospital of Jilin University, Changchun, 130021, China
| | - Chun-Ye Ma
- Department of Cardiac Surgery, The First Hospital of Jilin University, Changchun, 130021, China
| | - Yang Bai
- Department of Cardiac Surgery, The First Hospital of Jilin University, Changchun, 130021, China
| |
Collapse
|
4
|
Qing J, Guo Q, Lv L, Zhang X, Liu Y, Heng BC, Li Z, Zhang P, Zhou Y. Organoid Culture Development for Skeletal Systems. TISSUE ENGINEERING. PART B, REVIEWS 2023; 29:545-557. [PMID: 37183418 DOI: 10.1089/ten.teb.2023.0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Organoids are widely considered to be ideal in vitro models that have been widely applied in many fields, including regenerative medicine, disease research and drug screening. It is distinguished from other three-dimensional in vitro culture model systems by self-organization and sustainability in long-term culture. The three core components of organoid culture are cells, exogenous factors, and culture matrix. Due to the complexity of bone tissue, and heterogeneity of osteogenic stem/progenitor cells, it is challenging to construct organoids for modeling skeletal systems. In this study, we examine current progress in the development of skeletal system organoid culture systems and analyze the current research status of skeletal stem cells, their microenvironmental factors, and various potential organoid culture matrix candidates to provide cues for future research trajectory in this field. Impact Statement The emergence of organoids has brought new opportunities for the development of many biomedical fields. The bone organoid field still has much room for exploration. This review discusses the characteristics distinguishing organoids from other three-dimensional model systems and examines current progress in the organoid production of skeletal systems. In addition, based on core elements of organoid cultures, three main problems that need to be solved in bone organoid generation are further analyzed. These include the heterogeneity of skeletal stem cells, their microenvironmental factors, and potential organoid culture matrix candidates. This information provides direction for the future research of bone organoids.
Collapse
Affiliation(s)
- Jia Qing
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology, Haidian District, Beijing, China
| | - Qian Guo
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology, Haidian District, Beijing, China
| | - Longwei Lv
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology, Haidian District, Beijing, China
| | - Xiao Zhang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology, Haidian District, Beijing, China
| | - Yunsong Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology, Haidian District, Beijing, China
| | - Boon Chin Heng
- The Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, China
| | - Zheng Li
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology, Haidian District, Beijing, China
| | - Ping Zhang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology, Haidian District, Beijing, China
| | - Yongsheng Zhou
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology, Haidian District, Beijing, China
| |
Collapse
|
5
|
Zhang Y, Zhang C, Li Y, Zhou L, Dan N, Min J, Chen Y, Wang Y. Evolution of biomimetic ECM scaffolds from decellularized tissue matrix for tissue engineering: A comprehensive review. Int J Biol Macromol 2023; 246:125672. [PMID: 37406920 DOI: 10.1016/j.ijbiomac.2023.125672] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/18/2023] [Accepted: 07/01/2023] [Indexed: 07/07/2023]
Abstract
Tissue engineering is essentially a technique for imitating nature. Natural tissues are made up of three parts: extracellular matrix (ECM), signaling systems, and cells. Therefore, biomimetic ECM scaffold is one of the best candidates for tissue engineering scaffolds. Among the many scaffold materials of biomimetic ECM structure, decellularized ECM scaffolds (dECMs) obtained from natural ECM after acellular treatment stand out because of their inherent natural components and microenvironment. First, an overview of the family of dECMs is provided. The principle, mechanism, advances, and shortfalls of various decellularization technologies, including physical, chemical, and biochemical methods are then critically discussed. Subsequently, a comprehensive review is provided on recent advances in the versatile applications of dECMs including but not limited to decellularized small intestinal submucosa, dermal matrix, amniotic matrix, tendon, vessel, bladder, heart valves. And detailed examples are also drawn from scientific research and practical work. Furthermore, we outline the underlying development directions of dECMs from the perspective that tissue engineering scaffolds play an important role as an important foothold and fulcrum at the intersection of materials and medicine. As scaffolds that have already found diverse applications, dECMs will continue to present both challenges and exciting opportunities for regenerative medicine and tissue engineering.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chenyu Zhang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yuwen Li
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lingyan Zhou
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Nianhua Dan
- Key Laboratory of Leather Chemistry and Engineering (Sichuan University), Ministry of Education, Chengdu 610065, China; Research Center of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Jie Min
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yining Chen
- Key Laboratory of Leather Chemistry and Engineering (Sichuan University), Ministry of Education, Chengdu 610065, China; Research Center of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610065, China.
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wang Jiang Road, Chengdu 610065, China
| |
Collapse
|
6
|
Pinto-Cardoso R, Bessa-Andrês C, Correia-de-Sá P, Bernardo Noronha-Matos J. Could hypoxia rehabilitate the osteochondral diseased interface? Lessons from the interplay of hypoxia and purinergic signals elsewhere. Biochem Pharmacol 2023:115646. [PMID: 37321413 DOI: 10.1016/j.bcp.2023.115646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/03/2023] [Accepted: 06/07/2023] [Indexed: 06/17/2023]
Abstract
The osteochondral unit comprises the articular cartilage (90%), subchondral bone (5%) and calcified cartilage (5%). All cells present at the osteochondral unit that is ultimately responsible for matrix production and osteochondral homeostasis, such as chondrocytes, osteoblasts, osteoclasts and osteocytes, can release adenine and/or uracil nucleotides to the local microenvironment. Nucleotides are released by these cells either constitutively or upon plasma membrane damage, mechanical stress or hypoxia conditions. Once in the extracellular space, endogenously released nucleotides can activate membrane-bound purinoceptors. Activation of these receptors is fine-tuning regulated by nucleotides' breakdown by enzymes of the ecto-nucleotidase cascade. Depending on the pathophysiological conditions, both the avascular cartilage and the subchondral bone subsist to significant changes in oxygen tension, which has a tremendous impact on tissue homeostasis. Cell stress due to hypoxic conditions directly influences the expression and activity of several purinergic signalling players, namely nucleotide release channels (e.g. Cx43), NTPDase enzymes and purinoceptors. This review gathers experimental evidence concerning the interplay between hypoxia and the purinergic signalling cascade contributing to osteochondral unit homeostasis. Reporting deviations to this relationship resulting from pathological alterations of articular joints may ultimately unravel novel therapeutic targets for osteochondral rehabilitation. At this point, one can only hypothesize how hypoxia mimetic conditions can be beneficial to the ex vivo expansion and differentiation of osteo- and chondro-progenitors for auto-transplantation and tissue regenerative purposes.
Collapse
Affiliation(s)
- Rui Pinto-Cardoso
- Laboratório de Farmacologia e Neurobiologia; Center for Drug Discovery and Innovative Medicines (MedInUP), Departamento de Imuno-Fisiologia e Farmacologia, Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP)
| | - Catarina Bessa-Andrês
- Laboratório de Farmacologia e Neurobiologia; Center for Drug Discovery and Innovative Medicines (MedInUP), Departamento de Imuno-Fisiologia e Farmacologia, Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP)
| | - Paulo Correia-de-Sá
- Laboratório de Farmacologia e Neurobiologia; Center for Drug Discovery and Innovative Medicines (MedInUP), Departamento de Imuno-Fisiologia e Farmacologia, Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP)
| | - José Bernardo Noronha-Matos
- Laboratório de Farmacologia e Neurobiologia; Center for Drug Discovery and Innovative Medicines (MedInUP), Departamento de Imuno-Fisiologia e Farmacologia, Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP).
| |
Collapse
|
7
|
Noronha-Matos JB, Pinto-Cardoso R, Bessa-Andrês C, Magalhães-Cardoso MT, Ferreirinha F, Costa MA, Marinhas J, Freitas R, Lemos R, Vilaça A, Oliveira A, Pelletier J, Sévigny J, Correia-de-Sá P. Silencing NTPDase3 activity rehabilitates the osteogenic commitment of post-menopausal stem cell bone progenitors. Stem Cell Res Ther 2023; 14:97. [PMID: 37076930 PMCID: PMC10116749 DOI: 10.1186/s13287-023-03315-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 03/29/2023] [Indexed: 04/21/2023] Open
Abstract
BACKGROUND Endogenously released adenine and uracil nucleotides favour the osteogenic commitment of bone marrow-derived mesenchymal stromal cells (BM-MSCs) through the activation of ATP-sensitive P2X7 and UDP-sensitive P2Y6 receptors. Yet, these nucleotides have their osteogenic potential compromised in post-menopausal (Pm) women due to overexpression of nucleotide metabolizing enzymes, namely NTPDase3. This prompted us to investigate whether NTPDase3 gene silencing or inhibition of its enzymatic activity could rehabilitate the osteogenic potential of Pm BM-MSCs. METHODS MSCs were harvested from the bone marrow of Pm women (69 ± 2 years old) and younger female controls (22 ± 4 years old). The cells were allowed to grow for 35 days in an osteogenic-inducing medium in either the absence or the presence of NTPDase3 inhibitors (PSB 06126 and hN3-B3s antibody); pre-treatment with a lentiviral short hairpin RNA (Lenti-shRNA) was used to silence the NTPDase3 gene expression. Immunofluorescence confocal microscopy was used to monitor protein cell densities. The osteogenic commitment of BM-MSCs was assessed by increases in the alkaline phosphatase (ALP) activity. The amount of the osteogenic transcription factor Osterix and the alizarin red-stained bone nodule formation. ATP was measured with the luciferin-luciferase bioluminescence assay. The kinetics of the extracellular ATP (100 µM) and UDP (100 µM) catabolism was assessed by HPLC RESULTS: The extracellular catabolism of ATP and UDP was faster in BM-MSCs from Pm women compared to younger females. The immunoreactivity against NTPDase3 increased 5.6-fold in BM-MSCs from Pm women vs. younger females. Selective inhibition or transient NTPDase3 gene silencing increased the extracellular accumulation of adenine and uracil nucleotides in cultured Pm BM-MSCs. Downregulation of NTPDase3 expression or activity rehabilitated the osteogenic commitment of Pm BM-MSCs measured as increases in ALP activity, Osterix protein cellular content and bone nodule formation; blockage of P2X7 and P2Y6 purinoceptors prevented this effect. CONCLUSIONS Data suggest that NTPDase3 overexpression in BM-MSCs may be a clinical surrogate of the osteogenic differentiation impairment in Pm women. Thus, besides P2X7 and P2Y6 receptors activation, targeting NTPDase3 may represent a novel therapeutic strategy to increase bone mass and reduce the osteoporotic risk of fractures in Pm women.
Collapse
Affiliation(s)
- José Bernardo Noronha-Matos
- Laboratório de Farmacologia e Neurobiologia, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS) - Universidade do Porto (UP), R. Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.
- Center for Drug Discovery and Innovative Medicines (MedInUP), Porto, Portugal.
| | - Rui Pinto-Cardoso
- Laboratório de Farmacologia e Neurobiologia, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS) - Universidade do Porto (UP), R. Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
- Center for Drug Discovery and Innovative Medicines (MedInUP), Porto, Portugal
| | - Catarina Bessa-Andrês
- Laboratório de Farmacologia e Neurobiologia, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS) - Universidade do Porto (UP), R. Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
- Center for Drug Discovery and Innovative Medicines (MedInUP), Porto, Portugal
| | - Maria Teresa Magalhães-Cardoso
- Laboratório de Farmacologia e Neurobiologia, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS) - Universidade do Porto (UP), R. Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
- Center for Drug Discovery and Innovative Medicines (MedInUP), Porto, Portugal
| | - Fátima Ferreirinha
- Laboratório de Farmacologia e Neurobiologia, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS) - Universidade do Porto (UP), R. Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
- Center for Drug Discovery and Innovative Medicines (MedInUP), Porto, Portugal
| | - Maria Adelina Costa
- Laboratório de Farmacologia e Neurobiologia, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS) - Universidade do Porto (UP), R. Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
- Center for Drug Discovery and Innovative Medicines (MedInUP), Porto, Portugal
- Departamento de Química, Instituto de Ciências Biomédicas Abel Salazar - Universidade Do Porto (ICBAS-UP), 4050-313, Porto, Portugal
| | - José Marinhas
- Serviço de Ortopedia e Traumatologia, Centro Hospitalar de Gaia - Espinho, 4434-502, Vila Nova de Gaia, Portugal
| | - Rolando Freitas
- Serviço de Ortopedia e Traumatologia, Centro Hospitalar de Gaia - Espinho, 4434-502, Vila Nova de Gaia, Portugal
| | - Rui Lemos
- Serviço de Ortopedia e Traumatologia, Centro Hospitalar de Gaia - Espinho, 4434-502, Vila Nova de Gaia, Portugal
| | - Adélio Vilaça
- Serviço de Ortopedia, Centro Hospitalar Universitário de Santo António, 4099-001, Porto, Portugal
| | - António Oliveira
- Serviço de Ortopedia, Centro Hospitalar Universitário de Santo António, 4099-001, Porto, Portugal
| | - Julie Pelletier
- Centre de Recherche en Rhumatologie et Immunologie, University Laval, 2325, rue de l'Université Québec, Québec, G1V 0A6, Canada
| | - Jean Sévigny
- Centre de Recherche en Rhumatologie et Immunologie, University Laval, 2325, rue de l'Université Québec, Québec, G1V 0A6, Canada
| | - Paulo Correia-de-Sá
- Laboratório de Farmacologia e Neurobiologia, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS) - Universidade do Porto (UP), R. Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.
- Center for Drug Discovery and Innovative Medicines (MedInUP), Porto, Portugal.
| |
Collapse
|
8
|
Fonseca LN, Bolívar-Moná S, Agudelo T, Beltrán LD, Camargo D, Correa N, Del Castillo MA, Fernández de Castro S, Fula V, García G, Guarnizo N, Lugo V, Martínez LM, Melgar V, Peña MC, Pérez WA, Rodríguez N, Pinzón A, Albarracín SL, Olaya M, Gutiérrez-Gómez ML. Cell surface markers for mesenchymal stem cells related to the skeletal system: A scoping review. Heliyon 2023; 9:e13464. [PMID: 36865479 PMCID: PMC9970931 DOI: 10.1016/j.heliyon.2023.e13464] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/26/2023] [Accepted: 01/31/2023] [Indexed: 02/12/2023] Open
Abstract
Multipotent mesenchymal stromal cells (MSCs) have been described as bone marrow stromal cells, which can form cartilage, bone or hematopoietic supportive stroma. In 2006, the International Society for Cell Therapy (ISCT) established a set of minimal characteristics to define MSCs. According to their criteria, these cells must express CD73, CD90 and CD105 surface markers; however, it is now known they do not represent true stemness epitopes. The objective of the present work was to determine the surface markers for human MSCs associated with skeletal tissue reported in the literature (1994-2021). To this end, we performed a scoping review for hMSCs in axial and appendicular skeleton. Our findings determined the most widely used markers were CD105 (82.9%), CD90 (75.0%) and CD73 (52.0%) for studies performed in vitro as proposed by the ISCT, followed by CD44 (42.1%), CD166 (30.9%), CD29 (27.6%), STRO-1 (17.7%), CD146 (15.1%) and CD271 (7.9%) in bone marrow and cartilage. On the other hand, only 4% of the articles evaluated in situ cell surface markers. Even though most studies use the ISCT criteria, most publications in adult tissues don't evaluate the characteristics that establish a stem cell (self-renewal and differentiation), which will be necessary to distinguish between a stem cell and progenitor populations. Collectively, MSCs require further understanding of their characteristics if they are intended for clinical use.
Collapse
Affiliation(s)
- Luisa Nathalia Fonseca
- Master Student in Biological Sciences - School of Science, Pontificia Universidad Javeriana. Bogotá, Colombia
| | - Santiago Bolívar-Moná
- Medical Student - Stem Cell Research Group – School of Medicine, Pontificia Universidad Javeriana. Bogotá, Colombia
| | - Tatiana Agudelo
- Medical Student - Stem Cell Research Group – School of Medicine, Pontificia Universidad Javeriana. Bogotá, Colombia
| | - Liz Daniela Beltrán
- Medical Student - Stem Cell Research Group – School of Medicine, Pontificia Universidad Javeriana. Bogotá, Colombia
| | - Daniel Camargo
- Medical Student - Stem Cell Research Group – School of Medicine, Pontificia Universidad Javeriana. Bogotá, Colombia
| | - Nestor Correa
- Medical Student - Stem Cell Research Group – School of Medicine, Pontificia Universidad Javeriana. Bogotá, Colombia
| | - María Alexandra Del Castillo
- Medical Student - Stem Cell Research Group – School of Medicine, Pontificia Universidad Javeriana. Bogotá, Colombia
| | | | - Valeria Fula
- Medical Student - Stem Cell Research Group – School of Medicine, Pontificia Universidad Javeriana. Bogotá, Colombia
| | - Gabriela García
- Medical Student - Stem Cell Research Group – School of Medicine, Pontificia Universidad Javeriana. Bogotá, Colombia
| | - Natalia Guarnizo
- Medical Student - Stem Cell Research Group – School of Medicine, Pontificia Universidad Javeriana. Bogotá, Colombia
| | - Valentina Lugo
- Medical Student - Stem Cell Research Group – School of Medicine, Pontificia Universidad Javeriana. Bogotá, Colombia
| | - Liz Mariana Martínez
- Medical Student - Stem Cell Research Group – School of Medicine, Pontificia Universidad Javeriana. Bogotá, Colombia
| | - Verónica Melgar
- Medical Student - Stem Cell Research Group – School of Medicine, Pontificia Universidad Javeriana. Bogotá, Colombia
| | - María Clara Peña
- Medical Student - Stem Cell Research Group – School of Medicine, Pontificia Universidad Javeriana. Bogotá, Colombia
| | - Wilfran Arbey Pérez
- Medical Student - Stem Cell Research Group – School of Medicine, Pontificia Universidad Javeriana. Bogotá, Colombia
| | - Nicolás Rodríguez
- Medical Student - Stem Cell Research Group – School of Medicine, Pontificia Universidad Javeriana. Bogotá, Colombia
| | - Andrés Pinzón
- Department of Orthopedics and Traumatology - School of Medicine, Pontificia Universidad Javeriana. Bogotá, Colombia
| | - Sonia Luz Albarracín
- Department of Nutrition and Biochemistry -School of Science, Pontificia Universidad Javeriana. Bogotá, Colombia
| | - Mercedes Olaya
- Department of Pathology - School of Medicine, Pontificia Universidad Javeriana. Bogotá, Colombia
| | - María Lucía Gutiérrez-Gómez
- Department of Morphology - School of Medicine, Pontificia Universidad Javeriana. Bogotá, Colombia
- Institute of Human Genetics - School of Medicine, Pontificia Universidad Javeriana. Bogotá, Colombia
| |
Collapse
|
9
|
Akasaka Y. The Role of Mesenchymal Stromal Cells in Tissue Repair and Fibrosis. Adv Wound Care (New Rochelle) 2022; 11:561-574. [PMID: 34841889 DOI: 10.1089/wound.2021.0037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Significance: The present review covers an overview of the current understanding of biology of mesenchymal stromal cells (MSCs) and suggests an important role of their differential potential for clinical approaches associated with tissue repair and fibrosis. Recent Advances: Genetic lineage tracing technology has enabled the delineation of cellular hierarchies and examination of MSC cellular origins and myofibroblast sources. This technique has led to the characterization of perivascular MSC populations and suggests that pericytes might provide a local source of tissue-specific MSCs, which can differentiate into tissue-specific cells for tissue repair and fibrosis. Autologous adipose tissue MSCs led to the advance in tissue engineering for regeneration of damaged tissues. Critical Issues: Recent investigation has revealed that perivascular MSCs might be the origin of myofibroblasts during fibrosis development, and perivascular MSCs might be the major source of myofibroblasts in fibrogenic disease. Adipose tissue MSCs combined with cytokines and biomaterials are available in the treatment of soft tissue defect and skin wound healing. Future Directions: Further investigation of the roles of perivascular MSCs may enable new approaches in the treatment of fibrogenic disease; moreover, perivascular MSCs might have potential as an antifibrotic target for fibrogenic disease. Autologous adipose tissue MSCs combined with cytokines and biomaterials will be an alternative method for the treatment of soft tissue defect and skin wound healing.
Collapse
Affiliation(s)
- Yoshikiyo Akasaka
- Division of Research Promotion and Development, Advanced Research Center, Toho University Graduate School of Medicine, Ota-ku, Japan.,Department of Pathology, Toho University School of Medicine, Ota-ku, Japan
| |
Collapse
|
10
|
Marín-Llera JC, Lorda-Diez CI, Hurle JM, Chimal-Monroy J. SCA-1/Ly6A Mesodermal Skeletal Progenitor Subpopulations Reveal Differential Commitment of Early Limb Bud Cells. Front Cell Dev Biol 2021; 9:656999. [PMID: 34336823 PMCID: PMC8322737 DOI: 10.3389/fcell.2021.656999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 06/21/2021] [Indexed: 01/14/2023] Open
Abstract
At early developmental stages, limb bud mesodermal undifferentiated cells are morphologically indistinguishable. Although the identification of several mesodermal skeletal progenitor cell populations has been recognized, in advanced stages of limb development here we identified and characterized the differentiation hierarchy of two new early limb bud subpopulations of skeletal progenitors defined by the differential expression of the SCA-1 marker. Based on tissue localization of the mesenchymal stromal cell-associated markers (MSC-am) CD29, Sca-1, CD44, CD105, CD90, and CD73, we identified, by multiparametric analysis, the presence of cell subpopulations in the limb bud capable of responding to inductive signals differentially, namely, sSca+ and sSca– cells. In concordance with its gene expression profile, cell cultures of the sSca+ subpopulation showed higher osteogenic but lower chondrogenic capacity than those of sSca–. Interestingly, under high-density conditions, fibroblast-like cells in the sSca+ subpopulation were abundant. Gain-of-function employing micromass cultures and the recombinant limb assay showed that SCA-1 expression promoted tenogenic differentiation, whereas chondrogenesis is delayed. This model represents a system to determine cell differentiation and morphogenesis of different cell subpopulations in similar conditions like in vivo. Our results suggest that the limb bud is composed of a heterogeneous population of progenitors that respond differently to local differentiation inductive signals in the early stages of development, where SCA-1 expression may play a permissive role during cell fate.
Collapse
Affiliation(s)
- Jessica Cristina Marín-Llera
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México, México
| | - Carlos Ignacio Lorda-Diez
- Departamento de Anatomía y Biología Celular and IDIVAL, Facultad de Medicina, Universidad de Cantabria, Santander, Spain
| | - Juan Mario Hurle
- Departamento de Anatomía y Biología Celular and IDIVAL, Facultad de Medicina, Universidad de Cantabria, Santander, Spain
| | - Jesús Chimal-Monroy
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México, México
| |
Collapse
|
11
|
Fu Y, Sui B, Xiang L, Yan X, Wu D, Shi S, Hu X. Emerging understanding of apoptosis in mediating mesenchymal stem cell therapy. Cell Death Dis 2021; 12:596. [PMID: 34108448 PMCID: PMC8190192 DOI: 10.1038/s41419-021-03883-6] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 12/18/2022]
Abstract
Mesenchymal stem cell transplantation (MSCT) has been recognized as a potent and promising approach to achieve immunomodulation and tissue regeneration, but the mechanisms of how MSCs exert therapeutic effects remain to be elucidated. Increasing evidence suggests that transplanted MSCs only briefly remain viable in recipients, after which they undergo apoptosis in the host circulation or in engrafted tissues. Intriguingly, apoptosis of infused MSCs has been revealed to be indispensable for their therapeutic efficacy, while recipient cells can also develop apoptosis as a beneficial response in restoring systemic and local tissue homeostasis. It is notable that apoptotic cells produce apoptotic extracellular vesicles (apoEVs), traditionally known as apoptotic bodies (apoBDs), which possess characterized miRnomes and proteomes that contribute to their specialized function and to intercellular communication. Importantly, it has been demonstrated that the impact of apoEVs is long-lasting in health and disease contexts, and they critically mediate the efficacy of MSCT. In this review, we summarize the emerging understanding of apoptosis in mediating MSCT, highlighting the potential of apoEVs as cell-free therapeutics.
Collapse
Affiliation(s)
- Yu Fu
- Fujian Key Laboratory of Developmental and Neural Biology & Southern Center for Biomedical Research, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, 350117, China.,South China Center of Craniofacial Stem Cell Research, Guanghua School and Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, 510055, China
| | - Bingdong Sui
- South China Center of Craniofacial Stem Cell Research, Guanghua School and Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, 510055, China.,Research and Development Center for Tissue Engineering, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Lei Xiang
- South China Center of Craniofacial Stem Cell Research, Guanghua School and Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, 510055, China
| | - Xutong Yan
- South China Center of Craniofacial Stem Cell Research, Guanghua School and Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, 510055, China
| | - Di Wu
- South China Center of Craniofacial Stem Cell Research, Guanghua School and Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, 510055, China
| | - Songtao Shi
- South China Center of Craniofacial Stem Cell Research, Guanghua School and Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, 510055, China.
| | - Xuefeng Hu
- Fujian Key Laboratory of Developmental and Neural Biology & Southern Center for Biomedical Research, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, 350117, China.
| |
Collapse
|
12
|
Aquino JB, Sierra R, Montaldo LA. Diverse cellular origins of adult blood vascular endothelial cells. Dev Biol 2021; 477:117-132. [PMID: 34048734 DOI: 10.1016/j.ydbio.2021.05.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 04/26/2021] [Accepted: 05/14/2021] [Indexed: 12/11/2022]
Abstract
During embryonic stages, vascular endothelial cells (ECs) originate from the mesoderm, at specific extraembryonic and embryonic regions, through a process called vasculogenesis. In the adult, EC renewal/replacement mostly depend on local resident ECs or endothelial progenitor cells (EPCs). Nevertheless, contribution from circulating ECs/EPCs was also reported. In addition, cells lacking from EC/EPC markers with in vitro extended plasticity were shown to originate endothelial-like cells (ELCs). Most of these cells consist of mesenchymal stromal progenitors, which would eventually get mobilized from the bone marrow after injury. Based on that, current knowledge on different mouse and human bone marrow stromal cell (BM-SC) subpopulations, able to contribute with mesenchymal stromal/stem cells (MSCs), is herein reviewed. Such analyses underline an unexpected heterogeneity among sinusoidal LepR+ stromal/CAR cells. For instance, in a recent report a subgroup of LepR+ stromal/CAR progenitors, which express GLAST and is traced in Wnt1Cre;R26RTom mice, was found to contribute with ELCs in vivo. These GLAST + Wnt1+ BM-SCs were shown to get mobilized to the peripheral blood and to contribute with liver regeneration. Other sources of ELCs, such as adipose, neural and dental pulp tissues, were also published. Finally, mechanisms likely involved in the enhanced cellular plasticity properties of bone marrow/adipose tissue stromal cells, able to originate ELCs, are assessed. In the future, strategies to analyze the in vivo expression profile of stromal cells, with MSC properties, in combination with screening of active genomic regions at the single cell-level, during early postnatal development and/or after injury, will likely help understanding properties of these ELC sources.
Collapse
Affiliation(s)
- Jorge B Aquino
- CONICET-Universidad Austral, Instituto de Investigaciones en Medicina Traslacional (IIMT), Developmental Biology & Regenerative Medicine Laboratory, Argentina.
| | - Romina Sierra
- CONICET-Universidad Austral, Instituto de Investigaciones en Medicina Traslacional (IIMT), Developmental Biology & Regenerative Medicine Laboratory, Argentina
| | - Laura A Montaldo
- CONICET-Universidad Austral, Instituto de Investigaciones en Medicina Traslacional (IIMT), Developmental Biology & Regenerative Medicine Laboratory, Argentina
| |
Collapse
|
13
|
Giannakoulas N, Ntanasis-Stathopoulos I, Terpos E. The Role of Marrow Microenvironment in the Growth and Development of Malignant Plasma Cells in Multiple Myeloma. Int J Mol Sci 2021; 22:ijms22094462. [PMID: 33923357 PMCID: PMC8123209 DOI: 10.3390/ijms22094462] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 12/16/2022] Open
Abstract
The development and effectiveness of novel therapies in multiple myeloma have been established in large clinical trials. However, multiple myeloma remains an incurable malignancy despite significant therapeutic advances. Accumulating data have elucidated our understanding of the genetic background of the malignant plasma cells along with the role of the bone marrow microenvironment. Currently, the interaction among myeloma cells and the components of the microenvironment are considered crucial in multiple myeloma pathogenesis. Adhesion molecules, cytokines and the extracellular matrix play a critical role in the interplay among genetically transformed clonal plasma cells and stromal cells, leading to the proliferation, progression and survival of myeloma cells. In this review, we provide an overview of the multifaceted role of the bone marrow microenvironment in the growth and development of malignant plasma cells in multiple myeloma.
Collapse
Affiliation(s)
- Nikolaos Giannakoulas
- Department of Hematology of University Hospital of Larisa, Faculty of Medicine, University of Thessaly, 41110 Larisa, Greece;
| | - Ioannis Ntanasis-Stathopoulos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece;
| | - Evangelos Terpos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece;
- Correspondence:
| |
Collapse
|
14
|
The Role of Bone Marrow Mesenchymal Stem Cell Derived Extracellular Vesicles (MSC-EVs) in Normal and Abnormal Hematopoiesis and Their Therapeutic Potential. J Clin Med 2020; 9:jcm9030856. [PMID: 32245055 PMCID: PMC7141498 DOI: 10.3390/jcm9030856] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/12/2020] [Accepted: 03/17/2020] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal stem cells (MSCs) represent a heterogeneous cellular population responsible for the support, maintenance, and regulation of normal hematopoietic stem cells (HSCs). In many hematological malignancies, however, MSCs are deregulated and may create an inhibitory microenvironment able to induce the disease initiation and/or progression. MSCs secrete soluble factors including extracellular vesicles (EVs), which may influence the bone marrow (BM) microenvironment via paracrine mechanisms. MSC-derived EVs (MSC-EVs) may even mimic the effects of MSCs from which they originate. Therefore, MSC-EVs contribute to the BM homeostasis but may also display multiple roles in the induction and maintenance of abnormal hematopoiesis. Compared to MSCs, MSC-EVs have been considered a more promising tool for therapeutic purposes including the prevention and treatment of Graft Versus Host Disease (GVHD) following allogenic HSC transplantation (HSCT). There are, however, still unanswered questions such as the molecular and cellular mechanisms associated with the supportive effect of MSC-EVs, the impact of the isolation, purification, large-scale production, storage conditions, MSC source, and donor characteristics on MSC-EV biological effects as well as the optimal dose and safety for clinical usage. This review summarizes the role of MSC-EVs in normal and malignant hematopoiesis and their potential contribution in treating GVHD.
Collapse
|
15
|
Emerging Role of Mesenchymal Stromal Cell-Derived Extracellular Vesicles in Pathogenesis of Haematological Malignancies. Stem Cells Int 2019; 2019:6854080. [PMID: 31281380 PMCID: PMC6589251 DOI: 10.1155/2019/6854080] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 03/11/2019] [Indexed: 02/07/2023] Open
Abstract
Homoeostasis of bone marrow microenvironment depends on a precise balance between cell proliferation and death, which is supported by the cellular-extracellular matrix crosstalk. Multipotent mesenchymal stromal cells (MSC) are the key elements to provide the specialized bone marrow microenvironment by supporting, maintaining, and regulating the functions and fate of haematopoietic stem cells. Despite the great potential of MSC for cell therapy in several diseases due to their regenerative, immunomodulatory, and anti-inflammatory properties, they can also contribute to modulate tumor microenvironment. The extracellular vesicles that comprise exosomes and microvesicles are important mediators of intercellular communication due to their ability to change phenotype and physiology of different cell types. These vesicles may interact not only with neighbouring cells but also with cells from distant tissues to either maintain tissue homoeostasis or participate in disease pathogenesis. This review focuses on the current knowledge about the physiological role of MSC-extracellular vesicles, as well as their deregulation in haematological malignancies and their potential applications as biomarkers for diagnosis, progression, and treatment monitoring of such diseases.
Collapse
|
16
|
Merryweather-Clarke AT, Cook D, Lara BJ, Hua P, Repapi E, Ashley N, Lim SY, Watt SM. Does osteogenic potential of clonal human bone marrow mesenchymal stem/stromal cells correlate with their vascular supportive ability? Stem Cell Res Ther 2018; 9:351. [PMID: 30567594 PMCID: PMC6300038 DOI: 10.1186/s13287-018-1095-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 11/28/2018] [Accepted: 11/30/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Human bone marrow-derived mesenchymal stem/stromal cells (hBM MSCs) have multiple functions, critical for skeletal formation and function. Their functional heterogeneity, however, represents a major challenge for their isolation and in developing potency and release assays to predict their functionality prior to transplantation. Additionally, potency, biomarker profiles and defining mechanisms of action in a particular clinical setting are increasing requirements of Regulatory Agencies for release of hBM MSCs as Advanced Therapy Medicinal Products for cellular therapies. Since the healing of bone fractures depends on the coupling of new blood vessel formation with osteogenesis, we hypothesised that a correlation between the osteogenic and vascular supportive potential of individual hBM MSC-derived CFU-F (colony forming unit-fibroblastoid) clones might exist. METHODS We tested this by assessing the lineage (i.e. adipogenic (A), osteogenic (O) and/or chondrogenic (C)) potential of individual hBM MSC-derived CFU-F clones and determining if their osteogenic (O) potential correlated with their vascular supportive profile in vitro using lineage differentiation assays, endothelial-hBM MSC vascular co-culture assays and transcriptomic (RNAseq) analyses. RESULTS Our results demonstrate that the majority of CFU-F (95%) possessed tri-lineage, bi-lineage or uni-lineage osteogenic capacity, with 64% of the CFU-F exhibiting tri-lineage AOC potential. We found a correlation between the osteogenic and vascular tubule supportive activity of CFU-F clones, with the strength of this association being donor dependent. RNAseq of individual clones defined gene fingerprints relevant to this correlation. CONCLUSIONS This study identified a donor-dependent correlation between osteogenic and vascular supportive potential of hBM MSCs and important gene signatures that support these functions that are relevant to their bone regenerative properties.
Collapse
Affiliation(s)
- Alison T. Merryweather-Clarke
- Stem Cell Research, Nuffield Division of Clinical Laboratory Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9BQ UK
- Stem Cell Research, NHS Blood and Transplant, John Radcliffe Hospital, Oxford, OX3 9BQ UK
| | - David Cook
- Stem Cell Research, Nuffield Division of Clinical Laboratory Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9BQ UK
- Stem Cell Research, NHS Blood and Transplant, John Radcliffe Hospital, Oxford, OX3 9BQ UK
| | - Barbara Joo Lara
- Stem Cell Research, Nuffield Division of Clinical Laboratory Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9BQ UK
- Stem Cell Research, NHS Blood and Transplant, John Radcliffe Hospital, Oxford, OX3 9BQ UK
| | - Peng Hua
- Stem Cell Research, Nuffield Division of Clinical Laboratory Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9BQ UK
- Stem Cell Research, NHS Blood and Transplant, John Radcliffe Hospital, Oxford, OX3 9BQ UK
- Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, Oxford, OX3 9BQ UK
| | - Emmanouela Repapi
- Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, Oxford, OX3 9BQ UK
| | - Neil Ashley
- Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, Oxford, OX3 9BQ UK
| | - Shiang Y. Lim
- Department of Surgery, University of Melbourne, Fitzroy, Victoria 3065 Australia
- O’Brien Institute Department, St. Vincent’s Institute of Medical Research, Fitzroy, Victoria 3065 Australia
| | - Suzanne M. Watt
- Stem Cell Research, Nuffield Division of Clinical Laboratory Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9BQ UK
- Stem Cell Research, NHS Blood and Transplant, John Radcliffe Hospital, Oxford, OX3 9BQ UK
| |
Collapse
|
17
|
Nicodemou A, Danisovic L. Mesenchymal stromal/stem cell separation methods: concise review. Cell Tissue Bank 2017; 18:443-460. [PMID: 28821996 DOI: 10.1007/s10561-017-9658-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 08/16/2017] [Indexed: 12/21/2022]
Abstract
Mesenchymal stem (stromal) cells (MSCs) possess unique biological characteristics such as plasticity, long term self-renewal, secretion of various bioactive molecules and ability of active migration to the diseased tissues that make them unique tool for regenerative medicine, nowadays. Until now MSCs were successfully derived from many tissue sources including bone marrow, umbilical cord, adipose tissue, dental pulp etc. The crucial step prior to their in vitro expansion, banking or potential clinical application is their separation. This review article aims to briefly describe the main MSCs separations techniques currently available, their basic principles, as well as their advantages and limits. In addition the attention is paid to the markers presently applicable for immunoaffinity-based separation of MSCs from different tissues and organs.
Collapse
Affiliation(s)
- Andreas Nicodemou
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08, Bratislava, Slovakia
| | - Lubos Danisovic
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08, Bratislava, Slovakia.
- Regenmed Ltd., Medená 29, 811 08, Bratislava, Slovakia.
| |
Collapse
|
18
|
Role of Mesenchymal Stem Cells in Cancer Development and Their Use in Cancer Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1083:45-62. [DOI: 10.1007/5584_2017_64] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
19
|
Microlens topography combined with vascular endothelial growth factor induces endothelial differentiation of human mesenchymal stem cells into vasculogenic progenitors. Biomaterials 2017; 131:68-85. [DOI: 10.1016/j.biomaterials.2017.03.036] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 03/09/2017] [Accepted: 03/23/2017] [Indexed: 02/06/2023]
|
20
|
Extracellular matrix and α 5β 1 integrin signaling control the maintenance of bone formation capacity by human adipose-derived stromal cells. Sci Rep 2017; 7:44398. [PMID: 28290502 PMCID: PMC5349595 DOI: 10.1038/srep44398] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 02/07/2017] [Indexed: 02/07/2023] Open
Abstract
Stromal vascular fraction (SVF) cells of human adipose tissue have the capacity to generate osteogenic grafts with intrinsic vasculogenic properties. However, adipose-derived stromal/stem cells (ASC), even after minimal monolayer expansion, display poor osteogenic capacity in vivo. We investigated whether ASC bone-forming capacity may be maintained by culture within a self-produced extracellular matrix (ECM) that recapitulates the native environment. SVF cells expanded without passaging up to 28 days (Unpass-ASC) deposited a fibronectin-rich extracellular matrix and displayed greater clonogenicity and differentiation potential in vitro compared to ASC expanded only for 6 days (P0-ASC) or for 28 days with regular passaging (Pass-ASC). When implanted subcutaneously, Unpass-ASC produced bone tissue similarly to SVF cells, in contrast to P0- and Pass-ASC, which mainly formed fibrous tissue. Interestingly, clonogenic progenitors from native SVF and Unpass-ASC expressed low levels of the fibronectin receptor α5 integrin (CD49e), which was instead upregulated in P0- and Pass-ASC. Mechanistically, induced activation of α5β1 integrin in Unpass-ASC led to a significant loss of bone formation in vivo. This study shows that ECM and regulation of α5β1-integrin signaling preserve ASC progenitor properties, including bone tissue-forming capacity, during in vitro expansion.
Collapse
|
21
|
Cleary MA, Narcisi R, Focke K, van der Linden R, Brama PAJ, van Osch GJVM. Expression of CD105 on expanded mesenchymal stem cells does not predict their chondrogenic potential. Osteoarthritis Cartilage 2016; 24:868-72. [PMID: 26687821 DOI: 10.1016/j.joca.2015.11.018] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 11/11/2015] [Accepted: 11/24/2015] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Total bone marrow-derived mesenchymal stem cell (BMSC) populations differ in their potential to undergo chondrogenesis, with individual BMSCs differing in their chondrogenic capacity. The aim of this study was to explore the use of CD105 as a marker to isolate a chondrogenic subpopulation of BMSCs from the total, heterogeneous population. DESIGN BMSCs were isolated from patients undergoing total hip replacement and following expansion (Passage 1-Passage 5), CD105 expression was investigated by FACS analysis. FACS was also used to sort BMSCs based on the presence of CD105 (CD105(+)/CD105(-)) or their amount of CD105 expression (CD105(Bright)/CD105(Dim)). After 3 or 5 weeks of differentiation, chondrogenic potential was determined by thionine staining for glycosaminoglycan (GAG) content and by detection of collagen type II using immunohistochemistry. RESULTS Expanded total BMSC populations were composed almost exclusively of CD105(+) cells, the percentage of which did not correlate to subsequent chondrogenic potential; chondrogenic potential was observed to diminish with culture although CD105 expression remained stable. Similarly, differences in chondrogenic potential were observed between donors despite similar levels of CD105(+) BMSCs. Comparison of CD105(Bright) and CD105(Dim) BMSCs did not reveal a subpopulation with superior chondrogenic potential. CONCLUSIONS Chondrogenic potential of BMSCs is often linked to CD105 expression. This study demonstrates that CD105 expression on culture expanded BMSC populations does not associate with a chondroprogenitor phenotype and CD105 should not be pursued as a marker to obtain a chondroprogenitor population from BMSCs.
Collapse
Affiliation(s)
- M A Cleary
- School of Veterinary Medicine, Veterinary Science Centre, University College Dublin, Belfield, Dublin 4, Ireland; Department of Orthopaedics, Erasmus MC, University Medical Centre, 3015 CN Rotterdam, The Netherlands.
| | - R Narcisi
- Department of Orthopaedics, Erasmus MC, University Medical Centre, 3015 CN Rotterdam, The Netherlands.
| | - K Focke
- Department of Orthopaedics, Erasmus MC, University Medical Centre, 3015 CN Rotterdam, The Netherlands.
| | - R van der Linden
- Erasmus MC Stem Cell and Regenerative Medicine Institute, Department of Cell Biology, Erasmus MC, University Medical Centre, 3015 CN Rotterdam, The Netherlands.
| | - P A J Brama
- School of Veterinary Medicine, Veterinary Science Centre, University College Dublin, Belfield, Dublin 4, Ireland.
| | - G J V M van Osch
- Department of Orthopaedics, Erasmus MC, University Medical Centre, 3015 CN Rotterdam, The Netherlands; Department of Otorhinolaryngology, Erasmus MC, University Medical Centre, 3015 CN Rotterdam, The Netherlands.
| |
Collapse
|
22
|
Noronha-Matos JB, Correia-de-Sá P. Mesenchymal Stem Cells Ageing: Targeting the "Purinome" to Promote Osteogenic Differentiation and Bone Repair. J Cell Physiol 2016; 231:1852-61. [PMID: 26754327 DOI: 10.1002/jcp.25303] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Accepted: 01/07/2016] [Indexed: 12/11/2022]
Abstract
Mesenchymal stem cells (MSCs) are multipotent cells that can differentiate into bone forming cells. Such ability is compromised in elderly individuals resulting in bone disorders such as osteoporosis, also limiting their clinical usage for cell transplantation and bone tissue engineering strategies. In bone marrow niches, adenine and uracil nucleotides are important local regulators of osteogenic differentiation of MSCs. Nucleotides can be released to the extracellular milieu under both physiological and pathological conditions via (1) membrane cell damage, (2) vesicle exocytosis, (3) ATP-binding cassette transporters, and/or (4) facilitated diffusion through maxi-anion channels, hemichannels or ligand-gated receptor pores. Nucleotides and their derivatives act via adenosine P1 (A1 , A2A , A2B , and A3 ) and nucleotide-sensitive P2 purinoceptors comprising ionotropic P2X and G-protein-coupled P2Y receptors. Purinoceptors activation is terminated by membrane-bound ecto-nucleotidases and other ecto-phosphatases, which rapidly hydrolyse extracellular nucleotides to their respective nucleoside 5'-di- and mono-phosphates, nucleosides and free phosphates, or pyrophosphates. Current knowledge suggests that different players of the "purinome" cascade, namely nucleotide release sites, ecto-nucleotidases and purinoceptors, orchestrate to fine-tuning regulate the activity of MSCs in the bone microenvironment. Increasing studies, using osteoprogenitor cell lines, animal models and, more recently, non-modified MSCs from postmenopausal women, raised the possibility to target chief components of the purinergic signaling pathway to regenerate the ability of aged MSCs to differentiate into functional osteoblasts. This review summarizes the main findings of those studies, prompting for novel therapeutic strategies to control ageing disorders where bone destruction exceeds bone formation, like osteoporosis, rheumatoid arthritis, and fracture mal-union. J. Cell. Physiol. 231: 1852-1861, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- J B Noronha-Matos
- Laboratório de Farmacologia e Neurobiologia-Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas Abel Salazar-Universidade do Porto (ICBAS-UP), Portugal
| | - P Correia-de-Sá
- Laboratório de Farmacologia e Neurobiologia-Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas Abel Salazar-Universidade do Porto (ICBAS-UP), Portugal
| |
Collapse
|
23
|
Abstract
Mesenchymal stromal cells (MSCs) are heterogeneous and primitive cells discovered first in the bone marrow (BM). They have putative roles in maintaining tissue homeostasis and are increasingly recognized as components of stem cell niches, which are best defined in the blood. The absence of in vivo MSC markers has limited our ability to track their behavior in vivo and draw comparisons with in vitro observations. Here we review the historical background of BM-MSCs, advances made in their prospective isolation, their developmental origin and contribution to maintaining subsets of hematopoietic cells, and how mesenchymal cells contribute to other stem cell niches.
Collapse
Affiliation(s)
- Youmna Kfoury
- Center for Regenerative Medicine and MGH Cancer Center, Massachusetts General Hospital, Department of Stem Cell and Regenerative Biology and Harvard Stem Cell Institute, Harvard University, Boston, MA 02114, USA
| | - David T Scadden
- Center for Regenerative Medicine and MGH Cancer Center, Massachusetts General Hospital, Department of Stem Cell and Regenerative Biology and Harvard Stem Cell Institute, Harvard University, Boston, MA 02114, USA.
| |
Collapse
|
24
|
Abbayya K, Zope SA, Naduwinmani S, Pisal A, Puthanakar N. Cell- and Gene- Based Therapeutics for Periodontal Regeneration. Int J Prev Med 2015; 6:110. [PMID: 26682031 PMCID: PMC4671162 DOI: 10.4103/2008-7802.169080] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 04/27/2015] [Indexed: 11/30/2022] Open
Abstract
Periodontitis is a disease of the periodontium, characterized by loss of connective tissue attachment and supporting the alveolar bone. Therefore, to regenerate these lost tissues of the periodontium researchers have included a variety of surgical procedures including grafting materials growth factors and the use of barrier membranes, ultimately resulting into regeneration that is biologically possible but clinically unpredictable. Recently a newer approach of delivering DNA plasmids as therapeutic agents is gaining special attention and is called gene delivery method. Gene therapy being considered a novel approach have a potential to channel their signals in a very systematic and controlled manner thereby providing encoded proteins at all stages of tissue regeneration. The aim of this review was to enlighten a view on the application involving gene delivery and tissue engineering in periodontal regeneration.
Collapse
Affiliation(s)
- Keshava Abbayya
- Department of Periodontology, School of Dental Sciences, Krishna Institute of Medical Sciences Deemed University, Karad, Maharashtra, India
| | - Sameer Anil Zope
- Department of Periodontology, School of Dental Sciences, Krishna Institute of Medical Sciences Deemed University, Karad, Maharashtra, India
| | - Sanjay Naduwinmani
- Department of Orthodontics, Maratha Mandal Dental College, Belgaum, Karnataka, India
| | - Apurva Pisal
- Department of Periodontology, School of Dental Sciences, Krishna Institute of Medical Sciences Deemed University, Karad, Maharashtra, India
| | - Nagraj Puthanakar
- Department of Prosthodontics, A.C.P.M. Dental College, Dhule, Maharashtra, India
| |
Collapse
|
25
|
Prospective isolation of resident adult human mesenchymal stem cell population from multiple organs. Int J Hematol 2015; 103:138-44. [PMID: 26676805 DOI: 10.1007/s12185-015-1921-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 12/01/2015] [Accepted: 12/02/2015] [Indexed: 12/22/2022]
Abstract
Mesenchymal stem/stromal cells (MSCs) have the potential to form colonies in culture and reside in adult tissues. Because MSCs have been defined using cells cultured in vitro, discrepancies have arisen between studies concerning their properties. There are also differences between populations obtained using different isolation methods. This review article focuses on recent developments in the identification of novel MSC markers for the in vivo localization and prospective isolation of human MSCs. The prospective isolation method described in this study represents an important strategy for the isolation of MSCs in a short period of time, and may find applications for regenerative medicine. Purified MSCs can be tailored according to their intended clinical therapeutic applications. Lineage tracing methods define the MSC phenotype and can be used to investigate the physiological roles of MSCs in vivo. These findings may facilitate the development of effective stem cell treatments.
Collapse
|
26
|
Lee MW, Ryu S, Kim DS, Sung KW, Koo HH, Yoo KH. Strategies to improve the immunosuppressive properties of human mesenchymal stem cells. Stem Cell Res Ther 2015; 6:179. [PMID: 26445096 PMCID: PMC4596374 DOI: 10.1186/s13287-015-0178-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are of particular interest for the treatment of immune-related diseases because of their immunosuppressive capacities. However, few clinical trials of MSCs have yielded satisfactory results. A number of clinical trials using MSCs are currently in progress worldwide. Unfortunately, protocols and methods, including optimized culture conditions for the harvest of MSCs, have not been standardized. In this regard, complications in the ex vivo expansion of MSCs and MSC heterogeneity have been implicated in the failure of clinical trials. In this review, potential strategies to obtain MSCs with improved immunosuppressive properties and the potential roles of specific immunomodulatory genes, which are differentially upregulated in certain culture conditions, will be discussed.
Collapse
Affiliation(s)
- Myoung Woo Lee
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Irwon-Dong, Gangnam-Gu, Seoul, 135-710, Korea
| | - Somi Ryu
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Irwon-Dong, Gangnam-Gu, Seoul, 135-710, Korea
| | - Dae Seong Kim
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Irwon-Dong, Gangnam-Gu, Seoul, 135-710, Korea
| | - Ki Woong Sung
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Irwon-Dong, Gangnam-Gu, Seoul, 135-710, Korea
| | - Hong Hoe Koo
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Irwon-Dong, Gangnam-Gu, Seoul, 135-710, Korea. .,Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, 50 Irwon-Dong, Gangnam-Gu, Seoul, 135-710, Korea.
| | - Keon Hee Yoo
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Irwon-Dong, Gangnam-Gu, Seoul, 135-710, Korea. .,Department of Medical Device Management and Research, SAIHST, Sungkyunkwan University, 50 Irwon-Dong, Gangnam-Gu, Seoul, 135-710, Korea.
| |
Collapse
|
27
|
Páll E, Florea A, Soriţău O, Cenariu M, Petruţiu AS, Roman A. Comparative Assessment of Oral Mesenchymal Stem Cells Isolated from Healthy and Diseased Tissues. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2015; 21:1249-1263. [PMID: 26315895 DOI: 10.1017/s1431927615014749] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The aim of the present study was to isolate human mesenchymal stem cells (MSCs) from palatal connective and periodontal granulation tissues and to comparatively evaluate their properties. MSCs were isolated using the explant culture method. Adherence to plastic, specific antigen makeup, multipotent differentiation potential, functionality, and ultrastructural characteristics were investigated. The frequency of colony-forming unit fibroblasts for palatal-derived mesenchymal stem cells (pMSCs) was significantly higher than that of granulation tissue-derived mesenchymal stem cells (gtMSCs). A significantly higher population doubling time and lower migration potential were recorded for gtMSCs than for pMSCs. Both cell lines were positive for CD105, CD73, CD90, CD44, and CD49f, and negative for CD34, CD45, and HLA-DR, but the level of expression was different. MSCs from both sources were relatively uniform in their ultrastructure. Generally, both cell lines possessed a large, irregular-shaped euchromatic nucleus, and cytoplasm rich in mitochondria, lysosomes, and endoplasmic reticulum. The periphery of the plasma membrane displayed many small filopodia. MSCs from both cell lines were successfully differentiated into osteogenic, adiopogenic, and chondrogenic lineages. Both healthy and diseased tissues may be considered as valuable sources of MSCs for regenerative medicine owing to the high acceptance and fewer complications during harvesting.
Collapse
Affiliation(s)
- Emöke Páll
- 1Department of Reproduction,Obstetrics and Veterinary Gynecology, Faculty of Veterinary Medicine,University of Agricultural Sciences and Veterinary Medicine,3-5 Mănăştur St.,400372 Cluj-Napoca,Romania
| | - Adrian Florea
- 3Department of Cell and Molecular Biology, Faculty of Medicine,"Iuliu Haţieganu" University of Medicine and Pharmacy,6 L. Pasteur St.,400349 Cluj-Napoca,Romania
| | - Olga Soriţău
- 4Laboratory of Radiotherapy, Tumor and Radiobiology,Prof. Dr. "Ion Chiricuţă" Oncology Institute,34-36 I. Creangă St.,400015 Cluj-Napoca,Romania
| | - Mihai Cenariu
- 1Department of Reproduction,Obstetrics and Veterinary Gynecology, Faculty of Veterinary Medicine,University of Agricultural Sciences and Veterinary Medicine,3-5 Mănăştur St.,400372 Cluj-Napoca,Romania
| | - Adrian S Petruţiu
- 2Department of Periodontology, Faculty of Dental Medicine,"Iuliu Haţieganu" University of Medicine and Pharmacy,15 V. Babeş St.,400012 Cluj-Napoca,Romania
| | - Alexandra Roman
- 2Department of Periodontology, Faculty of Dental Medicine,"Iuliu Haţieganu" University of Medicine and Pharmacy,15 V. Babeş St.,400012 Cluj-Napoca,Romania
| |
Collapse
|
28
|
Jones E, Schäfer R. Where is the common ground between bone marrow mesenchymal stem/stromal cells from different donors and species? Stem Cell Res Ther 2015; 6:143. [PMID: 26282627 PMCID: PMC4539918 DOI: 10.1186/s13287-015-0144-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) feature promising potential for cellular therapies, yet significant progress in development of MSC therapeutics and assays is hampered because of remarkable MSC heterogeneity in vivo and in vitro. This heterogeneity poses challenges for standardization of MSC characterization and potency assays as well as for MSC study comparability and manufacturing. This review discusses promising marker combinations for prospective MSC subpopulation enrichment and expansion, and reflects MSC phenotype changes due to environment and age. In order to address animal modelling in MSC biology, comparison of mouse and human MSC markers highlights current common ground of MSCs between species.
Collapse
Affiliation(s)
- Elena Jones
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, Leeds University, Room 5.24 Clinical Sciences Building, St James's University Hospital, Leeds, LS9 7TF, UK.
| | - Richard Schäfer
- Institute for Transfusion Medicine and Immunohaematology, German Red Cross Blood Donor Service, Baden-Württemberg-Hessen gGmbH, Johann-Wolfgang-Goethe University Hospital, Sandhofstrasse 1, D-60528, Frankfurt am Main, Germany.
| |
Collapse
|
29
|
Kamata M, Okitsu Y, Fujiwara T, Kanehira M, Nakajima S, Takahashi T, Inoue A, Fukuhara N, Onishi Y, Ishizawa K, Shimizu R, Yamamoto M, Harigae H. GATA2 regulates differentiation of bone marrow-derived mesenchymal stem cells. Haematologica 2014; 99:1686-96. [PMID: 25150255 DOI: 10.3324/haematol.2014.105692] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The bone marrow microenvironment comprises multiple cell niches derived from bone marrow mesenchymal stem cells. However, the molecular mechanism of bone marrow mesenchymal stem cell differentiation is poorly understood. The transcription factor GATA2 is indispensable for hematopoietic stem cell function as well as other hematopoietic lineages, suggesting that it may maintain bone marrow mesenchymal stem cells in an immature state and also contribute to their differentiation. To explore this possibility, we established bone marrow mesenchymal stem cells from GATA2 conditional knockout mice. Differentiation of GATA2-deficient bone marrow mesenchymal stem cells into adipocytes induced accelerated oil-drop formation. Further, GATA2 loss- and gain-of-function analyses based on human bone marrow mesenchymal stem cells confirmed that decreased and increased GATA2 expression accelerated and suppressed bone marrow mesenchymal stem cell differentiation to adipocytes, respectively. Microarray analysis of GATA2 knockdowned human bone marrow mesenchymal stem cells revealed that 90 and 189 genes were upregulated or downregulated by a factor of 2, respectively. Moreover, gene ontology analysis revealed significant enrichment of genes involved in cell cycle regulation, and the number of G1/G0 cells increased after GATA2 knockdown. Concomitantly, cell proliferation was decreased by GATA2 knockdown. When GATA2 knockdowned bone marrow mesenchymal stem cells as well as adipocytes were cocultured with CD34-positive cells, hematopoietic stem cell frequency and colony formation decreased. We confirmed the existence of pathological signals that decrease and increase hematopoietic cell and adipocyte numbers, respectively, characteristic of aplastic anemia, and that suppress GATA2 expression in hematopoietic stem cells and bone marrow mesenchymal stem cells.
Collapse
Affiliation(s)
- Mayumi Kamata
- Departments of Hematology and Rheumatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoko Okitsu
- Departments of Hematology and Rheumatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tohru Fujiwara
- Departments of Hematology and Rheumatology, Tohoku University Graduate School of Medicine, Sendai, Japan Molecular Hematology/Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masahiko Kanehira
- Departments of Hematology and Rheumatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shinji Nakajima
- Departments of Hematology and Rheumatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Taro Takahashi
- Departments of Hematology and Rheumatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ai Inoue
- Departments of Hematology and Rheumatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Noriko Fukuhara
- Departments of Hematology and Rheumatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yasushi Onishi
- Departments of Hematology and Rheumatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kenichi Ishizawa
- Departments of Hematology and Rheumatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ritsuko Shimizu
- Molecular Hematology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masayuki Yamamoto
- Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hideo Harigae
- Departments of Hematology and Rheumatology, Tohoku University Graduate School of Medicine, Sendai, Japan Molecular Hematology/Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
30
|
Yamawaki-Ogata A, Hashizume R, Fu XM, Usui A, Narita Y. Mesenchymal stem cells for treatment of aortic aneurysms. World J Stem Cells 2014; 6:278-287. [PMID: 25067996 PMCID: PMC4109132 DOI: 10.4252/wjsc.v6.i3.278] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 01/21/2014] [Accepted: 05/08/2014] [Indexed: 02/07/2023] Open
Abstract
An aortic aneurysm (AA) is a silent but life-threatening disease that involves rupture. It occurs mainly in aging and severe atherosclerotic damage of the aortic wall. Even though surgical intervention is effective to prevent rupture, surgery for the thoracic and thoraco-abdominal aorta is an invasive procedure with high mortality and morbidity. Therefore, an alternative strategy for treatment of AA is required. Recently, the molecular pathology of AA has been clarified. AA is caused by an imbalance between the synthesis and degradation of extracellular matrices in the aortic wall. Chronic inflammation enhances the degradation of matrices directly and indirectly, making control of the chronic inflammation crucial for aneurysmal development. Meanwhile, mesenchymal stem cells (MSCs) are known to be obtained from an adult population and to differentiate into various types of cells. In addition, MSCs have not only the potential anti-inflammatory and immunosuppressive properties but also can be recruited into damaged tissue. MSCs have been widely used as a source for cell therapy to treat various diseases involving graft-versus-host disease, stroke, myocardial infarction, and chronic inflammatory disease such as Crohn’s disease clinically. Therefore, administration of MSCs might be available to treat AA using anti-inflammatory and immnosuppressive properties. This review provides a summary of several studies on “Cell Therapy for Aortic Aneurysm” including our recent data, and we also discuss the possibility of this kind of treatment.
Collapse
|
31
|
El-Hamid SA, Mogawer A. In vitro mesenchymal stem cells differentiation into hepatocyte-like cells in the presence and absence of 3D microenvironment. COMPARATIVE CLINICAL PATHOLOGY 2014; 23:1051-1058. [DOI: 10.1007/s00580-013-1741-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
32
|
Aomatsu E, Chosa N, Nishihira S, Sugiyama Y, Miura H, Ishisaki A. Cell-cell adhesion through N-cadherin enhances VCAM-1 expression via PDGFRβ in a ligand-independent manner in mesenchymal stem cells. Int J Mol Med 2013; 33:565-72. [PMID: 24378362 DOI: 10.3892/ijmm.2013.1607] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 12/17/2013] [Indexed: 11/06/2022] Open
Abstract
Cell-cell adhesions induce various intracellular signals through hierarchical and synergistic molecular interactions. Recently, we demonstrated that a high cell density induces the expression of vascular cell adhesion molecule-1 (VCAM-1) through the nuclear factor-κB (NF-κB) pathway in human bone marrow-derived mesenchymal stem cells (MSCs). However, the specific molecules that activated the NF-κB pathway were not determined. In the present study, in experiments with receptor tyrosine kinase inhibitors, VCAM-1 expression was completely suppressed by platelet-derived growth factor (PDGF) receptor (PDGFR) inhibitors. In addition, VCAM-1 expression was significantly suppressed by knockdown with PDGFRβ siRNA, but not with PDGFRα siRNA. However, VCAM-1 expression did not increase following treatment with PDGF. The overexpression of N-cadherin, a structural molecule in adherence junctions in MSCs, promoted VCAM-1 expression and induced the marked phosphorylation of the intracellular signaling factor, Src. In addition, VCAM-1 expression and Src phosphorylation were reduced by the overexpression of a dominant negative mutant of N-cadherin. These results suggest that cell-cell adhesion, through N-cadherin, enhances the expression of VCAM-1 via PDGFRβ and the activation of Src in a ligand-independent manner in MSCs.
Collapse
Affiliation(s)
- Emiko Aomatsu
- Division of Cellular Biosignal Sciences, Department of Biochemistry, Iwate Medical University, Yahaba, Iwate 028-3694, Japan
| | - Naoyuki Chosa
- Division of Cellular Biosignal Sciences, Department of Biochemistry, Iwate Medical University, Yahaba, Iwate 028-3694, Japan
| | - Soko Nishihira
- Division of Cellular Biosignal Sciences, Department of Biochemistry, Iwate Medical University, Yahaba, Iwate 028-3694, Japan
| | - Yoshiki Sugiyama
- Division of Oral Surgery, Department of Oral and Maxillofacial Surgery, Iwate Medical University School of Dentistry, Morioka, Iwate 020-8505, Japan
| | - Hiroyuki Miura
- Division of Orthodontics, Department of Developmental Oral Health Science, Iwate Medical University School of Dentistry, Morioka, Iwate 020-8505, Japan
| | - Akira Ishisaki
- Division of Cellular Biosignal Sciences, Department of Biochemistry, Iwate Medical University, Yahaba, Iwate 028-3694, Japan
| |
Collapse
|
33
|
Mehrkens A, Di Maggio N, Gueven S, Schaefer D, Scherberich A, Banfi A, Martin I. Non-adherent mesenchymal progenitors from adipose tissue stromal vascular fraction. Tissue Eng Part A 2013; 20:1081-8. [PMID: 24164328 DOI: 10.1089/ten.tea.2013.0273] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
In primary human bone marrow cultures, the initial adherent cell fraction has been shown to provide a microenvironment for self-renewal of primitive non-adherent mesenchymal progenitors (non-adherent progenitors of bone marrow stroma [BM-NAMP]), with increased differentiation potential compared to adherent colony-forming units-fibroblast (CFU-f). The present study investigates whether NAMP exist also in cultures of stromal vascular fraction (SVF) cells derived from human adipose tissue. Adipose-tissue NAMP (AT-NAMP) were shown to be stably non-adherent and their number correlated with the number of the initial adhering CFU-f. Unlike BM-NAMP, AT-NAMP did not propagate in suspension in serial replating experiments and the number of colonies steadily decreased with each replating step. However, when AT-NAMP were kept on the initially adhering SVF cells, they could significantly expand without loss of clonogenic, proliferation, and differentiation potential. Although AT-NAMP progeny differentiated into mesodermal lineages similar to that of adherent CFU-f, it was enriched in early mesenchymal progenitor populations, characterized by increased expression of SSEA-4 and CD146. Furthermore, FGF-2 supported AT-NAMP survival and could not be replaced by another mitogenic factor, such as platelet derived growth factor BB. In conclusion, these data suggest that the SVF adherent fraction provides niche signals that regulate the expansion of adipose non-adherent mesenchymal progenitors with the maintenance of their potency. The biological differences described between BM- and AT-NAMP further qualify the properties of the stroma from different tissues and will be relevant for the selection of a cell source for specific regeneration strategies.
Collapse
Affiliation(s)
- Arne Mehrkens
- Departments of Surgery and of Biomedicine, Basel University Hospital , Basel, Switzerland
| | | | | | | | | | | | | |
Collapse
|
34
|
Wise JK, Alford AI, Goldstein SA, Stegemann JP. Comparison of uncultured marrow mononuclear cells and culture-expanded mesenchymal stem cells in 3D collagen-chitosan microbeads for orthopedic tissue engineering. Tissue Eng Part A 2013; 20:210-24. [PMID: 23879621 DOI: 10.1089/ten.tea.2013.0151] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Stem cell-based therapies have shown promise in enhancing repair of bone and cartilage. Marrow-derived mesenchymal stem cells (MSC) are typically expanded in vitro to increase cell number, but this process is lengthy, costly, and there is a risk of contamination and altered cellular properties. Potential advantages of using fresh uncultured bone marrow mononuclear cells (BMMC) include heterotypic cell and paracrine interactions between MSC and other marrow-derived cells including hematopoietic, endothelial, and other progenitor cells. In the present study, we compared the osteogenic and chondrogenic potential of freshly isolated BMMC to that of cultured-expanded MSC, when encapsulated in three-dimensional (3D) collagen-chitosan microbeads. The effect of low and high oxygen tension on cell function and differentiation into orthopedic lineages was also examined. Freshly isolated rat BMMC (25 × 10(6) cells/mL, containing an estimated 5 × 10(4) MSC/mL) or purified and culture-expanded rat bone marrow-derived MSC (2 × 10(5) cells/mL) were added to a 65-35 wt% collagen-chitosan hydrogel mixture and fabricated into 3D microbeads by emulsification and thermal gelation. Microbeads were cultured in control MSC growth media in either 20% O2 (normoxia) or 5% O2 (hypoxia) for an initial 3 days, and then in control, osteogenic, or chondrogenic media for an additional 21 days. Microbead preparations were evaluated for viability, total DNA content, calcium deposition, and osteocalcin and sulfated glycosaminoglycan expression, and they were examined histologically. Hypoxia enhanced initial progenitor cell survival in fresh BMMC-microbeads, but it did not enhance osteogenic potential. Fresh uncultured BMMC-microbeads showed a similar degree of osteogenesis as culture-expanded MSC-microbeads, even though they initially contained only 1/10th the number of MSC. Chondrogenic differentiation was not strongly supported in any of the microbead formulations. This study demonstrates the microbead-based approach to culturing and delivering cells for tissue regeneration, and suggests that fresh BMMC may be an alternative to using culture-expanded MSC for bone tissue engineering.
Collapse
Affiliation(s)
- Joel K Wise
- 1 Department of Biomedical Engineering, University of Michigan , Ann Arbor, Michigan
| | | | | | | |
Collapse
|
35
|
Alvarez-Viejo M, Menendez-Menendez Y, Blanco-Gelaz MA, Ferrero-Gutierrez A, Fernandez-Rodriguez MA, Gala J, Otero-Hernandez J. Quantifying mesenchymal stem cells in the mononuclear cell fraction of bone marrow samples obtained for cell therapy. Transplant Proc 2013; 45:434-9. [PMID: 23375334 DOI: 10.1016/j.transproceed.2012.05.091] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Revised: 12/14/2011] [Accepted: 05/04/2012] [Indexed: 12/15/2022]
Abstract
AIMS The use of bone marrow mononuclear cells (BMMNCs) as a source of mesenchymal stem cells (MSCs) for therapy has recently attracted the attention of researchers because BMMNCs can be easily obtained and do not require in vitro expansion before their use. This study was designed to quantify the MSC population in bone marrow (BM) samples obtained for cell therapy using flow cytometry to detect the CD271 antigen. MATERIAL AND METHODS Autologous BM was obtained by posterior superior iliac crest aspiration under topical anesthesia. Mononuclear cells isolated from the BM aspirate on a Ficoll density gradient were used to treat patients with pressure ulcer (n = 13) bone nonunions (n = 3) or diabetic foot ulcers (n = 5). RESULTS Our flow cytometry data revealed a low percentage as well as a high variability among patients of CD271(+)CD45(-) cells (range, 0.0017 to 0.0201%). All cultured MSC adhered to plastic dishes showing a capacity to differentiate into adipogenic and osteogenic lineages. CONCLUSIONS Our findings suggested that the success of cell therapy was independent of the number of MSCs present in the BM aspirate used for autologous cell therapy.
Collapse
Affiliation(s)
- M Alvarez-Viejo
- Transplant and Cell Therapy Unit, Hospital Universitario Central de Asturias, Oviedo, Spain.
| | | | | | | | | | | | | |
Collapse
|
36
|
Mabuchi Y, Morikawa S, Harada S, Niibe K, Suzuki S, Renault-Mihara F, Houlihan DD, Akazawa C, Okano H, Matsuzaki Y. LNGFR(+)THY-1(+)VCAM-1(hi+) cells reveal functionally distinct subpopulations in mesenchymal stem cells. Stem Cell Reports 2013; 1:152-65. [PMID: 24052950 PMCID: PMC3757748 DOI: 10.1016/j.stemcr.2013.06.001] [Citation(s) in RCA: 165] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2013] [Revised: 05/31/2013] [Accepted: 06/03/2013] [Indexed: 12/31/2022] Open
Abstract
Human mesenchymal stem cells (hMSCs), which conventionally are isolated based on their adherence to plastic, are heterogeneous and have poor growth and differentiation, limiting our ability to investigate their intrinsic characteristics. We report an improved prospective clonal isolation technique and reveal that the combination of three cell-surface markers (LNGFR, THY-1, and VCAM-1) allows for the selection of highly enriched clonogenic cells (one out of three isolated cells). Clonal characterization of LNGFR+THY-1+ cells demonstrated cellular heterogeneity among the clones. Rapidly expanding clones (RECs) exhibited robust multilineage differentiation and self-renewal potency, whereas the other clones tended to acquire cellular senescence via P16INK4a and exhibited frequent genomic errors. Furthermore, RECs exhibited unique expression of VCAM-1 and higher cellular motility compared with the other clones. The combination marker LNGFR+THY-1+VCAM-1hi+ (LTV) can be used selectively to isolate the most potent and genetically stable MSCs. The LNGFR+THY-1+ population is significantly enriched for CFU-Fs in human bone marrow Rapidly expanding clones (RECs) exhibited stem-like characteristics Expression of VCAM-1 correlated with proliferation and migration ability The combination marker LNGFR+THY-1+VCAM-1hi+ is useful for isolating multipotent MSCs
Collapse
Affiliation(s)
- Yo Mabuchi
- Department of Physiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan ; Department of Biochemistry and Biophysics, Graduate School of Health Care Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Miceli M, Franci G, Dell'Aversana C, Ricciardiello F, Petraglia F, Carissimo A, Perone L, Maruotti GM, Savarese M, Martinelli P, Cancemi M, Altucci L. MePR: a novel human mesenchymal progenitor model with characteristics of pluripotency. Stem Cells Dev 2013; 22:2368-83. [PMID: 23597129 DOI: 10.1089/scd.2012.0498] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Human embryo stem cells or adult tissues are excellent models for discovery and characterization of differentiation processes. The aims of regenerative medicine are to define the molecular and physiological mechanisms that govern stem cells and differentiation. Human mesenchymal stem cells (hMSCs) are multipotent adult stem cells that are able to differentiate into a variety of cell types under controlled conditions both in vivo and in vitro, and they have the remarkable ability of self-renewal. hMSCs derived from amniotic fluid and characterized by the expression of Oct-4 and Nanog, typical markers of pluripotent cells, represent an excellent model for studies on stemness. Unfortunately, the limited amount of cells available from each donation and, above all, the limited number of replications do not allow for detailed studies. Here, we report on the immortalization and characterization of novel mesenchymal progenitor (MePR) cell lines from amniotic fluid-derived hMSCs, whose biological properties are similar to primary amniocytes. Our data indicate that MePR cells display the multipotency potential and differentiation rates of hMSCs, thus representing a useful model to study both mechanisms of differentiation and pharmacological approaches to induce selective differentiation. In particular, MePR-2B cells, which carry a bona fide normal karyotype, might be used in basic stem cell research, leading to the development of new approaches for stem cell therapy and tissue engineering.
Collapse
Affiliation(s)
- Marco Miceli
- Dipartimento di Biochimica, Biofisica e Patologia Generale, Seconda Università di Napoli , Napoli, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Prospective isolation of murine and human bone marrow mesenchymal stem cells based on surface markers. Stem Cells Int 2013; 2013:507301. [PMID: 23766770 PMCID: PMC3673454 DOI: 10.1155/2013/507301] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2013] [Accepted: 05/07/2013] [Indexed: 12/30/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are currently defined as multipotent stromal cells that undergo sustained in vitro growth and can give rise to cells of multiple mesenchymal lineages, such as adipocytes, chondrocytes, and osteoblasts. The regenerative and immunosuppressive properties of MSCs have led to numerous clinical trials exploring their utility for the treatment of a variety of diseases (e.g., acute graft-versus-host disease, Crohn's disease, multiple sclerosis, osteoarthritis, and cardiovascular diseases including heart failure and myocardial infarction). On the other hand, conventionally cultured MSCs reflect heterogeneous populations that often contain contaminating cells due to the significant variability in isolation methods and the lack of specific MSC markers. This review article focuses on recent developments in the MSC research field, with a special emphasis on the identification of novel surface markers for the in vivo localization and prospective isolation of murine and human MSCs. Furthermore, we discuss the physiological importance of MSC subtypes in vivo with specific reference to data supporting their contribution to HSC niche homeostasis. The isolation of MSCs using selective markers (combination of PDGFRα and Sca-1) is crucial to address the many unanswered questions pertaining to these cells and has the potential to enhance their therapeutic potential enormously.
Collapse
|
39
|
Watson JT, Foo T, Wu J, Moed BR, Thorpe M, Schon L, Zhang Z. CD271 as a marker for mesenchymal stem cells in bone marrow versus umbilical cord blood. Cells Tissues Organs 2013; 197:496-504. [PMID: 23689142 DOI: 10.1159/000348794] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2013] [Indexed: 11/19/2022] Open
Abstract
CD271 has been applied to isolate mesenchymal stem cells (MSCs) from bone marrow and other tissues. Umbilical cord blood is a unique resource of stem cells and endothelial progenitor cells. Isolation of MSCs from umbilical cord blood, however, has been inefficient and inconsistent. This study was designed to examine the potential application of CD271 as a marker for the isolation of MSCs from umbilical cord blood. CD271+ cells were isolated from umbilical cord blood and bone marrow using CD271 antibody-conjugated microbeads, and characterized in osteogenic, chondrogenic and adipogenic differentiation. CD271+ cells from umbilical cord blood were slow to proliferate compared with those isolated from bone marrow. While CD271+ cells from bone marrow differentiated into osteogenic, chondrogenic and adipogenic lineages, there were no sound indications of differentiation by CD271+ cells from umbilical cord blood under the same differentiation conditions applied to the CD271+ cells from bone marrow. The study also found that bone marrow CD271+ cells remarkably upregulated the expression of chondrogenic genes under chondrogenic differentiation induction. When implanted into bone defects in mice, CD271+ cells from bone marrow regenerated significant bone, but the counterparts in umbilical cord blood formed little bone in the bone defects. In conclusion, CD271 is an efficient marker for MSC isolation from bone marrow but has failed to isolate MSCs from umbilical cord blood. CD271+ cells in bone marrow are particularly chondrogenic. The property of CD271+ cells is unique but varies from different tissues.
Collapse
Affiliation(s)
- J Tracy Watson
- Department of Orthopedic Surgery, Saint Louis University, St. Louis, MO, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Guo X, Bu X, Li Z, Yan Z, Jiang J, Zhou Z. Comparison of autologous bone marrow mononuclear cells transplantation and mobilization by granulocyte colony-stimulating factor in experimental spinal injury. Int J Neurosci 2013; 122:723-33. [PMID: 22862301 DOI: 10.3109/00207454.2012.716109] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Recent studies have shown that autologous adult stem cells may be a protocol of treatment for spinal cord injury (SCI) in humans. The purpose of this study was to compare the effect of an injection of autologous bone marrow mononuclear cells (BMMCs) and bone-marrow cell mobilization induced by granulocyte colony stimulating factor (G-CSF) in rats with SCI. METHODS Adult rats were assigned into three groups: control group (SCI only), SCI + BMMCs, and SCI + G - CSF. Neurological scores and electrophysiological testing were done in all rats before SCI, and at 1, 7, 14, 28, 56 days post-SCI. Simultaneously, immunohistochemical labeling and TUNEL assay were performed at the given time. RESULTS From 1 week post-SCI onward, animals treated with BMMCs or G-CSF had higher BBB scores than control group. Motor and somatosensory evoked potentials (MEPs and SEPs, respectively) of the treated group were significantly better than those in control group at 2 weeks. After sacrifice, compared with the control, animals treated with BMMCs and G-CSF significantly increased expressions of Brdu, NSE, GFAP, Factor VIII, BDNF, and reduced expression of apoptosis cells around the lesion site. Our results indicate that administration of BMMCs and G-CSF in a SCI model achieves similarly positive effect on functional and histologic recovery. CONCLUSIONS The use of G-CSF may be a viable alternative to BMMCs for autograft in patients with SCI.
Collapse
Affiliation(s)
- Xiaohe Guo
- Department of Neurosurgery, Henan Provincial People's Hospital, Zhengzhou, China
| | | | | | | | | | | |
Collapse
|
41
|
Osteogenic graft vascularization and bone resorption by VEGF-expressing human mesenchymal progenitors. Biomaterials 2013; 34:5025-35. [PMID: 23566801 DOI: 10.1016/j.biomaterials.2013.03.040] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 03/14/2013] [Indexed: 02/07/2023]
Abstract
Rapid vascularisation of tissue-engineered osteogenic grafts is a major obstacle in the development of regenerative medicine approaches for bone repair. Vascular endothelial growth factor (VEGF) is the master regulator of vascular growth. We investigated a cell-based gene therapy approach to generate osteogenic grafts with an increased vascularization potential in an ectopic nude rat model in vivo, by genetically modifying human bone marrow-derived stromal/stem cells (BMSC) to express rat VEGF. BMSC were loaded onto silicate-substituted apatite granules, which are a clinically established osteo-conductive material. Eight weeks after implantation, the vascular density of constructs seeded with VEGF-BMSC was 3-fold greater than with control cells, consisting of physiologically structured vascular networks with both conductance vessels and capillaries. However, VEGF specifically caused a global reduction in bone quantity, which consisted of thin trabeculae of immature matrix. VEGF did not impair BMSC engraftment in vivo, but strongly increased the recruitment of TRAP- and Cathepsin K-positive osteoclasts. These data suggest that VEGF over-expression is effective to improve the vascularization of osteogenic grafts, but also has the potential to disrupt bone homoeostasis towards excessive degradation, posing a challenge to its clinical application in bone tissue engineering.
Collapse
|
42
|
CD73+ adipose-derived mesenchymal stem cells possess higher potential to differentiate into cardiomyocytes in vitro. J Mol Histol 2013; 44:411-22. [PMID: 23456425 DOI: 10.1007/s10735-013-9492-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 02/16/2013] [Indexed: 12/20/2022]
Abstract
Adipose-derived mesenchymal stem cells (ADMSCs) are an attractive adult-derived stem cell population for cardiovascular repair. ADMSCs are heterogeneous cell populations with pluripotent capacity to differentiate into different types of cells. In the present study, we investigated the biological characteristics and differentiation potential of CD73-positive (CD73(+)) and CD73-negative (CD73(-)) ADMSCs. Our results show that in terms of morphological shape, CD73(+)-ADMSCs are mainly small-sized cells, whereas CD73(-)-ADMSCs are big-sized cells; both subpopulations can equally differentiate into adipocytes and osteoblasts in vitro. However, the CD73(+)-ADMSCs possess a higher potential to differentiate into cardiomyocytes than the CD73(-)-ADMSCs. The expression of the cardiac-specific genes, cTnT, Gata4, and Nkx2.5, is much higher in the CD73(+)-ADMSCs than in the CD73(-)-ADMSCs. Furthermore, Nanog expression at both the mRNA and protein levels is significantly higher in CD73(+)-ADMSCs than in CD73(-)-ADMSCs, suggesting that CD73(+)-ADMSCs are an undifferentiated subpopulation that can differentiate into cardiomyocytes in vitro more efficiently. Therefore, this study facilitates a better understanding of the differentiation of the ADMSCs subgroups and attempts to identify if CD73 is a useful marker for sorting and purifying the subpopulation of ADMSCs with a higher capacity for differentiation into cardiomyocytes.
Collapse
|
43
|
Fernández Vallone VB, Romaniuk MA, Choi H, Labovsky V, Otaegui J, Chasseing NA. Mesenchymal stem cells and their use in therapy: what has been achieved? Differentiation 2013; 85:1-10. [PMID: 23314286 DOI: 10.1016/j.diff.2012.08.004] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2012] [Revised: 07/10/2012] [Accepted: 08/16/2012] [Indexed: 12/13/2022]
Abstract
The considerable therapeutic potential of human multipotent mesenchymal stromal cells or mesenchymal stem cells (MSCs) has generated increasing interest in a wide variety of biomedical disciplines. Nevertheless, researchers report studies on MSCs using different methods of isolation and expansion, as well as different approaches to characterize them; therefore, it is increasingly difficult to compare and contrast study outcomes. To begin to address this issue, the Mesenchymal and Tissue Stem Cell Committee of the International Society for Cellular Therapy proposed minimal criteria to define human MSCs. First, MSCs must be plastic-adherent when maintained in standard culture conditions (α minimal essential medium plus 20% fetal bovine serum). Second, MSCs must express CD105, CD73 and CD90, and MSCs must lack expression of CD45, CD34, CD14 or CD11b, CD79α or CD19 and HLA-DR surface molecules. Third, MSCs must differentiate into osteoblasts, adipocytes and chondroblasts in vitro. MSCs are isolated from many adult tissues, in particular from bone marrow and adipose tissue. Along with their capacity to differentiate and transdifferentiate into cells of different lineages, these cells have also generated great interest for their ability to display immunomodulatory capacities. Indeed, a major breakthrough was the finding that MSCs are able to induce peripheral tolerance, suggesting that they may be used as therapeutic tools in immune-mediated disorders. Although no significant adverse events have been reported in clinical trials to date, all interventional therapies have some inherent risks. Potential risks for undesirable events, such as tumor development, that might occur while using these stem cells for therapy must be taken into account and contrasted against the potential benefits to patients.
Collapse
|
44
|
Noort WA, Oerlemans MIFJ, Rozemuller H, Feyen D, Jaksani S, Stecher D, Naaijkens B, Martens AC, Bühring HJ, Doevendans PA, Sluijter JPG. Human versus porcine mesenchymal stromal cells: phenotype, differentiation potential, immunomodulation and cardiac improvement after transplantation. J Cell Mol Med 2012; 16:1827-39. [PMID: 21973026 PMCID: PMC3822695 DOI: 10.1111/j.1582-4934.2011.01455.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Although mesenchymal stromal cells (MSCs) have been applied clinically to treat cardiac diseases, it is unclear how and to which extent transplanted MSCs exert their beneficial effects. To address these questions, pre-clinical MSC administrations are needed for which pigs appear to be the species of choice. This requires the use of porcine cells to prevent immune rejection. However, it is currently unknown to what extent porcine MSCs (pMSCs) resemble human MSCs (hMSCs). Aim of this study was to compare MSC from porcine bone marrow (BM) with human cells for phenotype, multi-lineage differentiation potential, immune-modulatory capacity and the effect on cardiac function after transplantation in a mouse model of myocardial infarction. Flow cytometric analysis revealed that pMSC expressed surface antigens also found on hMSC, including CD90, MSCA-1 (TNAP/W8B2 antigen), CD44, CD29 and SLA class I. Clonogenic outgrowth was significantly enriched following selection of CD271+ cells from BM of human and pig (129 ± 29 and 1961 ± 485 fold, respectively). hMSC and pMSC differentiated comparably into the adipogenic, osteogenic or chondrogenic lineages, although pMSC formed fat much faster than hMSC. Immuno-modulation, an important feature of hMSC, was clearly demonstrated for pMSC when co-cultured with porcine peripheral blood cells stimulated with PMA and pIL-2. Finally, pMSC transplantation after myocardial infarction attenuated adverse remodelling to a similar extent as hMSC when compared to control saline injection. These findings demonstrate that pMSCs have comparable characteristics and functionality with hMSCs, making reliable extrapolation of pre-clinical pMSC studies into a clinical setting very well possible.
Collapse
Affiliation(s)
- W A Noort
- Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
El-Ansary M, Abdel-Aziz I, Mogawer S, Abdel-Hamid S, Hammam O, Teaema S, Wahdan M. Phase II trial: undifferentiated versus differentiated autologous mesenchymal stem cells transplantation in Egyptian patients with HCV induced liver cirrhosis. Stem Cell Rev Rep 2012; 8:972-981. [PMID: 21989829 DOI: 10.1007/s12015-011-9322-y] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
UNLABELLED The study was aimed to evaluate the effect of autologous transplantation of BM-derived undifferentiated and differentiated MSCs in cirrhotic patients following chronic hepatitis C virus infection. Twenty-five patients with Child C liver cirrhosis, MELD score >12 were included. They were divided into 2 groups. Group I, the MSCs group (n=15), this group was subdivided into two subgroups: Ia & Ib (undifferentiated and differentiated respectively). Group II (control group; n=10) involved patients with cirrhotic liver under conventional supportive treatment. Ninety ml BM was aspirated from the iliac bone for separation of MSCs. Surface expression of CD271, CD29 and CD34 were analyzed using flowcytometry. Hepatogenesis was assessed by immunohistochemical expression of OV6, AFP and albumin. Finally approximately 1 million MSCs/Kg were suspended in saline and were placed in blood bag and injected slowly intravenously over 15 min at a rate of 5 drops/min in one session. Follow up of patients at 3 and 6 months postinfusion revealed partial improvement of liver function tests with elevation of prothrombin concentration and serum albumin levels, decline of elevated bilirubin and MELD score in MSCs group. Statistical comparisons between the two subgroups (group Ia & Ib) did not merit any significant difference regarding clinical and laboratory findings. IN CONCLUSION Bone marrow MSCs transplantation either undifferentiated or differentiated can be used as a potential treatment for liver cirrhosis.
Collapse
Affiliation(s)
- Mervat El-Ansary
- Department of Clinical Pathology, Kasr El-Aini, Cairo University, Cairo, Egypt
| | | | | | | | | | | | | |
Collapse
|
46
|
Domev H, Amit M, Laevsky I, Dar A, Itskovitz-Eldor J. Efficient engineering of vascularized ectopic bone from human embryonic stem cell-derived mesenchymal stem cells. Tissue Eng Part A 2012; 18:2290-302. [PMID: 22731654 DOI: 10.1089/ten.tea.2011.0371] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Human mesenchymal stem cells (hMSCs) can be derived from various adult and fetal tissues. However, the quality of tissues for the isolation of adult and fetal hMSCs is donor dependent with a nonreproducible yield. In addition, tissue engineering and cell therapy require large-scale production of a pure population of lineage-restricted stem cells that can be easily induced to differentiate into a specific cell type. Therefore, human embryonic stem cells (hESCs) can provide an alternative, plentiful source for generation of reproducible hMSCs. We have developed efficient differentiation protocols for derivation of hMSCs from hESCs, including coculture with murine OP9 stromal cells and feeder layer-free system. Our protocols have resulted in the generation of up to 49% of hMSCs, which expressed CD105, CD90, CD29, and CD44. The hMSCs exhibited high adipogenic, chondrocytic, and osteogenic differentiation in vitro. The latter correlated with osteocalcin secretion and vascular endothelial growth factor (VEGF) production by the differentiating hMSCs. hMSC-derived osteoblasts further differentiated and formed ectopic bone in vivo, and induced the formation of blood vessels in Matrigel implants. Our protocol enables generation of a purified population of hESC-derived MSCs, with the potential of differentiating into several mesodermal lineages, and particularly into vasculogenesis-inducing osteoblasts, which can contribute to the development of bone repair protocols.
Collapse
Affiliation(s)
- Hagit Domev
- The Bruce Rappaport Faculty of Medicine, The Sohnis and Forman Families Stem Cell Center, Technion-Israel Institute of Technology, Haifa, Israel
| | | | | | | | | |
Collapse
|
47
|
Kim YH, Yoon DS, Kim HO, Lee JW. Characterization of different subpopulations from bone marrow-derived mesenchymal stromal cells by alkaline phosphatase expression. Stem Cells Dev 2012; 21:2958-68. [PMID: 22702738 DOI: 10.1089/scd.2011.0349] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Multiple surface markers have been utilized for the enrichment of bone marrow mesenchymal stromal cells (MSCs) and to define primitive stem cells. We classified human bone marrow-derived MSC populations according to tissue nonspecific alkaline phosphatase (TNAP) activity. TNAP expression varied among unexpanded primary MSCs, and its level was not related to colony-forming activity or putative surface markers, such as CD105 and CD29, donor age, or gender. TNAP levels were increased in larger cells, and a colony-forming unit-fibroblast assay revealed that the colony size was decreased during in vitro expansion. TNAP-positive (TNAP+) MSCs showed limited multipotential capacity, whereas TNAP-negative (TNAP-) MSCs retained the differentiation potential into 3 lineages (osteogenic-, adipogenic-, and chondrogenic differentiation). High degree of calcium mineralization and high level of osteogenic-related gene expression (osteopontin, dlx5, and cbfa1) were found in TNAP+ cells. In contrast, during chondrogenic differentiation, type II collagen was successfully induced in TNAP- cells, but not in TNAP+ cells. TNAP+ cells showed high levels of the hypertrophic markers, type X collagen and cbfa1. Mesenchymal stem cell antigen-1 (MSCA-1) is identical to TNAP. Therefore, TNAP+ cells were sorted by using antibody targeting MSCA-1. MSCA-1-positive cells sorted for TNAP+ cells exhibited low proliferation rates. Expression of cell cycle-related genes (cyclin A2, CDK2, and CDK4) and pluripotency marker genes (rex1 and nanog) were higher in TNAP- MSC than in TNAP+ MSC. Therefore, TNAP- cells can be described as more primitive bone marrow-derived cells and TNAP levels in MSCs can be used to predict chondrocyte hypertrophy or osteogenic capacity.
Collapse
Affiliation(s)
- Yun Hee Kim
- Brain Korea 21 Project for Medical Science, Departments of Orthopaedic Surgery, Yonsei University College of Medicine, Seoul, Korea
| | | | | | | |
Collapse
|
48
|
Di Maggio N, Mehrkens A, Papadimitropoulos A, Schaeren S, Heberer M, Banfi A, Martin I. Fibroblast Growth Factor-2 Maintains a Niche-Dependent Population of Self-Renewing Highly Potent Non-adherent Mesenchymal Progenitors Through FGFR2c. Stem Cells 2012; 30:1455-64. [DOI: 10.1002/stem.1106] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
49
|
Noronha-Matos JB, Costa MA, Magalhães-Cardoso MT, Ferreirinha F, Pelletier J, Freitas R, Neves JM, Sévigny J, Correia-de-Sá P. Role of ecto-NTPDases on UDP-sensitive P2Y(6) receptor activation during osteogenic differentiation of primary bone marrow stromal cells from postmenopausal women. J Cell Physiol 2012; 227:2694-709. [PMID: 21898410 DOI: 10.1002/jcp.23014] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This study aimed at investigating the expression and function of uracil nucleotide-sensitive receptors (P2Y(2), P2Y(4), and P2Y(6)) on osteogenic differentiation of human bone marrow stromal cells (BMSCs) in culture. Bone marrow specimens were obtained from postmenopausal female patients (68 ± 5 years old, n = 18) undergoing total hip arthroplasty. UTP and UDP (100 µM) facilitated osteogenic differentiation of the cells measured as increases in alkaline phosphatase (ALP) activity, without affecting cell proliferation. Uracil nucleotides concentration-dependently increased [Ca(2+)](i) in BMSCs; their effects became less evident with time (7 > 21 days) of the cells in culture. Selective activation of P2Y(6) receptors with the stable UDP analog, PSB 0474, mimicked the effects of both UTP and UDP, whereas UTPγS was devoid of effect. Selective blockade of P2Y(6) receptors with MRS 2578 prevented [Ca(2+)](i) rises and osteogenic differentiation caused by UDP at all culture time points. BMSCs are immunoreactive against P2Y(2), P2Y(4), and P2Y(6) receptors. While the expression of P2Y(6) receptors remained fairly constant (7∼21 days), P2Y(2) and P2Y(4) became evident only in less proliferative and more differentiated cultures (7 < 21 days). The rate of extracellular UTP and UDP inactivation was higher in less proliferative and more differentiated cell populations. Immunoreactivity against NTPDase1, -2, and -3 rises as cells differentiate (7 < 21 days). Data show that uracil nucleotides are important regulators of osteogenic cells differentiation predominantly through the activation of UDP-sensitive P2Y(6) receptors coupled to increases in [Ca(2+)](i) . Endogenous actions of uracil nucleotides may be balanced through specific NTPDases determining whether osteoblast progenitors are driven into proliferation or differentiation.
Collapse
Affiliation(s)
- J B Noronha-Matos
- Laboratório de Farmacologia e Neurobiologia, UMIB, Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP), Porto, Portugal
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Helledie T, Dombrowski C, Rai B, Lim ZXH, Hin ILH, Rider DA, Stein GS, Hong W, van Wijnen AJ, Hui JH, Nurcombe V, Cool SM. Heparan sulfate enhances the self-renewal and therapeutic potential of mesenchymal stem cells from human adult bone marrow. Stem Cells Dev 2012; 21:1897-910. [PMID: 22066689 DOI: 10.1089/scd.2011.0367] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Insufficient cell number hampers therapies utilizing adult human mesenchymal stem cells (hMSCs) and current ex vivo expansion strategies lead to a loss of multipotentiality. Here we show that supplementation with an embryonic form of heparan sulfate (HS-2) can both increase the initial recovery of hMSCs from bone marrow aspirates and increase their ex vivo expansion by up to 13-fold. HS-2 acts to amplify a subpopulation of hMSCs harboring longer telomeres and increased expression of the MSC surface marker stromal precursor antigen-1. Gene expression profiling revealed that hMSCs cultured in HS-2 possess a distinct signature that reflects their enhanced multipotentiality and improved bone-forming ability when transplanted into critical-sized bone defects. Thus, HS-2 offers a novel means for decreasing the expansion time necessary for obtaining therapeutic numbers of multipotent hMSCs without the addition of exogenous growth factors that compromise stem cell fate.
Collapse
Affiliation(s)
- Torben Helledie
- Laboratory of Stem Cells and Tissue Repair, Institute of Medical Biology, Immunos, A*STAR, Singapore, Singapore
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|