1
|
Pang Y, Holtzman NG. Immunopathogenic mechanisms and modulatory approaches to graft-versus-host disease prevention in acute myeloid leukaemia. Best Pract Res Clin Haematol 2023; 36:101475. [PMID: 37353287 PMCID: PMC10291443 DOI: 10.1016/j.beha.2023.101475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/03/2023] [Accepted: 05/03/2023] [Indexed: 06/25/2023]
Abstract
Allogeneic haematopoietic stem cell transplantation (HSCT) remains the only potential cure for intermediate to high-risk acute myeloid leukaemia (AML). The therapeutic effect of HSCT is largely dependent on the powerful donor-derived immune response against recipient leukaemia cells, known as graft-versus-leukaemia effect (GvL). However, the donor-derived immune system can also cause acute or chronic damage to normal recipient organs and tissues, in a process known as graft-versus-host disease (GvHD). GvHD is a leading cause of non-relapse mortality in HSCT recipients. There are many similarities and cross talk between the immune pathways of GvL and GvHD. Studies have demonstrated that both processes require the presence of mismatched alloantigens between the donor and recipient, and activation of immune responses centered around donor T-cells, which can be further modulated by various recipient or donor factors. Dissecting GvL from GvHD to achieve more effective GvHD prevention and enhanced GvL has been the holy grail of HSCT research. In this review, we focused on the key factors that contribute to the immune responses of GvL and GvHD, the effect on GvL with different GvHD prophylactic strategies, and the potential impact of various AML relapse prevention therapy or treatments on GvHD.
Collapse
Affiliation(s)
- Yifan Pang
- Department of Haematologic Oncology and Blood Disorders, Levine Cancer Institute, Charlotte, NC, USA.
| | - Noa G Holtzman
- Immune Deficiency Cellular Therapy Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
2
|
Gu G, Yang JZ, Zhang JQ, Sun LX. Regulatory T cells in allogeneic hematopoietic stem cell transplantation: From the lab to the clinic. Cell Immunol 2019; 346:103991. [PMID: 31607390 DOI: 10.1016/j.cellimm.2019.103991] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 09/19/2019] [Accepted: 10/01/2019] [Indexed: 12/14/2022]
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is a curable strategy for the treatment of hematological malignancies and nonmalignant diseases. However, graft-versus-host disease (GVHD) and relapse are still two major causes of morbidity and mortality after allo-HSCT, and both restrict the improvement of transplant outcomes. Regulatory T cells (Tregs) has been successfully used in allo-SCT settings. In this review, we summarize recent advances in experimental studies that have evaluated the roles played by Tregs in the establishment of novel transplant modalities, the prevention of GVHD and the enhancement of immune reconstitution. We also discuss the application of Tregs in clinical to prevent acute GVHD, treat chronic GVHD, as well as enhance immune reconstitution and decrease leukemia relapse, all of which lead to improving transplant outcomes.
Collapse
Affiliation(s)
- Guang Gu
- Department of Rheumatology, Third Affiliated Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jian-Zhu Yang
- Department of Pathology, Third Affiliated Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jin-Qiao Zhang
- Department of Hematology, Third Affiliated Hospital of Hebei Medical University, Shijiazhuang, China
| | - Li-Xia Sun
- Department of Hematology, Third Affiliated Hospital of Hebei Medical University, Shijiazhuang, China.
| |
Collapse
|
3
|
Im KI, Park MJ, Kim N, Lim JY, Park HS, Lee SH, Nam YS, Lee ES, Lee JH, Cho ML, Cho SG. Induction of mixed chimerism using combinatory cell-based immune modulation with mesenchymal stem cells and regulatory T cells for solid-organ transplant tolerance. Stem Cells Dev 2014; 23:2364-76. [PMID: 24804993 DOI: 10.1089/scd.2013.0617] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Establishment of mixed chimerism is an ideal approach to induce donor-specific tolerance while expanding its potential in various clinical settings. Despite the developments in partial conditioning regimens, improvements are still needed in reducing toxicity and bone marrow transplantation-related complications. Recently, cell-based therapies, including mesenchymal stem cells (MSCs), have been incorporated in establishing noncytoreductive mixed chimerism protocols; however, its efficacy is only partial and shows reversed immunosuppressive properties. This study demonstrates a novel approach to induce mixed chimerism and tolerance through combinatory cell-based immune modulation (CCIM) of MSCs and regulatory T cells (Tregs). We hypothesize that the interaction between these cells may lead to greater inhibition of host immune responses. Compared with single cell therapy, CCIM induced a higher engraftment rate and robust donor-specific tolerance to skin allografts across full major histocompatibility complex barriers. These regulatory effects were associated with inhibition of natural killer cell cytotoxic activity, CD4(+)IL-17(+) cells, memory B cells, plasma cells, and immunoglobulin production levels along with increased frequencies of CD4(+)Foxp3(+) cells, IL-10-producing mature B cells, and myeloid-derived suppressor cells. Furthermore, CCIM was able to regulate mortality in a graft-versus-host disease model through reciprocal regulation of Treg/Th17. Taken together, we suggest CCIM as a clinically applicable strategy for facilitating the induction of mixed chimerism and permanent tolerance.
Collapse
Affiliation(s)
- Keon-Il Im
- 1 Laboratory of Immune Regulation, Convergent Research Consortium for Immunologic Disease, The Catholic University of Korea College of Medicine , Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Yolcu ES, Kaminitz A, Mizrahi K, Ash S, Yaniv I, Stein J, Shirwan H, Askenasy N. Immunomodulation with donor regulatory T cells armed with Fas-ligand alleviates graft-versus-host disease. Exp Hematol 2013; 41:903-11. [DOI: 10.1016/j.exphem.2013.04.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Revised: 03/22/2013] [Accepted: 04/27/2013] [Indexed: 10/26/2022]
|
5
|
Sirolimus and post transplant Cy synergistically maintain mixed chimerism in a mismatched murine model. Bone Marrow Transplant 2013; 48:1335-41. [PMID: 23604009 DOI: 10.1038/bmt.2013.60] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 01/29/2013] [Accepted: 03/08/2013] [Indexed: 12/26/2022]
Abstract
Because of the toxicity associated with myeloablative conditioning, nonmyeloablative regimens are increasingly being used in vulnerable patient populations. For patients with sickle cell disease, stable mixed chimerism has proven sufficient to reverse the phenotype. Because the vast majority of patients do not have an HLA-matched sibling, a safe nonmyeloablative regimen that could be applied to the haploidentical setting would be ideal. We employed a mismatched mouse model using BALB/c donors and C57BL/6 recipients. Recipient mice were conditioned with 200 cGy TBI and sirolimus or CSA with or without post transplant Cy (PT-Cy). Our data show that when sirolimus or PT-Cy alone is given to C57BL/6 recipients, donor cells are not detected. However, when sirolimus is administered for 15 or 31 days starting 1 day before or up to 6 days after transplant with PT-Cy, all mice maintain stable mixed chimerism. In contrast, conventional therapy employing CSA with or without PT-Cy does not result in stable mixed chimerism. Lastly, mice with stable mixed chimerism after sirolimus display decreased reactivity to donor Ag both in vitro and in vivo. These data identify a novel strategy for inducing mixed chimerism for the treatment of nonmalignant hematologic diseases.
Collapse
|
6
|
Tangnararatchakit K, Tirapanich W, Anurathapan U, Tapaneya-Olarn W, Pakakasama S, Jootar S, Slavin S, Hongeng S. Depletion of alloreactive T cells for tolerance induction in a recipient of kidney and hematopoietic stem cell transplantations. Pediatr Transplant 2012; 16:E342-7. [PMID: 22553996 DOI: 10.1111/j.1399-3046.2012.01701.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The present case report represents a successful attempt to induce transplantation tolerance to organ allograft by combined administration of donor hematopoietic cells and kidney based on in vivo deletion of alloreactive host-vs-graft and graft-vs-host alloreactive T cells following non-myeloablative conditioning. We were able to induce mixed and eventually full donor chimerism and tolerance of kidney allograft in a 15-yr-old male with ESRD after cisplatin treatment and autologous HSCT for mediastinal germ cell tumor. Our approach to induce tolerance was based on preferential depletion of alloreactive T cells induced by exposure to donor's alloantigens and administration of cyclophosphamide at day 2 and day 3 after stem cell infusion. Additional non-specific immunosuppression as part of the conditioning included exposure to two fractions of TLI, treatment with alemtuzumab (monoclonal anti-CD52) and short-term conventional IS treatment to avoid early graft loss, because of request of IRB. Using this approach, with rapid tapering of all conventional IS treatment, the patient maintains good renal functions without evidence of both acute and chronic rejection for 32 months off all medications.
Collapse
Affiliation(s)
- Kanchana Tangnararatchakit
- Department of Pediatrics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | | | | | | | | | | | | | | |
Collapse
|
7
|
IL-2–Targeted Therapy Ameliorates the Severity of Graft-versus-Host Disease: Ex Vivo Selective Depletion of Host-Reactive T Cells and In Vivo Therapy. Biol Blood Marrow Transplant 2012; 18:523-35. [DOI: 10.1016/j.bbmt.2011.11.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2011] [Accepted: 11/08/2011] [Indexed: 11/24/2022]
|
8
|
Selective elimination of alloreactivity in vitro and in vivo while sparing other T-cell-mediated immune responses. Bone Marrow Transplant 2011; 47:838-45. [DOI: 10.1038/bmt.2011.198] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
9
|
Morecki S, Slavin S. Immunoregulation of GVHD by triggering the innate immune system with CpG. Expert Rev Hematol 2011; 2:443-53. [PMID: 21082948 DOI: 10.1586/ehm.09.29] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Stimulation of Toll-like receptors by oligodeoxynucleotide sequences containing a CpG motif provides signals capable of triggering the innate and adaptive immune systems, thereby leading either to stimulation or suppression of immunoreactivities. Similar immunoregulatory capabilities are necessary for achieving the fine balance between engraftment and graft-versus-host disease required in the setup of allogeneic cell therapy. Ligation of CpG to its Toll-like receptors can be accomplished by treatment of the host or pretransplant treatment of the donor in vivo. These different strategies are presented in this review, which summarizes the attempts to maximize beneficial alloreactivity against malignant or other undesirable host cells, while controlling graft-versus-host disease.
Collapse
Affiliation(s)
- Shoshana Morecki
- Department of Bone Marrow Transplantation and Cancer Immunotherapy, Cell Therapy and Transplantation Research Laboratory, Hadassah University Hospital, Jerusalem, Israel.
| | | |
Collapse
|
10
|
Sinkovics JG. Antileukemia and antitumor effects of the graft-versus-host disease: a new immunovirological approach. Acta Microbiol Immunol Hung 2010; 57:253-347. [PMID: 21183421 DOI: 10.1556/amicr.57.2010.4.2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In leukemic mice, the native host's explicit and well-defined immune reactions to the leukemia virus (a strong exogenous antigen) and to leukemia cells (pretending in their native hosts to be protected "self" elements) are extinguished and replaced in GvHD (graft-versus-host disease) by those of the immunocompetent donor cells. In many cases, the GvHD-inducer donors display genetically encoded resistance to the leukemia virus. In human patients only antileukemia and anti-tumor cell immune reactions are mobilized; thus, patients are deprived of immune reactions to a strong exogenous antigen (the elusive human leukemia-sarcoma retroviruses). The innate and adaptive immune systems of mice have to sustain the immunosuppressive effects of leukemia-inducing retroviruses. Human patients due to the lack of leukemiainducing retroviral pathogens (if they exist, they have not as yet been discovered), escape such immunological downgrading. After studying leukemogenic retroviruses in murine and feline (and other mammalian) hosts, it is very difficult to dismiss retroviral etiology for human leukemias and sarcomas. Since no characterized and thus recognized leukemogenic-sarcomagenic retroviral agents are being isolated from the vast majority of human leukemias-sarcomas, the treatment for these conditions in mice and in human patients vastly differ. It is immunological and biological modalities (alpha interferons; vaccines; adoptive lymphocyte therapy) that dominate the treatment of murine leukemias, whereas combination chemotherapy remains the main remission-inducing agent in human leukemias-lymphomas and sarcomas (as humanized monoclonal antibodies and immunotoxins move in). Yet, in this apparently different backgrounds in Mus and Homo, GvHD, as a treatment modality, appears to work well in both hosts, by replacing the hosts' anti-leukemia and anti-tumor immune faculties with those of the donor. The clinical application of GvHD in the treatment of human leukemias-lymphomas and malignant solid tumors remains a force worthy of pursuit, refinement and strengthening. Graft engineering and modifications of the inner immunological environment of the recipient host by the activation or administration of tumor memory T cells, selected Treg cells and natural killer (NKT) cell classes and cytokines, and the improved pharmacotherapy of GvHD without reducing its antitumor efficacy, will raise the value of GvHD to the higher ranks of the effective antitumor immunotherapeutical measures. Clinical interventions of HCT/HSCT (hematopoietic cell/stem cell transplants) are now applicable to an extended spectrum of malignant diseases in human patients, being available to elderly patients, who receive non-myeloablative conditioning, are re-enforced by post-transplant donor lymphocyte (NK cell and immune T cell) infusions and post-transplant vaccinations, and the donor cells may derive from engineered grafts, or from cord blood with reduced GvHD, but increased GvL/GvT-inducing capabilities (graft-versus leukemia/tumor). Post-transplant T cell transfusions are possible only if selected leukemia antigen-specific T cell clones are available. In verbatim quotation: "Ultimately, advances in separation of GvT from GvHD will further enhance the potential of allogeneic HCT as a curative treatment for hematological malignancies" (Rezvani, A.R. and Storb, R.F., Journal of Autoimmunity 30:172-179, 2008 (see in the text)). It may be added: for cure, a combination of the GvL/T effects with new targeted therapeutic modalities, as elaborated on in this article, will be necessary.
Collapse
Affiliation(s)
- Joseph G Sinkovics
- The University of South Florida College of Medicine, St. Joseph Hospital's Cancer Institute, Affiliated with the H. L. Moffitt Comprehensive Cancer Center, Tampa, FL 33607-6307, USA.
| |
Collapse
|
11
|
Ash S, Stein J, Askenasy N, Yaniv I. Immunomodulation with dendritic cells and donor lymphocyte infusion converge to induce graft vs neuroblastoma reactions without GVHD after allogeneic bone marrow transplantation. Br J Cancer 2010; 103:1597-605. [PMID: 20978501 PMCID: PMC2990575 DOI: 10.1038/sj.bjc.6605924] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 08/31/2010] [Accepted: 09/02/2010] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Mounting evidence points to the efficacy of donor lymphocyte infusion (DLI) and immunisation with tumour-pulsed dendritic cells (DC) in generating graft vs leukaemia reactions after allogeneic bone marrow transplantation (BMT). We assessed the efficacy of DLI and DC in generating potent graft vs neuroblastoma tumour (GVT) reactions following allogeneic BMT. METHODS Mice bearing congenic (H2K(a)) Neuro-2a tumours were grafted with allogeneic (H2K(b)) T-cell-depleted bone marrow cells. Tumour-pulsed donor DC (DC(Neuro2a)) were inoculated (on day +7) in conjunction with donor (H2K(b)) and haploidentical (H2K(a/b)) lymphocytes. RESULTS Murine Neuro-2a cells elicit immune reactions as efficient as B lymphoma in major histocompatibility complex antigen-disparate mice. Lymphopenia induced by conditioning facilitates GVT, and transition to adaptive immunity is enhanced by simultaneous infusion of and DC(Neuro2a) and lymphocytes devoid of graft vs host (GVH) activity (H2K(a/b)). In variance, the efficacy of DC-mediated immunomodulation was diminished by severe graft vs host disease (GVHD), showing mechanistic dissociation and antagonising potential to GVT. CONCLUSIONS The GVHD is not a prerequisite to induce GVT reactivity after allogeneic BMT, but is rather detrimental to induction of anti-tumour immunity by DC-mediated immunomodulation. Simultaneous inoculation of tumour-pulsed donor DC and DLI synergise in stimulation of potent GVT reactions to the extent of eradication of established NB tumours.
Collapse
Affiliation(s)
- S Ash
- Department of Pediatric Hematology-Oncology, Schneider Children's Medical Center of Israel, Petach Tikva 49202, Israel
- Zaizov Cancer Immunotherapy Laboratory, Schneider Children's Medical Center of Israel, Petach Tikva 49202, Israel
| | - J Stein
- Department of Pediatric Hematology-Oncology, Schneider Children's Medical Center of Israel, Petach Tikva 49202, Israel
- Pediatric Bone Marrow Transplant Unit, Schneider Children's Medical Center of Israel, Petach Tikva 49202, Israel
| | - N Askenasy
- Frankel Laboratory of Experimental Bone Marrow Transplantation, Schneider Children's Medical Center of Israel, 14 Kaplan Street, Petach Tikva 49202, Israel
| | - I Yaniv
- Department of Pediatric Hematology-Oncology, Schneider Children's Medical Center of Israel, Petach Tikva 49202, Israel
- Zaizov Cancer Immunotherapy Laboratory, Schneider Children's Medical Center of Israel, Petach Tikva 49202, Israel
| |
Collapse
|
12
|
Current World Literature. Curr Opin Support Palliat Care 2009; 3:305-12. [DOI: 10.1097/spc.0b013e3283339c93] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|