1
|
Manohar S, Gofin Y, Streff H, Vossaert L, Camacho P, Murali CN. A familial deletion of 10p12.1 associated with thrombocytopenia. Am J Med Genet A 2024; 194:77-81. [PMID: 37746810 DOI: 10.1002/ajmg.a.63403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 08/23/2023] [Accepted: 09/01/2023] [Indexed: 09/26/2023]
Abstract
Thrombocytopenia can be inherited or acquired from a variety of causes. While hereditary causes of thrombocytopenia are rare, several genes have been associated with the condition. In this report, we describe an 18-year-old man and his mother, both of whom have congenital thrombocytopenia. Exome sequencing in the man revealed a 1006 kb maternally inherited deletion in the 10p12.1 region (arr[GRCh37] 10p12.1(27378928_28384564)x1) of uncertain clinical significance. This deletion in the THC2 locus includes genes ANKRD26, known to be involved in normal megakaryocyte differentiation, and MASTL, which some studies suggest is linked to autosomal dominant thrombocytopenia. In the family presented here, the deletion segregated with the congenital thrombocytopenia phenotype, suggesting that haploinsufficiency of one or both genes may be the cause. To our knowledge, this is the first report of a deletion of the THC2 locus associated with thrombocytopenia. Future functional studies of deletions of the THC2 locus may elucidate the mechanism for this phenotype observed clinically.
Collapse
Affiliation(s)
- Sujal Manohar
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Yoel Gofin
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Haley Streff
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Liesbeth Vossaert
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Pamela Camacho
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
- Texas Children's Cancer and Hematology Centers, Houston, Texas, USA
| | - Chaya N Murali
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
2
|
Kinase-Independent Functions of MASTL in Cancer: A New Perspective on MASTL Targeting. Cells 2020; 9:cells9071624. [PMID: 32640605 PMCID: PMC7407770 DOI: 10.3390/cells9071624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/29/2020] [Accepted: 07/01/2020] [Indexed: 02/07/2023] Open
Abstract
Microtubule-associated serine/threonine kinase-like (MASTL; Greatwall) is a well-characterized kinase, whose catalytic role has been extensively studied in relation to cell-cycle acceleration. Importantly, MASTL has been implicated to play a substantial role in cancer progression and subsequent studies have shown that MASTL is a significant regulator of the cellular actomyosin cytoskeleton. Several kinases have non-catalytic properties, which are essential or even sufficient for their functions. Likewise, MASTL functions have been attributed both to kinase-dependent phosphorylation of downstream substrates, but also to kinase-independent regulation of the actomyosin contractile machinery. In this review, we aimed to highlight the catalytic and non-catalytic roles of MASTL in proliferation, migration, and invasion. Further, we discussed the implications of this dual role for therapeutic design.
Collapse
|
3
|
Cao L, Li WJ, Yang JH, Wang Y, Hua ZJ, Liu D, Chen YQ, Zhang HM, Zhang R, Zhao JS, Cheng SJ, Zhang Q. Inflammatory cytokine-induced expression of MASTL is involved in hepatocarcinogenesis by regulating cell cycle progression. Oncol Lett 2019; 17:3163-3172. [PMID: 30867746 PMCID: PMC6396276 DOI: 10.3892/ol.2019.9983] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 12/18/2018] [Indexed: 02/07/2023] Open
Abstract
Microtubule associated serine/threonine kinase-like (MASTL) is the functional mammalian ortholog of Greatwall kinase (Gwl), which was originally discovered in Drosophila. Gwl is an essential kinase for accurate chromosome condensation and mitotic progression, and inhibits protein phosphatase 2A (PP2A), which subsequently dephosphorylates the substrates of cyclin B1-cyclin-dependent kinase 1, leading to mitotic exit. Previous studies have indicated that MASTL has a critical function in the regulation of mitosis in HeLa and U2OS cell lines, though there is currently limited evidence for the involvement of MASTL in hepatocarcinogenesis. The results of the present study revealed that MASTL was inducible by the proinflammatory cytokines interleukin 6 (IL-6) and tumor necrosis factor alpha (TNF-α), which promoted the proliferation and mitotic entry of human liver cancer cells. It was also determined that MASTL was significantly overexpressed in cancerous liver tissues compared with non-tumor liver tissues. Mechanistically, stimulation by IL-6 and TNF-α induced the trimethylation of histone H3 lysine 4 (H3K4Me3) at the MASTL promoter to facilitate chromatin accessibility. Additionally, H3K4Me3 was associated with the activation of nuclear factor-κB, which subsequently upregulated MASTL expression. These findings suggested that MASTL may have pivotal functions in the development of hepatocarcinoma, and that it may be a potential target for treatment.
Collapse
Affiliation(s)
- Liye Cao
- Department of Surgery, The Affiliated Hospital of Hebei University, Baoding, Hebei 071000, P.R. China
| | - Wen-Juan Li
- College of Medicine, Hebei University, Baoding, Hebei 071000, P.R. China
| | - Ji-Hong Yang
- Department of Surgery, The Affiliated Hospital of Hebei University, Baoding, Hebei 071000, P.R. China
| | - Yu Wang
- College of Medicine, Hebei University, Baoding, Hebei 071000, P.R. China
| | - Zhi-Juan Hua
- Department of Surgery, The Affiliated Hospital of Hebei University, Baoding, Hebei 071000, P.R. China
| | - Dan Liu
- Department of Ultrasound Imaging, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, Guangdong 519000, P.R. China
| | - Ya-Qing Chen
- Department of Surgery, The Affiliated Hospital of Hebei University, Baoding, Hebei 071000, P.R. China
| | - Hao-Miao Zhang
- College of Medicine, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Rui Zhang
- Department of Surgery, The Affiliated Hospital of Hebei University, Baoding, Hebei 071000, P.R. China
| | - Ji-Sen Zhao
- Department of Surgery, The Affiliated Hospital of Hebei University, Baoding, Hebei 071000, P.R. China
| | - Shu-Jie Cheng
- Department of Surgery, The Affiliated Hospital of Hebei University, Baoding, Hebei 071000, P.R. China
| | - Quan Zhang
- Department of Surgery, The Affiliated Hospital of Hebei University, Baoding, Hebei 071000, P.R. China
| |
Collapse
|
4
|
Marzec K, Burgess A. The Oncogenic Functions of MASTL Kinase. Front Cell Dev Biol 2018; 6:162. [PMID: 30555827 PMCID: PMC6282046 DOI: 10.3389/fcell.2018.00162] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 11/08/2018] [Indexed: 01/14/2023] Open
Abstract
MASTL kinase is a master regulator of mitosis, essential for ensuring that mitotic substrate phosphorylation is correctly maintained. It achieves this through the phosphorylation of alpha-endosulfine and subsequent inhibition of the tumor suppressor PP2A-B55 phosphatase. In recent years MASTL has also emerged as a novel oncogenic kinase that is upregulated in a number of cancer types, correlating with chromosome instability and poor patient survival. While the chromosome instability is likely directly linked to MASTL's control of mitotic phosphorylation, several new studies indicated that MASTL has additional effects outside of mitosis and beyond regulation of PP2A-B55. These include control of normal DNA replication timing, and regulation of AKT/mTOR and Wnt/β-catenin oncogenic kinase signaling. In this review, we will examine the phenotypes and mechanisms for how MASTL, ENSA, and PP2A-B55 deregulation drives tumor progression and metastasis. Finally, we will explore the rationale for the future development of MASTL inhibitors as new cancer therapeutics.
Collapse
Affiliation(s)
- Kamila Marzec
- ANZAC Research Institute, University of Sydney, Sydney, NSW, Australia
| | - Andrew Burgess
- ANZAC Research Institute, University of Sydney, Sydney, NSW, Australia.,Faculty of Medicine and Health, Concord Clinical School, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
5
|
Hurtado B, Trakala M, Ximénez-Embún P, El Bakkali A, Partida D, Sanz-Castillo B, Álvarez-Fernández M, Maroto M, Sánchez-Martínez R, Martínez L, Muñoz J, García de Frutos P, Malumbres M. Thrombocytopenia-associated mutations in Ser/Thr kinase MASTL deregulate actin cytoskeletal dynamics in platelets. J Clin Invest 2018; 128:5351-5367. [PMID: 30252678 DOI: 10.1172/jci121876] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 09/18/2018] [Indexed: 12/18/2022] Open
Abstract
MASTL, a Ser/Thr kinase that inhibits PP2A-B55 complexes during mitosis, is mutated in autosomal dominant thrombocytopenia. However, the connections between the cell-cycle machinery and this human disease remain unexplored. We report here that, whereas Mastl ablation in megakaryocytes prevented proper maturation of these cells, mice carrying the thrombocytopenia-associated mutation developed thrombocytopenia as a consequence of aberrant activation and survival of platelets. Activation of mutant platelets was characterized by hyperstabilized pseudopods mimicking the effect of PP2A inhibition and actin polymerization defects. These aberrations were accompanied by abnormal hyperphosphorylation of multiple components of the actin cytoskeleton and were rescued both in vitro and in vivo by inhibiting upstream kinases such as PKA, PKC, or AMPK. These data reveal an unexpected role of Mastl in actin cytoskeletal dynamics in postmitotic cells and suggest that the thrombocytopenia-associated mutation in MASTL is a pathogenic dominant mutation that mimics decreased PP2A activity resulting in altered phosphorylation of cytoskeletal regulatory pathways.
Collapse
Affiliation(s)
- Begoña Hurtado
- Cell Division and Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.,Department of Cell Death and Proliferation, Institut d'Investigacions Biomèdiques de Barcelona-Consejo Superior de Investigaciones Científicas- Institut d'Investigacions Biomèdiques August Pi i Sunyer- (IIBB-CSIC-IDIBAPS), Barcelona, Spain
| | - Marianna Trakala
- Cell Division and Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Pilar Ximénez-Embún
- ProteoRed - Instituto de Salud Carlos III (ISCIII) and Proteomics Unit, CNIO, Madrid, Spain
| | - Aicha El Bakkali
- Cell Division and Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - David Partida
- Cell Division and Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Belén Sanz-Castillo
- Cell Division and Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | | | - María Maroto
- Cell Division and Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Ruth Sánchez-Martínez
- Cell Division and Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | | | - Javier Muñoz
- ProteoRed - Instituto de Salud Carlos III (ISCIII) and Proteomics Unit, CNIO, Madrid, Spain
| | - Pablo García de Frutos
- Department of Cell Death and Proliferation, Institut d'Investigacions Biomèdiques de Barcelona-Consejo Superior de Investigaciones Científicas- Institut d'Investigacions Biomèdiques August Pi i Sunyer- (IIBB-CSIC-IDIBAPS), Barcelona, Spain
| | - Marcos Malumbres
- Cell Division and Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| |
Collapse
|
6
|
Quaynor SD, Bosley ME, Duckworth CG, Porter KR, Kim SH, Kim HG, Chorich LP, Sullivan ME, Choi JH, Cameron RS, Layman LC. Targeted next generation sequencing approach identifies eighteen new candidate genes in normosmic hypogonadotropic hypogonadism and Kallmann syndrome. Mol Cell Endocrinol 2016; 437:86-96. [PMID: 27502037 DOI: 10.1016/j.mce.2016.08.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 08/03/2016] [Accepted: 08/03/2016] [Indexed: 11/15/2022]
Abstract
The genetic basis is unknown for ∼60% of normosmic hypogonadotropic hypogonadism (nHH)/Kallmann syndrome (KS). DNAs from (17 male and 31 female) nHH/KS patients were analyzed by targeted next generation sequencing (NGS) of 261 genes involved in hypothalamic, pituitary, and/or olfactory pathways, or suggested by chromosome rearrangements. Selected variants were subjected to Sanger DNA sequencing, the gold standard. The frequency of Sanger-confirmed variants was determined using the ExAC database. Variants were classified as likely pathogenic (frameshift, nonsense, and splice site) or predicted pathogenic (nonsynonymous missense). Two novel FGFR1 mutations were identified, as were 18 new candidate genes including: AMN1, CCKBR, CRY1, CXCR4, FGF13, GAP43, GLI3, JAG1, NOS1, MASTL, NOTCH1, NRP2, PALM2, PDE3A, PLEKHA5, RD3, and TRAPPC9, and TSPAN11. Digenic and trigenic variants were found in 8/48 (16.7%) and 1/48 (2.1%) patients, respectively. NGS with confirmation by Sanger sequencing resulted in the identification of new causative FGFR1 gene mutations and suggested 18 new candidate genes in nHH/KS.
Collapse
Affiliation(s)
- Samuel D Quaynor
- Section of Reproductive Endocrinology, Infertility, & Genetics, Department of Obstetrics & Gynecology, Medical College of Georgia, Augusta University, Augusta, GA, United States; University of Chicago, Department of Neurology, Chicago, IL, United States
| | - Maggie E Bosley
- Section of Reproductive Endocrinology, Infertility, & Genetics, Department of Obstetrics & Gynecology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Christina G Duckworth
- Section of Reproductive Endocrinology, Infertility, & Genetics, Department of Obstetrics & Gynecology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Kelsey R Porter
- Section of Reproductive Endocrinology, Infertility, & Genetics, Department of Obstetrics & Gynecology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Soo-Hyun Kim
- Molecular Cell Sciences Research Centre, St. George's Medical School, University of London, London, UK
| | - Hyung-Goo Kim
- Section of Reproductive Endocrinology, Infertility, & Genetics, Department of Obstetrics & Gynecology, Medical College of Georgia, Augusta University, Augusta, GA, United States; Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Lynn P Chorich
- Section of Reproductive Endocrinology, Infertility, & Genetics, Department of Obstetrics & Gynecology, Medical College of Georgia, Augusta University, Augusta, GA, United States; Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Megan E Sullivan
- Section of Reproductive Endocrinology, Infertility, & Genetics, Department of Obstetrics & Gynecology, Medical College of Georgia, Augusta University, Augusta, GA, United States; Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Jeong-Hyeon Choi
- Department of Biostatistics and Epidemiology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Richard S Cameron
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Lawrence C Layman
- Section of Reproductive Endocrinology, Infertility, & Genetics, Department of Obstetrics & Gynecology, Medical College of Georgia, Augusta University, Augusta, GA, United States; Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States; Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA, United States.
| |
Collapse
|
7
|
Origins of the Vertebrate Erythro/Megakaryocytic System. BIOMED RESEARCH INTERNATIONAL 2015; 2015:632171. [PMID: 26557683 PMCID: PMC4628740 DOI: 10.1155/2015/632171] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 07/02/2015] [Indexed: 02/08/2023]
Abstract
Vertebrate erythrocytes and thrombocytes arise from the common bipotent thrombocytic-erythroid progenitors (TEPs). Even though nonmammalian erythrocytes and thrombocytes are phenotypically very similar to each other, mammalian species have developed some key evolutionary improvements in the process of erythroid and thrombocytic differentiation, such as erythroid enucleation, megakaryocyte endoreduplication, and platelet formation. This brings up a few questions that we try to address in this review. Specifically, we describe the ontology of erythro-thrombopoiesis during adult hematopoiesis with focus on the phylogenetic origin of mammalian erythrocytes and thrombocytes (also termed platelets). Although the evolutionary relationship between mammalian and nonmammalian erythroid cells is clear, the appearance of mammalian megakaryocytes is less so. Here, we discuss recent data indicating that nonmammalian thrombocytes and megakaryocytes are homologs. Finally, we hypothesize that erythroid and thrombocytic differentiation evolved from a single ancestral lineage, which would explain the striking similarities between these cells.
Collapse
|
8
|
Ghemlas I, Li H, Zlateska B, Klaassen R, Fernandez CV, Yanofsky RA, Wu J, Pastore Y, Silva M, Lipton JH, Brossard J, Michon B, Abish S, Steele M, Sinha R, Belletrutti M, Breakey VR, Jardine L, Goodyear L, Sung L, Dhanraj S, Reble E, Wagner A, Beyene J, Ray P, Meyn S, Cada M, Dror Y. Improving diagnostic precision, care and syndrome definitions using comprehensive next-generation sequencing for the inherited bone marrow failure syndromes. J Med Genet 2015; 52:575-84. [PMID: 26136524 DOI: 10.1136/jmedgenet-2015-103270] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 06/07/2015] [Indexed: 11/04/2022]
Abstract
BACKGROUND Phenotypic overlap among the inherited bone marrow failure syndromes (IBMFSs) frequently limits the ability to establish a diagnosis based solely on clinical features. >70 IBMFS genes have been identified, which often renders genetic testing prolonged and costly. Since correct diagnosis, treatment and cancer surveillance often depend on identifying the mutated gene, strategies that enable timely genotyping are essential. METHODS To overcome these challenges, we developed a next-generation sequencing assay to analyse a panel of 72 known IBMFS genes. Cases fulfilling the clinical diagnostic criteria of an IBMFS but without identified causal genotypes were included. RESULTS The assay was validated by detecting 52 variants previously found by Sanger sequencing. A total of 158 patients with unknown mutations were studied. Of 75 patients with known IBMFS categories (eg, Fanconi anaemia), 59% had causal mutations. Among 83 patients with unclassified IBMFSs, we found causal mutations and established the diagnosis in 18% of the patients. The assay detected mutant genes that had not previously been reported to be associated with the patient phenotypes. In other cases, the assay led to amendments of diagnoses. In 20% of genotype cases, the results indicated a cancer surveillance programme. CONCLUSIONS The novel assay is efficient, accurate and has a major impact on patient care.
Collapse
Affiliation(s)
- Ibrahim Ghemlas
- Program in Genetics and Genome Biology, Research Institute, Toronto, Ontario, Canada Marrow Failure and Myelodysplasia Program, Division of Hematology/Oncology, Department of Paediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Hongbing Li
- Program in Genetics and Genome Biology, Research Institute, Toronto, Ontario, Canada
| | - Bozana Zlateska
- Program in Genetics and Genome Biology, Research Institute, Toronto, Ontario, Canada
| | - Robert Klaassen
- Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| | | | | | - John Wu
- British Columbia Children's Hospital, Vancouver, British Columbia, Canada
| | | | | | - Jeff H Lipton
- Princess Margaret Hospital, Toronto, Ontario, Canada
| | - Josee Brossard
- Centre hospitalier universitaire, Sherbrooke, Quebec, Canada
| | - Bruno Michon
- Centre Hospital University Quebec-Pav CHUL, Sainte-Foy, Quebec, Canada
| | - Sharon Abish
- Montreal Children's Hospital, Montreal, Québec, Canada
| | | | - Roona Sinha
- University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Mark Belletrutti
- Stollery Children's Hospital, University of Alberta, Edmonton, Alberta, Canada
| | - Vicky R Breakey
- McMaster Children's Hospital, McMaster University, Hamilton, Ontario, Canada
| | - Lawrence Jardine
- Children's Hospital at London Health Sciences Centre, London, Ontario, Canada
| | - Lisa Goodyear
- Janeway Child Health Centre, St. John's, Newfoundland, Canada
| | - Lillian Sung
- Population Health Sciences, Research Institute, The Hospital For Sick Children, Toronto, Ontario, Canada
| | - Santhosh Dhanraj
- Program in Genetics and Genome Biology, Research Institute, Toronto, Ontario, Canada Faculty of Medicine, Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Emma Reble
- Program in Genetics and Genome Biology, Research Institute, Toronto, Ontario, Canada
| | - Amanda Wagner
- Marrow Failure and Myelodysplasia Program, Division of Hematology/Oncology, Department of Paediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Joseph Beyene
- Program in Population Genomics, Department of Clinical Epidemiology & Biostatistics, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Peter Ray
- Program in Genetics and Genome Biology, Research Institute, Toronto, Ontario, Canada Molecular Genetic Laboratory, Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Stephen Meyn
- Program in Genetics and Genome Biology, Research Institute, Toronto, Ontario, Canada
| | - Michaela Cada
- Marrow Failure and Myelodysplasia Program, Division of Hematology/Oncology, Department of Paediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Yigal Dror
- Program in Genetics and Genome Biology, Research Institute, Toronto, Ontario, Canada Marrow Failure and Myelodysplasia Program, Division of Hematology/Oncology, Department of Paediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada Faculty of Medicine, Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
9
|
Abstract
Hemostasis, the process of blood clot formation and resolution in response to vascular injury, and thrombosis, the dysregulation of hemostasis leading to pathological clot formation, are widely studied. However, the genetic variability in hemostatic and thrombotic disorders is incompletely understood, suggesting that novel mediators have yet to be uncovered. The zebrafish is developing into a powerful in vivo model to study hemostasis, and its features as a model organism are well suited to (a) develop high-throughput screens to identify novel mediators of hemostasis and thrombosis, (b) validate candidate genes identified in human populations, and (c) characterize the structure/function relationship of gene products. In this review, we discuss conservation of the zebrafish hemostatic system, highlight areas for future study, and outline the utility of this model to study blood coagulation and its dysregulation.
Collapse
|
10
|
Abstract
PURPOSE OF REVIEW Although the zebrafish has been established as a research tool over the past two to three decades, in hematology it has primarily been used to investigate areas distinct from coagulation. The advantages of this vertebrate model include high fecundity, rapid and external development, and conservation of virtually all clotting factors in the zebrafish genomic sequence. Here, we summarize the growing application of this technology to the study of hemostasis and thrombosis. RECENT FINDINGS Loss of function studies have demonstrated conservation of function for a number of zebrafish coagulation factors. These include positive and negative regulators of coagulation, as well as key components of the thrombus itself, such as von Willebrand factor, fibrinogen, and thrombocytes. Such analyses have also been leveraged to aid in the understanding of human variation and disease, as well as to perform in-vivo structure/function experiments. SUMMARY The zebrafish is an organism that lends itself to a number of unique and powerful approaches not possible in mammals. This review demonstrates that there is a high degree of genetic and functional conservation of coagulation, portending future insights into hemostasis and thrombosis through the use of this model.
Collapse
|
11
|
Alexander SPH, Benson HE, Faccenda E, Pawson AJ, Sharman JL, Spedding M, Peters JA, Harmar AJ. The Concise Guide to PHARMACOLOGY 2013/14: enzymes. Br J Pharmacol 2013; 170:1797-867. [PMID: 24528243 PMCID: PMC3892293 DOI: 10.1111/bph.12451] [Citation(s) in RCA: 415] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The Concise Guide to PHARMACOLOGY 2013/14 provides concise overviews of the key properties of over 2000 human drug targets with their pharmacology, plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. The full contents can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.12444/full. Enzymes are one of the seven major pharmacological targets into which the Guide is divided, with the others being G protein-coupled receptors, ligand-gated ion channels, ion channels, nuclear hormone receptors, catalytic receptors and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. A new landscape format has easy to use tables comparing related targets. It is a condensed version of material contemporary to late 2013, which is presented in greater detail and constantly updated on the website www.guidetopharmacology.org, superseding data presented in previous Guides to Receptors and Channels. It is produced in conjunction with NC-IUPHAR and provides the official IUPHAR classification and nomenclature for human drug targets, where appropriate. It consolidates information previously curated and displayed separately in IUPHAR-DB and the Guide to Receptors and Channels, providing a permanent, citable, point-in-time record that will survive database updates.
Collapse
Affiliation(s)
- Stephen PH Alexander
- School of Life Sciences, University of Nottingham Medical SchoolNottingham, NG7 2UH, UK
| | - Helen E Benson
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | - Elena Faccenda
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | - Adam J Pawson
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | - Joanna L Sharman
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | | | - John A Peters
- Neuroscience Division, Medical Education Institute, Ninewells Hospital and Medical School, University of DundeeDundee, DD1 9SY, UK
| | - Anthony J Harmar
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| |
Collapse
|
12
|
Guéguen P, Rouault K, Chen JM, Raguénès O, Fichou Y, Hardy E, Gobin E, Pan-petesch B, Kerbiriou M, Trouvé P, Marcorelles P, Abgrall JF, Le Maréchal C, Férec C. A missense mutation in the alpha-actinin 1 gene (ACTN1) is the cause of autosomal dominant macrothrombocytopenia in a large French family. PLoS One 2013; 8:e74728. [PMID: 24069336 PMCID: PMC3775762 DOI: 10.1371/journal.pone.0074728] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 08/02/2013] [Indexed: 11/29/2022] Open
Abstract
Inherited thrombocytopenia is a heterogeneous group of disorders characterized by a reduced number of blood platelets. Despite the identification of nearly 20 causative genes in the past decade, approximately half of all subjects with inherited thrombocytopenia still remain unexplained in terms of the underlying pathogenic mechanisms. Here we report a six-generation French pedigree with an autosomal dominant mode of inheritance and the identification of its genetic basis. Of the 55 subjects available for analysis, 26 were diagnosed with isolated macrothrombocytopenia. Genome-wide linkage analysis mapped a 10.9 Mb locus to chromosome 14 (14q22) with a LOD score of 7.6. Candidate gene analysis complemented by targeted next-generation sequencing identified a missense mutation (c.137GA; p.Arg46Gln) in the alpha-actinin 1 gene (ACTN1) that segregated with macrothrombocytopenia in this large pedigree. The missense mutation occurred within actin-binding domain of alpha-actinin 1, a functionally critical domain that crosslinks actin filaments into bundles. The evaluation of cultured mutation-harboring megakaryocytes by electron microscopy and the immunofluorescence examination of transfected COS-7 cells suggested that the mutation causes disorganization of the cellular cytoplasm. Our study concurred with a recently published whole-exome sequence analysis of six small Japanese families with congenital macrothrombocytopenia, adding ACTN1 to the growing list of thrombocytopenia genes.
Collapse
Affiliation(s)
- Paul Guéguen
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1078, Brest, France
- Faculté de Médecine et des Sciences de la Santé, Université de Bretagne Occidentale (UBO), Brest, France
- Laboratoire de Génétique Moléculaire et d’Histocompatibilité, Centre Hospitalier Universitaire (CHU) Brest, Hôpital Morvan, Brest, France
- * E-mail:
| | - Karen Rouault
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1078, Brest, France
- Faculté de Médecine et des Sciences de la Santé, Université de Bretagne Occidentale (UBO), Brest, France
- Laboratoire de Génétique Moléculaire et d’Histocompatibilité, Centre Hospitalier Universitaire (CHU) Brest, Hôpital Morvan, Brest, France
| | - Jian-Min Chen
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1078, Brest, France
- Faculté de Médecine et des Sciences de la Santé, Université de Bretagne Occidentale (UBO), Brest, France
- Laboratoire d’Hématologie, Centre Hospitalier Universitaire (CHU) Brest, Hôpital Cavale Blanche, Brest, France
| | - Odile Raguénès
- Laboratoire de Génétique Moléculaire et d’Histocompatibilité, Centre Hospitalier Universitaire (CHU) Brest, Hôpital Morvan, Brest, France
| | - Yann Fichou
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1078, Brest, France
- Laboratoire d’Hématologie, Centre Hospitalier Universitaire (CHU) Brest, Hôpital Cavale Blanche, Brest, France
| | - Elisabeth Hardy
- Laboratoire d’Hématologie, Centre Hospitalier Universitaire (CHU) Brest, Hôpital Cavale Blanche, Brest, France
| | - Eric Gobin
- Etablissement Français du sang (EFS) – Bretagne, Brest, France
| | - Brigitte Pan-petesch
- Service d’Anatomie Pathologique, Centre Hospitalier Universitaire (CHU) Brest, Hôpital Morvan, Brest, France
| | - Mathieu Kerbiriou
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1078, Brest, France
- Faculté de Médecine et des Sciences de la Santé, Université de Bretagne Occidentale (UBO), Brest, France
| | - Pascal Trouvé
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1078, Brest, France
- Faculté de Médecine et des Sciences de la Santé, Université de Bretagne Occidentale (UBO), Brest, France
| | - Pascale Marcorelles
- Faculté de Médecine et des Sciences de la Santé, Université de Bretagne Occidentale (UBO), Brest, France
- Etablissement Français du sang (EFS) – Bretagne, Brest, France
| | - Jean-francois Abgrall
- Faculté de Médecine et des Sciences de la Santé, Université de Bretagne Occidentale (UBO), Brest, France
- Service d’Anatomie Pathologique, Centre Hospitalier Universitaire (CHU) Brest, Hôpital Morvan, Brest, France
| | - Cédric Le Maréchal
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1078, Brest, France
- Faculté de Médecine et des Sciences de la Santé, Université de Bretagne Occidentale (UBO), Brest, France
- Laboratoire de Génétique Moléculaire et d’Histocompatibilité, Centre Hospitalier Universitaire (CHU) Brest, Hôpital Morvan, Brest, France
- Laboratoire d’Hématologie, Centre Hospitalier Universitaire (CHU) Brest, Hôpital Cavale Blanche, Brest, France
| | - Claude Férec
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1078, Brest, France
- Faculté de Médecine et des Sciences de la Santé, Université de Bretagne Occidentale (UBO), Brest, France
- Laboratoire de Génétique Moléculaire et d’Histocompatibilité, Centre Hospitalier Universitaire (CHU) Brest, Hôpital Morvan, Brest, France
- Laboratoire d’Hématologie, Centre Hospitalier Universitaire (CHU) Brest, Hôpital Cavale Blanche, Brest, France
| |
Collapse
|
13
|
Abstract
The diagnosis of inherited thrombocytopenias is difficult, for many reasons. First, as they are all rare diseases, they are little known by clinicians, who therefore tend to suspect the most common forms. Second, making a definite diagnosis often requires complex laboratory techniques that are available in only a few centers. Finally, half of the patients have forms that have not yet been described. As a consequence, many patients with inherited thrombocytopenias are misdiagnosed with immune thrombocytopenia, and are at risk of receiving futile treatments. Misdiagnosis is particularly frequent in patients whose low platelet count is discovered in adult life, because, in these cases, even the inherited origin of thrombocytopenia may be missed. Making the correct diagnosis promptly is important, as we recently learned that some forms of inherited thrombocytopenia predispose to other illnesses, such as leukemia or kidney failure, and affected subjects therefore require close surveillance and, if necessary, prompt treatments. Moreover, medical treatment can increase platelet counts in specific disorders, and affected subjects can therefore receive drugs instead of platelet transfusions when selective surgery is required. In this review, we will discuss how to suspect, diagnose and manage inherited thrombocytopenias, with particular attention to the forms that frequently present in adults. Moreover, we describe four recently identified disorders that belong to this group of disorders that are often diagnosed in adults: MYH9-related disease, monoallelic Bernard-Soulier syndrome, ANKRD26-related thrombocytopenia, and familial platelet disorder with predisposition to acute leukemia.
Collapse
Affiliation(s)
- C L Balduini
- Department of Internal Medicine, University of Pavia-IRCCS Policlinico San Matteo Foundation, Pavia, Italy.
| | | | | |
Collapse
|
14
|
Zebrafish thrombocytes: functions and origins. Adv Hematol 2012; 2012:857058. [PMID: 22778746 PMCID: PMC3388482 DOI: 10.1155/2012/857058] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 04/19/2012] [Indexed: 01/16/2023] Open
Abstract
Platelets play an important role in mammalian hemostasis. Thrombocytes of early vertebrates are functionally equivalent to mammalian platelets. A substantial amount of research has been done to study platelet function in humans as well as in animal models. However, to date only limited functional genomic studies of platelets have been performed but are low throughput and are not cost-effective. Keeping this in mind we introduced zebrafish, a vertebrate genetic model to study platelet function. We characterized zebrafish thrombocytes and established functional assays study not only their hemostatic function but to also their production. We identified a few genes which play a role in their function and production. Since we introduced the zebrafish model for the study of hemostasis and thrombosis, other groups have adapted this model to study genes that are associated with thrombocyte function and a few novel genes have also been identified. Furthermore, transgenic zebrafish with GFP-tagged thrombocytes have been developed which helped to study the production of thrombocytes and their precursors as well as their functional roles not only in hemostasis but also hematopoiesis. This paper integrates the information available on zebrafish thrombocyte function and its formation.
Collapse
|
15
|
Abstract
New data have recently established that protein phosphorylation during mitosis is the result of a controlled balance between kinase and phosphatase activities and that, as for mitotic kinases, phosphatases are also regulated during cell division. This regulation is at least in part induced by the activation of the Greatwall (Gwl) kinase at mitotic entry. Activated Gwl phosphorylates its substrates cAMP-regulated phospho protein 19 (Arpp19) and α-endosulfine (ENSA), promoting their binding to and the inhibition of PP2A. Interestingly, besides the role of the Gwl-Arpp19/ENSA in the control of mitotic division, new data in yeast support the involvement of this pathway in mRNA stabilization during G(0) program initiation, although in this case the phosphatase PP2A appears not to be implicated. Finally, Gwl activity has been shown to be required for DNA checkpoint recovery. These new findings support the view that Gwl, Arpp19 and ENSA could function as the core of a new signalization pathway that, by targeting different final substrates, could participate in a variety of physiological functions.
Collapse
|
16
|
Abstract
Although platelets are the smallest cells in the blood, they are implied in various processes ranging from immunology and oncology to thrombosis and hemostasis. Many large-scale screening programs, genome-wide association, and "omics" studies have generated lists of genes and loci that are probably involved in the formation or physiology of platelets under normal and pathologic conditions. This creates an increasing demand for new and improved model systems that allow functional assessment of the corresponding gene products in vivo. Such animal models not only render invaluable insight in the platelet biology, but in addition, provide improved test systems for the validation of newly developed anti-thrombotics. This review summarizes the most important models to generate transgenic platelets and to study their influence on platelet physiology in vivo. Here we focus on the zebrafish morpholino oligonucleotide technology, the (platelet-specific) knockout mouse, and the transplantation of genetically modified human or murine platelet progenitor cells in myelo-conditioned mice. The various strengths and pitfalls of these animal models are illustrated by recent examples from the platelet field. Finally, we highlight the latest developments in genetic engineering techniques and their possible application in platelet research.
Collapse
|
17
|
Holzhauer S, Zieger B. Diagnosis and management of neonatal thrombocytopenia. Semin Fetal Neonatal Med 2011; 16:305-10. [PMID: 21835709 DOI: 10.1016/j.siny.2011.07.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Thrombocytopenia is the most common haematological abnormality in newborns admitted to neonatal care units and serves as an important indicator of underlying pathological processes of mother or child. In most cases thrombocytopenia is mild to moderate and resolves within the first weeks of life without any intervention. However, in some neonates thrombocytopenia is severe or may reflect an inborn platelet disorder. As clinical course and outcome of thrombocytopenia depend on the aetiology of thrombocytopenia, an appropriate work-up is essential to guide therapy in neonates with thrombocytopenia and to avoid severe bleeding.
Collapse
Affiliation(s)
- Susanne Holzhauer
- Department of Paediatric Oncology and Haematology, Charité - University of Berlin, Berlin, Germany
| | | |
Collapse
|
18
|
Abstract
The basic biology of the cell division cycle and its control by protein kinases was originally studied through genetic and biochemical studies in yeast and other model organisms. The major regulatory mechanisms identified in this pioneer work are conserved in mammals. However, recent studies in different cell types or genetic models are now providing a new perspective on the function of these major cell cycle regulators in different tissues. Here, we review the physiological relevance of mammalian cell cycle kinases such as cyclin-dependent kinases (Cdks), Aurora and Polo-like kinases, and mitotic checkpoint regulators (Bub1, BubR1, and Mps1) as well as other less-studied enzymes such as Cdc7, Nek proteins, or Mastl and their implications in development, tissue homeostasis, and human disease. Among these functions, the control of self-renewal or asymmetric cell division in stem/progenitor cells and the ability to regenerate injured tissues is a central issue in current research. In addition, many of these proteins play previously unexpected roles in metabolism, cardiovascular function, or neuron biology. The modulation of their enzymatic activity may therefore have multiple therapeutic benefits in human disease.
Collapse
Affiliation(s)
- Marcos Malumbres
- Cell Division and Cancer Group, Spanish National Cancer Research Centre, Madrid, Spain.
| |
Collapse
|
19
|
|
20
|
Punzo F, Mientjes EJ, Rohe CF, Scianguetta S, Amendola G, Oostra BA, Bertoli-Avella AM, Perrotta S. A mutation in the acyl-coenzyme A binding domain-containing protein 5 gene (ACBD5 ) identified in autosomal dominant thrombocytopenia. J Thromb Haemost 2010; 8:2085-7. [PMID: 20626622 DOI: 10.1111/j.1538-7836.2010.03979.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
21
|
Loss of human Greatwall results in G2 arrest and multiple mitotic defects due to deregulation of the cyclin B-Cdc2/PP2A balance. Proc Natl Acad Sci U S A 2010; 107:12564-9. [PMID: 20538976 DOI: 10.1073/pnas.0914191107] [Citation(s) in RCA: 567] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Here we show that the functional human ortholog of Greatwall protein kinase (Gwl) is the microtubule-associated serine/threonine kinase-like protein, MAST-L. This kinase promotes mitotic entry and maintenance in human cells by inhibiting protein phosphatase 2A (PP2A), a phosphatase that dephosphorylates cyclin B-Cdc2 substrates. The complete depletion of Gwl by siRNA arrests human cells in G2. When the levels of this kinase are only partially depleted, however, cells enter into mitosis with multiple defects and fail to inactivate the spindle assembly checkpoint (SAC). The ability of cells to remain arrested in mitosis by the SAC appears to be directly proportional to the amount of Gwl remaining. Thus, when Gwl is only slightly reduced, cells arrest at prometaphase. More complete depletion correlates with the premature dephosphorylation of cyclin B-Cdc2 substrates, inactivation of the SAC, and subsequent exit from mitosis with severe cytokinesis defects. These phenotypes appear to be mediated by PP2A, as they could be rescued by either a double Gwl/PP2A knockdown or by the inhibition of this phosphatase with okadaic acid. These results suggest that the balance between cyclin B-Cdc2 and PP2A must be tightly regulated for correct mitotic entry and exit and that Gwl is crucial for mediating this regulation in somatic human cells.
Collapse
|
22
|
Lang MR, Gihr G, Gawaz MP, Müller II. Hemostasis in Danio rerio: is the zebrafish a useful model for platelet research? J Thromb Haemost 2010; 8:1159-69. [PMID: 20180901 DOI: 10.1111/j.1538-7836.2010.03815.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
New scientific models have been established in the past few years to identify novel factors of hemostasis and thrombosis and to analyze their function in greater detail. One fairly new animal model is the zebrafish, Danio rerio, which shares most of the central factors of platelet adhesion, activation, aggregation and release reaction with humans. Examples include GPIIb-IIIa, many other integrins, coagulation factors, inflammatory and cytokine-like proteins as well as arachidonic acid metabolism enzymes. Yet the zebrafish genome has undergone a teleost-specific genome duplication, causing the existence of duplicated paralogues in some instances, and a few genes have not been identified in the zebrafish genome. Taken together the high fecundity of the zebrafish, the possibility to observe transparent developing embryos in real time, the availability of a large number of mutants and transgenics as well as the possibility to knock down gene function by microinjection of morpholino antisense oligonucleotides and the similarity of the hemostatic system are important assets of the zebrafish, promising that it will be an attractive model to study thrombocyte function, thrombosis and hemostasis. This review provides an overview of the central factors of thrombocyte function identified so far in the zebrafish genome and a compilation of methods and tools available for the study of thrombocyte development and function in zebrafish.
Collapse
Affiliation(s)
- M R Lang
- Medizinische Klinik III, Kardiologie und Kreislauferkrankungen, Eberhard-Karls-Universität, Tübingen, Germany.
| | | | | | | |
Collapse
|