1
|
Silver AJ, Brown DJ, Olmstead SD, Watke JM, Gorska AE, Tanner L, Ramsey HE, Savona MR. Interallelic gene conversion of leukemia-associated single nucleotide variants. Gene 2025; 958:149493. [PMID: 40222687 DOI: 10.1016/j.gene.2025.149493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/30/2025] [Accepted: 04/10/2025] [Indexed: 04/15/2025]
Abstract
CRISPR-Cas9 is a useful tool for inserting precise genetic alterations through homology-directed repair (HDR), although current methods largely rely on provision of an exogenous repair template. Here, we tested the possibility of interchanging heterozygous single nucleotide variants (SNVs) using mutation-specific guide RNA, and the cell's own wild-type allele rather than an exogenous template. Using high-fidelity Cas9 to perform allele-specific CRISPR across multiple human leukemia cell lines as well as in primary hematopoietic cells from patients with leukemia, we find high levels of reversion to wild-type in the absence of exogenous template. Moreover, we demonstrate that bulk treatment to revert a truncating mutation in ASXL1 using CRISPR-mediated interallelic gene conversion (IGC) is sufficient to prolong survival in a human cell line-derived xenograft model (median survival 33 days vs 27.5 days; p = 0.0040). These results indicate that IGC is a useful laboratory tool which can be applied to numerous types of leukemia and can meaningfully alter cellular phenotypes at scale. Because our method targets single-base mutations, rather than larger variants targeted by IGC in prior studies, it greatly expands the pool of genetic lesions which could potentially be targeted by IGC. This technique may reduce cost and complexity for experiments modeling phenotypic consequences of SNVs. The principles of SNV-specific IGC demonstrated in this proof-of-concept study could be applied to investigate the phenotypic effects of targeted clonal reduction of leukemogenic SNV mutations.
Collapse
Affiliation(s)
- Alexander J Silver
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Program in Cancer Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Medical Scientist Training Program, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Donovan J Brown
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Sarah D Olmstead
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jackson M Watke
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Agnieszka E Gorska
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Londa Tanner
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Haley E Ramsey
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Program in Cancer Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Michael R Savona
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Program in Cancer Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
2
|
Ma X, Xu J, Wang Y, Fleishman JS, Bing H, Yu B, Li Y, Bo L, Zhang S, Chen ZS, Zhao L. Research progress on gene mutations and drug resistance in leukemia. Drug Resist Updat 2025; 79:101195. [PMID: 39740374 DOI: 10.1016/j.drup.2024.101195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/05/2024] [Accepted: 12/20/2024] [Indexed: 01/02/2025]
Abstract
Leukemia is a type of blood cancer characterized by the uncontrolled growth of abnormal cells in the bone marrow, which replace normal blood cells and disrupt normal blood cell function. Timely and personalized interventions are crucial for disease management and improving survival rates. However, many patients experience relapse following conventional chemotherapy, and increasing treatment intensity often fails to improve outcomes due to mutated gene-induced drug resistance in leukemia cells. This article analyzes the association of gene mutations and drug resistance in leukemia. It explores genetic abnormalities in leukemia, highlighting recently identified mutations affecting signaling pathways, cell apoptosis, epigenetic regulation, histone modification, and splicing mechanisms. Additionally, the article discusses therapeutic strategies such as molecular targeting of gene mutations, alternative pathway targeting, and immunotherapy in leukemia. These approaches aim to combat specific drug-resistant mutations, providing potential avenues to mitigate leukemia relapse. Future research with these strategies holds promise for advancing leukemia treatment and addressing the challenges of drug-resistant mutations to improve patient outcomes.
Collapse
Affiliation(s)
- Xiangyu Ma
- Department of Pharmacy, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 100045, China
| | - Jiamin Xu
- Department of Pharmacy, Peking University Third Hospital, Beijing 100191, China
| | - Yanan Wang
- Department of Pharmacy, Peking University Third Hospital, Beijing 100191, China
| | - Joshua S Fleishman
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, New York, NY 11439, USA
| | - Hao Bing
- Department of Pharmacy, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 100045, China
| | - Boran Yu
- Department of Pharmacy, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 100045, China
| | - Yanming Li
- Department of Pharmacy, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 100045, China
| | - Letao Bo
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, New York, NY 11439, USA
| | - Shaolong Zhang
- Department of Pharmacy, Peking University Third Hospital, Beijing 100191, China
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, New York, NY 11439, USA.
| | - Libo Zhao
- Department of Pharmacy, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 100045, China; Department of Pharmacy, Peking University Third Hospital, Beijing 100191, China.
| |
Collapse
|
3
|
Kinzhebay A, Salybekov AA. The Role of Somatic Mutations in Ischemic Stroke: CHIP's Impact on Vascular Health. Neurol Int 2025; 17:19. [PMID: 39997650 PMCID: PMC11858376 DOI: 10.3390/neurolint17020019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/14/2024] [Accepted: 12/18/2024] [Indexed: 02/26/2025] Open
Abstract
Clonal hematopoiesis of indeterminate potential (CHIP) is increasingly recognized as a significant contributor to ischemic stroke and other cardiovascular diseases due to its association with somatic mutations in hematopoietic cells. These mutations, notably in genes like DNMT3A, TET2, and JAK2, induce pro-inflammatory and pro-atherosclerotic processes, promoting vascular damage and stroke risk. With the prevalence of CHIP rising with age, its presence correlates with higher mortality and morbidity rates in ischemic stroke patients. This article explores the mechanisms through which CHIP influences vascular aging and stroke, emphasizing its potential as a biomarker for early risk stratification and a target for therapeutic intervention. The findings highlight the necessity of integrating CHIP status in clinical evaluations to better predict outcomes and personalize treatment strategies in stroke management.
Collapse
Affiliation(s)
| | - Amankeldi A. Salybekov
- Qazaq Institute of Innovative Medicine, Regenerative Medicine Division, Cell and Gene Therapy Department, Astana 010000, Kazakhstan;
| |
Collapse
|
4
|
Sato N, Goyama S, Chang YH, Miyawaki M, Fujino T, Koide S, Denda T, Liu X, Ueda K, Yamamoto K, Asada S, Takeda R, Yonezawa T, Tanaka Y, Honda H, Ota Y, Shibata T, Sekiya M, Isobe T, Lamagna C, Masuda E, Iwama A, Shimano H, Inoue JI, Miyake K, Kitamura T. Clonal hematopoiesis-related mutant ASXL1 promotes atherosclerosis in mice via dysregulated innate immunity. NATURE CARDIOVASCULAR RESEARCH 2024; 3:1568-1583. [PMID: 39653824 DOI: 10.1038/s44161-024-00579-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 10/30/2024] [Indexed: 12/13/2024]
Abstract
Certain somatic mutations provide a fitness advantage to hematopoietic stem cells and lead to clonal expansion of mutant blood cells, known as clonal hematopoiesis (CH). Among the most common CH mutations, ASXL1 mutations pose the highest risk for cardiovascular diseases (CVDs), yet the mechanisms by which they contribute to CVDs are unclear. Here we show that hematopoietic cells harboring C-terminally truncated ASXL1 mutant (ASXL1-MT) accelerate the development of atherosclerosis in Ldlr-/- mice. Transcriptome analyses of plaque cells showed that monocytes and macrophages expressing ASXL1-MT exhibit inflammatory signatures. Mechanistically, we demonstrate that wild-type ASXL1 has an unexpected non-epigenetic role by suppressing innate immune signaling through the inhibition of IRAK1-TAK1 interaction in the cytoplasm. This regulatory function is lost in ASXL1-MT, resulting in NF-κB activation. Inhibition of IRAK1/4 alleviated atherosclerosis driven by ASXL1-MT and decreased inflammatory monocytes. The present work provides a mechanistic and cellular explanation linking ASXL1 mutations, CH and CVDs.
Collapse
Affiliation(s)
- Naru Sato
- Division of Cellular Therapy, The Institute of Medical Science, University of Tokyo, Tokyo, Japan
- Molecular Pharmacology of Malignant Diseases, Graduate School of Pharmaceutical Sciences, University of Tokyo, Bunkyo-Ku, Japan
| | - Susumu Goyama
- Division of Cellular Therapy, The Institute of Medical Science, University of Tokyo, Tokyo, Japan
- Division of Molecular Oncology, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Tokyo, Japan
| | - Yu-Hsuan Chang
- Division of Cellular Therapy, The Institute of Medical Science, University of Tokyo, Tokyo, Japan
- Molecular Pharmacology of Malignant Diseases, Graduate School of Pharmaceutical Sciences, University of Tokyo, Bunkyo-Ku, Japan
| | - Masashi Miyawaki
- Molecular Pharmacology of Malignant Diseases, Graduate School of Pharmaceutical Sciences, University of Tokyo, Bunkyo-Ku, Japan
| | - Takeshi Fujino
- Division of Cellular Therapy, The Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Shuhei Koide
- Division of Stem Cell and Molecular Medicine, Centre for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Tamami Denda
- Department of Pathology, The Institute of Medical Science Research Hospital, University of Tokyo, Tokyo, Japan
| | - Xiaoxiao Liu
- Division of Molecular Oncology, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Tokyo, Japan
| | - Koji Ueda
- Project for Personalized Cancer Medicine, Cancer Precision Medicine Centre, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Keita Yamamoto
- Division of Molecular Oncology, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Tokyo, Japan
| | - Shuhei Asada
- The Institute of Laboratory Animals, Tokyo Women's Medical University, Tokyo, Japan
| | - Reina Takeda
- Division of Cellular Therapy, The Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Taishi Yonezawa
- Division of Cellular Therapy, The Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Yosuke Tanaka
- Division of Cellular Therapy, The Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Hiroaki Honda
- The Institute of Laboratory Animals, Tokyo Women's Medical University, Tokyo, Japan
| | - Yasunori Ota
- Department of Pathology, The Institute of Medical Science Research Hospital, University of Tokyo, Tokyo, Japan
| | - Takuma Shibata
- Department of Microbiology and Immunology, Division of Infectious Genetics, University of Tokyo, Tokyo, Japan
| | - Motohiro Sekiya
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Tomoya Isobe
- Department of Hematology, Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | | | - Esteban Masuda
- Rigel Pharmaceuticals, Inc., South San Francisco, CA, USA
| | - Atsushi Iwama
- Division of Stem Cell and Molecular Medicine, Centre for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Hitoshi Shimano
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Jun-Ichiro Inoue
- Research Platform Office, The Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Kensuke Miyake
- Department of Microbiology and Immunology, Division of Infectious Genetics, University of Tokyo, Tokyo, Japan
| | - Toshio Kitamura
- Division of Cellular Therapy, The Institute of Medical Science, University of Tokyo, Tokyo, Japan.
- Molecular Pharmacology of Malignant Diseases, Graduate School of Pharmaceutical Sciences, University of Tokyo, Bunkyo-Ku, Japan.
- Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan.
| |
Collapse
|
5
|
ASXL1 mutation accelerates atherosclerosis by promoting activation of myeloid cells. NATURE CARDIOVASCULAR RESEARCH 2024; 3:1387-1388. [PMID: 39663508 DOI: 10.1038/s44161-024-00578-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
|
6
|
Chen Y, Zhou D, Ma C, Cao J, Ying Q, Sheng L, Yan X, Ouyang G, Mu Q. Elevated serum direct bilirubin is predictive of a poor prognosis for primary myelodysplastic syndrome. BMC Cancer 2024; 24:1392. [PMID: 39533230 PMCID: PMC11559105 DOI: 10.1186/s12885-024-13164-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND The aim of this study was to assess the prognostic significance of serum direct bilirubin (DBIL) for patients newly diagnosed with myelodysplastic syndromes (MDS). METHODS The clinical, laboratory, and follow-up data of MDS patients were collected, and the associations of DBIL levels with overall survival (OS) and leukemia-free survival (LFS) were analyzed. RESULT In total, 262 MDS patients were assigned to the high DBIL level group or the normal DBIL level group in the retrospective study. High DBIL was associated with older age, reduced hemoglobin, higher levels of β2-microglobin, lactate dehydrogenase, and serum ferritin, along with the number of co-mutations (> 1) and a higher frequency of ASXL1, KIT, and KRAS mutations. Multivariate analyses found that high DBIL level was an independent adverse predictor for OS (p = 0.002, hazard ratio = 2.723, 95%CI = 1.442-5.143) but not for LFS (p = 0.057, hazard ratio = 1.678, 95%CI = 0.986-2.857). A novel nomogram based on DBIL, sex, age, β2-microglobulin, lactate dehydrogenase, the Revised International Prognostic Scoring System (IPSS-R) was constructed, which demonstrated superior accuracy compared with the IPSS-R (C-index, 0.790 vs. 0.731, respectively). CONCLUSION An elevated DBIL level was identified as an independent adverse prognostic factor for MDS patients. An individualized prediction model was established and validated to improve prediction of OS and LFS.
Collapse
Affiliation(s)
- Ying Chen
- Laboratory of Stem Cell Transplantation, The First Affiliated Hospital of Ningbo University, Ningbo, China
- Ningbo Clinical Research Center For Hematologic Malignancies, Ningbo, China
| | - Danqing Zhou
- Traditional Chinese Medicine Department, Yinzhou Integrated TCM And Western Medicine Hospital, Ningbo, China
| | - Chao Ma
- Laboratory of Stem Cell Transplantation, The First Affiliated Hospital of Ningbo University, Ningbo, China
- Ningbo Clinical Research Center For Hematologic Malignancies, Ningbo, China
| | - Jie Cao
- Laboratory of Stem Cell Transplantation, The First Affiliated Hospital of Ningbo University, Ningbo, China
- Ningbo Clinical Research Center For Hematologic Malignancies, Ningbo, China
| | - Qiming Ying
- Department of Blood Transfusion, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Lixia Sheng
- Ningbo Clinical Research Center For Hematologic Malignancies, Ningbo, China
- Department of Hematology, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Xiao Yan
- Ningbo Clinical Research Center For Hematologic Malignancies, Ningbo, China.
- Department of Hematology, The First Affiliated Hospital of Ningbo University, Ningbo, China.
| | - Guifang Ouyang
- Ningbo Clinical Research Center For Hematologic Malignancies, Ningbo, China.
- Department of Hematology, The First Affiliated Hospital of Ningbo University, Ningbo, China.
| | - Qitian Mu
- Laboratory of Stem Cell Transplantation, The First Affiliated Hospital of Ningbo University, Ningbo, China.
- Ningbo Clinical Research Center For Hematologic Malignancies, Ningbo, China.
| |
Collapse
|
7
|
Yu Z, Vromman A, Nguyen NQH, Schuermans A, Rentz T, Vellarikkal SK, Uddin MM, Niroula A, Griffin G, Honigberg MC, Lin AE, Gibson CJ, Katz DH, Tahir U, Fang S, Haidermota S, Ganesh S, Antoine T, Weinstock J, Austin TR, Ramachandran VS, Peloso GM, Hornsby W, Ganz P, Manson JE, Haring B, Kooperberg CL, Reiner AP, Bis JC, Psaty BM, Min YI, Correa A, Lange LA, Post WS, Rotter JI, Rich SS, Wilson JG, Ebert BL, Yu B, Ballantyne CM, Coresh J, Sankaran VG, Bick AG, Jaiswal S, Gerszten RE, Libby P, Gupta RM, Natarajan P. Human Plasma Proteomic Profile of Clonal Hematopoiesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.25.550557. [PMID: 39554199 PMCID: PMC11565774 DOI: 10.1101/2023.07.25.550557] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Plasma proteomic profiles associated with subclinical somatic mutations in blood cells may offer novel insights into downstream clinical consequences. Here, we explore such patterns in clonal hematopoiesis of indeterminate potential (CHIP), which is linked to several cancer and non-cancer outcomes, including coronary artery disease (CAD). Among 61,833 ancestrally diverse participants (3,881 with CHIP) from NHLBI TOPMed and UK Biobank with blood-based DNA sequencing and proteomic measurements (1,148 proteins by SomaScan in TOPMed and 2,917 proteins by Olink in UK Biobank), we identified 32 and 345 unique proteins from TOPMed and UK Biobank, respectively, associated with the most prevalent driver genes ( DNMT3A , TET2 , and ASXL1 ). These associations showed substantial heterogeneity by driver genes, sex, and race, and were enriched for immune response and inflammation pathways. Mendelian randomization in humans, coupled with ELISA in hematopoietic Tet2 -/- vs wild-type mice validation, disentangled causal proteomic perturbations from TET2 CHIP. Lastly, we identified plasma proteins shared between CHIP and CAD.
Collapse
|
8
|
Dhuri K, Alachkar H. Differences in the mutational landscape of clonal hematopoiesis of indeterminate potential among races and between male and female patients with cancer. Exp Hematol 2024; 138:104271. [PMID: 38969020 PMCID: PMC12045072 DOI: 10.1016/j.exphem.2024.104271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 06/13/2024] [Accepted: 06/26/2024] [Indexed: 07/07/2024]
Abstract
Clonal hematopoiesis of indeterminate potential (CHIP) has emerged as a significant precursor to hematological malignancies and is associated with several age-related diseases. We leveraged public data to explore differences in the mutational landscape of CHIP between males (Ms) and females (Fs) and across diverse racial populations. DNA (cytosine-5) methyltransferase 3 alpha (DNMT3A) mutations were substantially more prevalent in Fs than in Ms (38.94% vs. 31.37%, p-value: < 0.001, q-value: < 0.001). Additional sex combs-like 1 (ASXL1) mutations were more frequent in Ms than Fs (5.82% vs. 2.69%, p-value < 0.001, q-value < 0.001). In the racial cohorts with sufficient sample sizes, STAT5B and CSF1R mutations were most frequent in Asian populations (1.40% and 0.84%), followed by Black populations (0.98% and 0.24%) and White populations (0.29% and 0.09%) (p-value: < 0.001 , q-value: 0.023 for both genes). Several other CHIP mutations were enriched in Black: RARA, SMAD2, CDKN1B, CENPA, CTLA4, EIF1AX, ELF3, MSI1, MYC, SOX17, and AURKA. On the other hand, H3C1, H3C4, and MYCL were enriched in the Asian cohort. Our analysis highlights sex and racial differences in CHIP mutations among patients with cancer. As CHIP continues to gain recognition as a critical precursor to malignancies and other diseases, understanding how these differences contribute to CHIP's underlying mechanisms and clinical implications is critical.
Collapse
Affiliation(s)
- Kanaka Dhuri
- Department of Clinical Pharmacy, USC Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA
| | - Houda Alachkar
- Department of Clinical Pharmacy, USC Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA; USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA.
| |
Collapse
|
9
|
Dunn WG, McLoughlin MA, Vassiliou GS. Clonal hematopoiesis and hematological malignancy. J Clin Invest 2024; 134:e180065. [PMID: 39352393 PMCID: PMC11444162 DOI: 10.1172/jci180065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024] Open
Abstract
Clonal hematopoiesis (CH), the expansion of hematopoietic stem cells and their progeny driven by somatic mutations in leukemia-associated genes, is a common phenomenon that rises in prevalence with advancing age to affect most people older than 70 years. CH remains subclinical in most carriers, but, in a minority, it progresses to a myeloid neoplasm, such as acute myeloid leukemia, myelodysplastic syndrome, or myeloproliferative neoplasm. Over the last decade, advances in our understanding of CH, its molecular landscape, and the risks associated with different driver gene mutations have culminated in recent developments that allow for a more precise estimation of myeloid neoplasia risk in CH carriers. In turn, this is leading to the development of translational and clinical programs to intercept and prevent CH from developing into myeloid neoplasia. Here, we give an overview of the spectrum of CH driver mutations, what is known about their pathophysiology, and how this informs the risk of incident myeloid malignancy.
Collapse
Affiliation(s)
- William G. Dunn
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, Addenbrooke’s Hospital, Cambridge University Hospitals NHS Trust, Cambridge, United Kingdom
| | - Matthew A. McLoughlin
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - George S. Vassiliou
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, Addenbrooke’s Hospital, Cambridge University Hospitals NHS Trust, Cambridge, United Kingdom
| |
Collapse
|
10
|
Kim N, Byun S, Um SJ. Additional Sex Combs-like Family Associated with Epigenetic Regulation. Int J Mol Sci 2024; 25:5119. [PMID: 38791157 PMCID: PMC11121404 DOI: 10.3390/ijms25105119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/04/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
The additional sex combs-like (ASXL) family, a mammalian homolog of the additional sex combs (Asx) of Drosophila, has been implicated in transcriptional regulation via chromatin modifications. Abnormal expression of ASXL family genes leads to myelodysplastic syndromes and various types of leukemia. De novo mutation of these genes also causes developmental disorders. Genes in this family and their neighbor genes are evolutionary conserved in humans and mice. This review provides a comprehensive summary of epigenetic regulations associated with ASXL family genes. Their expression is commonly regulated by DNA methylation at CpG islands preceding transcription starting sites. Their proteins primarily engage in histone tail modifications through interactions with chromatin regulators (PRC2, TrxG, PR-DUB, SRC1, HP1α, and BET proteins) and with transcription factors, including nuclear hormone receptors (RAR, PPAR, ER, and LXR). Histone modifications associated with these factors include histone H3K9 acetylation and methylation, H3K4 methylation, H3K27 methylation, and H2AK119 deubiquitination. Recently, non-coding RNAs have been identified following mutations in the ASXL1 or ASXL3 gene, along with circular ASXLs and microRNAs that regulate ASXL1 expression. The diverse epigenetic regulations linked to ASXL family genes collectively contribute to tumor suppression and developmental processes. Our understanding of ASXL-regulated epigenetics may provide insights into the development of therapeutic epigenetic drugs.
Collapse
Affiliation(s)
| | | | - Soo-Jong Um
- Department of Integrative Bioscience and Biotechnology, Sejong University, 209 Neungdong-ro, Gwangjin-Gu, Seoul 05006, Republic of Korea; (N.K.)
| |
Collapse
|
11
|
Rodriguez J, Baldini C, Bayle A, Pages A, Danlos FX, Vasseur D, Rouleau E, Lacroix L, Alonso de Castro B, Goldschmidt V, Seknazi L, Hollebecque A, Michot JM, Champiat S, Marabelle A, Ouali K, Marzac C, Ponce S, Micol JB, Chaput N, Massard C, Italiano A. Impact of Clonal Hematopoiesis-Associated Mutations in Phase I Patients Treated for Solid Tumors: An Analysis of the STING Trial. JCO Precis Oncol 2024; 8:e2300631. [PMID: 38815178 DOI: 10.1200/po.23.00631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/29/2024] [Accepted: 04/05/2024] [Indexed: 06/01/2024] Open
Abstract
PURPOSE With liquid biopsy's widespread adoption in oncology, an increased number of clonal hematopoiesis-associated mutations (CHm) have been identified in patients with solid tumors. However, its impact on patient outcomes remains unclear. This study aimed to analyze and describe CHm in a cohort of phase I patients. METHODS Retrospective data collection from medical records and molecular profiles (Foundation One Liquid CDx Assay) was performed before first study drug administration at the Drug Development Department of Gustave Roussy (France) within the STING trial (ClinicalTrials.gov identifier: NCT04932525). CHm prevalence was assessed using any and ≥1% variant allele frequency (VAF) in epigenetic modifier genes (DNMT3A, TET2, and ASXL1). RESULTS From January 2021 to December 2022, 255 patients were enrolled in a phase I clinical trial. A total of 55% were male, with a median age of 62 years (24-86). Principal tumor locations were GI (27%) and genitourinary (21%). Overall, 104 patients (41%) had at least one CHm in liquid biopsy, with 55 patients (22%) having a VAF of ≥ 1%. The most frequent mutation was DNMT3A 73% at any VAF (n = 76) and 22% at 1% VAF (n = 23). Median progression-free survival (PFS) and overall survival were 3.8 months (m) for the CHm group versus 3.2 m for nonclonal hematopoiesis (CH; P = .08) and 18.26 m CHm versus 15.8 m non-CH (P = .9), respectively. PFS increased in the CHm population treated with targeted therapy (hazard ratio, 0.6 [95% CI, 0.42 to 0.84]; P = .004). CONCLUSION CHm was commonly found in patients with solid tumors treated in phase I trials, with a prevalence of 41% in our cohort. The most frequently mutated gene was DNMT3A. The presence of CHm had no impact on the population of patients treated in the phase I trials.
Collapse
Affiliation(s)
| | - Capucine Baldini
- Drug Development Department, Gustave Roussy, Villejuif, France
- Laboratory of Immunomonitoring in Oncology, Gustave Roussy, Villejuif, France
| | - Arnaud Bayle
- Drug Development Department, Gustave Roussy, Villejuif, France
| | - Arnaud Pages
- Department of Biostatistics and Epidemiology, Gustave Roussy, Villejuif, France
| | | | - Damien Vasseur
- Department of Medical Biology and Pathology, Gustave Roussy, Villejuif, France
| | - Etienne Rouleau
- Department of Medical Biology and Pathology, Gustave Roussy, Villejuif, France
| | - Ludovic Lacroix
- Department of Medical Biology and Pathology, Gustave Roussy, Villejuif, France
| | | | | | - Lauren Seknazi
- Drug Development Department, Gustave Roussy, Villejuif, France
| | | | | | | | | | - Kaissa Ouali
- Drug Development Department, Gustave Roussy, Villejuif, France
| | - Christophe Marzac
- Department of Medical Biology and Pathology, Gustave Roussy, Villejuif, France
| | - Santiago Ponce
- Drug Development Department, Gustave Roussy, Villejuif, France
| | | | - Nathalie Chaput
- Laboratory of Immunomonitoring in Oncology, Gustave Roussy, Villejuif, France
- Department of Biostatistics and Epidemiology, Gustave Roussy, Villejuif, France
- Department of Medical Biology and Pathology, Gustave Roussy, Villejuif, France
- A Coruña University Complex, Coruña, Spain
- Department of Hematology, Gustave Roussy, Villejuif, France
- Paris-Saclay University, School of Pharmacy, Orsay, France
| | | | | |
Collapse
|
12
|
Stonestrom AJ, Menghrajani KN, Devlin SM, Franch-Expósito S, Ptashkin RN, Patel SY, Spitzer B, Wu X, Jee J, Sánchez Vela P, Milbank JH, Shah RH, Mohanty AS, Brannon AR, Xiao W, Berger MF, Mantha S, Levine RL. High-risk and silent clonal hematopoietic genotypes in patients with nonhematologic cancer. Blood Adv 2024; 8:846-856. [PMID: 38147626 PMCID: PMC10875331 DOI: 10.1182/bloodadvances.2023011262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/15/2023] [Accepted: 11/20/2023] [Indexed: 12/28/2023] Open
Abstract
ABSTRACT Clonal hematopoiesis (CH) identified by somatic gene variants with variant allele fraction (VAF) ≥ 2% is associated with an increased risk of hematologic malignancy. However, CH defined by a broader set of genotypes and lower VAFs is ubiquitous in older individuals. To improve our understanding of the relationship between CH genotype and risk of hematologic malignancy, we analyzed data from 42 714 patients who underwent blood sequencing as a normal comparator for nonhematologic tumor testing using a large cancer-related gene panel. We cataloged hematologic malignancies in this cohort using natural language processing and manual curation of medical records. We found that some CH genotypes including JAK2, RUNX1, and XPO1 variants were associated with high hematologic malignancy risk. Chronic disease was predicted better than acute disease suggesting the influence of length bias. To better understand the implications of hematopoietic clonality independent of mutational function, we evaluated a set of silent synonymous and noncoding mutations. We found that silent CH, particularly when multiple variants were present or VAF was high, was associated with increased risk of hematologic malignancy. We tracked expansion of CH mutations in 26 hematologic malignancies sequenced with the same platform. JAK2 and TP53 VAF consistently expanded at disease onset, whereas DNMT3A and silent CH VAFs mostly decreased. These data inform the clinical and biological interpretation of CH in the context of nonhematologic cancer.
Collapse
Affiliation(s)
- Aaron J. Stonestrom
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Kamal N. Menghrajani
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Sean M. Devlin
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Sebastià Franch-Expósito
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Ryan N. Ptashkin
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | | | - Barbara Spitzer
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Xiaodi Wu
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Justin Jee
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Pablo Sánchez Vela
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Jennifer H. Milbank
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Ronak H. Shah
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Abhinita S. Mohanty
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - A. Rose Brannon
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Wenbin Xiao
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Michael F. Berger
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Simon Mantha
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Ross L. Levine
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
13
|
Park JW, Bae SJ, Yun JH, Kim S, Park M. Assessment of Genetic Stability in Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes by Using Droplet Digital PCR. Int J Mol Sci 2024; 25:1101. [PMID: 38256178 PMCID: PMC10815998 DOI: 10.3390/ijms25021101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/04/2024] [Accepted: 01/13/2024] [Indexed: 01/24/2024] Open
Abstract
Unintended genetic modifications that occur during the differentiation and proliferation of human induced pluripotent stem cells (hiPSCs) can lead to tumorigenicity. This is a crucial concern in the development of stem cell-based therapies to ensure the safety and efficacy of the final product. Moreover, conventional genetic stability testing methods are limited by low sensitivity, which is an issue that remains unsolved. In this study, we assessed the genetic stability of hiPSCs and hiPSC-derived cardiomyocytes using various testing methods, including karyotyping, CytoScanHD chip analysis, whole-exome sequencing, and targeted sequencing. Two specific genetic mutations in KMT2C and BCOR were selected from the 17 gene variants identified by whole-exome and targeted sequencing methods, which were validated using droplet digital PCR. The applicability of this approach to stem cell-based therapeutic products was further demonstrated with associated validation according to the International Council for Harmonisation (ICH) guidelines, including specificity, precision, robustness, and limit of detection. Our droplet digital PCR results showed high sensitivity and accuracy for quantitatively detecting gene mutations, whereas conventional qPCR could not avoid false positives. In conclusion, droplet digital PCR is a highly sensitive and precise method for assessing the expression of mutations with tumorigenic potential for the development of stem cell-based therapeutics.
Collapse
Affiliation(s)
| | | | | | | | - Misun Park
- Advanced Bioconvergence Product Research Division, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju-si 28159, Republic of Korea; (J.W.P.); (S.J.B.); (J.H.Y.); (S.K.)
| |
Collapse
|
14
|
Dupas T, Lauzier B, McGraw S. O-GlcNAcylation: the sweet side of epigenetics. Epigenetics Chromatin 2023; 16:49. [PMID: 38093337 PMCID: PMC10720106 DOI: 10.1186/s13072-023-00523-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 11/24/2023] [Indexed: 12/17/2023] Open
Abstract
Histones display a wide variety of post-translational modifications, including acetylation, methylation, and phosphorylation. These epigenetic modifications can influence chromatin structure and function without altering the DNA sequence. Histones can also undergo post-translational O-GlcNAcylation, a rather understudied modification that plays critical roles in almost all biological processes and is added and removed by O-linked N-acetylglucosamine transferase and O-GlcNAcase, respectively. This review provides a current overview of our knowledge of how O-GlcNAcylation impacts the histone code both directly and by regulating other chromatin modifying enzymes. This highlights the pivotal emerging role of O-GlcNAcylation as an essential epigenetic marker.
Collapse
Affiliation(s)
- Thomas Dupas
- Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, Canada.
- Department of Obstetrics and Gynecology, Université de Montréal, 2900 Boulevard Edouard‑Montpetit, Montréal, QC, H3T 1J4, Canada.
| | - Benjamin Lauzier
- Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, Canada
- Nantes Université, CNRS, INSERM, L'institut du Thorax, 44000, Nantes, France
| | - Serge McGraw
- Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, Canada.
- Department of Obstetrics and Gynecology, Université de Montréal, 2900 Boulevard Edouard‑Montpetit, Montréal, QC, H3T 1J4, Canada.
| |
Collapse
|
15
|
Ogura Y, Mimura I. Epigenetic roles in clonal hematopoiesis and aging kidney-related chronic kidney disease. Front Cell Dev Biol 2023; 11:1281850. [PMID: 37928907 PMCID: PMC10623128 DOI: 10.3389/fcell.2023.1281850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/11/2023] [Indexed: 11/07/2023] Open
Abstract
Accumulation of somatic hematopoietic stem cell mutations with aging has been revealed by the recent genome-wide analysis. Clonal expansion, known as clonal hematopoiesis of indeterminate potential (CHIP), is a premalignant condition of hematological cancers. It is defined as the absence of definitive morphological evidence of a hematological neoplasm and occurrence of ≥2% of mutant allele fraction in the peripheral blood. In CHIP, the most frequently mutated genes are epigenetic regulators such as DNMT3A, TET2, and ASXL1. CHIP induces inflammation. CHIP is shown to be associated with not only hematological malignancy but also non-malignant disorders such as atherosclerosis, cardiovascular diseases and chronic liver disease. In addition, recent several large clinical trials have shown that CHIP is also the risk factor for developing chronic kidney disease (CKD). In this review article, we proposed novel findings about CHIP and CHIP related kidney disease based on the recent basic and clinical research. The possible mechanism of the kidney injury in CHIP is supposed to be due to the clonal expansion in both myeloid and lymphoid cell lines. In myeloid cell lines, the mutated macrophages increase the inflammatory cytokine level and induce chronic inflammation. It leads to epigenetic downregulation of kidney and macrophage klotho level. In lymphoid cell lines, CHIP might be related to monoclonal gammopathy of renal significance (MGRS). It describes any B cell or plasma cell clonal disorder that does not fulfill the criteria for cancer yet produces a nephrotoxic monoclonal immunoglobulin that leads to kidney injury or disease. MGRS causes M-protein related nephropathy frequently observed among aged CKD patients. It is important to consider the CHIP-related complications such as hematological malignancy, cardiovascular diseases and metabolic disorders in managing the elderly CKD patients. There are no established therapies for CHIP and CHIP-related CKD yet. However, recent studies have supported the development of effective CHIP therapies, such as blocking the expansion of aberrant HSCs and inhibiting chronic inflammation. In addition, drugs targeting the epigenetic regulation of Klotho in the kidney and macrophages might be therapeutic targets of CHIP in the kidney.
Collapse
Affiliation(s)
| | - Imari Mimura
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
16
|
Yu Z, Fidler TP, Ruan Y, Vlasschaert C, Nakao T, Uddin MM, Mack T, Niroula A, Heimlich JB, Zekavat SM, Gibson CJ, Griffin GK, Wang Y, Peloso GM, Heard-Costa N, Levy D, Vasan RS, Aguet F, Ardlie KG, Taylor KD, Rich SS, Rotter JI, Libby P, Jaiswal S, Ebert BL, Bick AG, Tall AR, Natarajan P. Genetic modification of inflammation- and clonal hematopoiesis-associated cardiovascular risk. J Clin Invest 2023; 133:e168597. [PMID: 37498674 PMCID: PMC10503804 DOI: 10.1172/jci168597] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 07/25/2023] [Indexed: 07/29/2023] Open
Abstract
Clonal hematopoiesis of indeterminate potential (CHIP) is associated with an increased risk of cardiovascular diseases (CVDs), putatively via inflammasome activation. We pursued an inflammatory gene modifier scan for CHIP-associated CVD risk among 424,651 UK Biobank participants. We identified CHIP using whole-exome sequencing data of blood DNA and modeled as a composite, considering all driver genes together, as well as separately for common drivers (DNMT3A, TET2, ASXL1, and JAK2). We developed predicted gene expression scores for 26 inflammasome-related genes and assessed how they modify CHIP-associated CVD risk. We identified IL1RAP as a potential key molecule for CHIP-associated CVD risk across genes and increased AIM2 gene expression leading to heightened JAK2- and ASXL1-associated CVD risk. We show that CRISPR-induced Asxl1-mutated murine macrophages had a particularly heightened inflammatory response to AIM2 agonism, associated with an increased DNA damage response, as well as increased IL-10 secretion, mirroring a CVD-protective effect of IL10 expression in ASXL1 CHIP. Our study supports the role of inflammasomes in CHIP-associated CVD and provides evidence to support gene-specific strategies to address CHIP-associated CVD risk.
Collapse
Affiliation(s)
- Zhi Yu
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Cardiovascular Research Center and Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Trevor P. Fidler
- Division of Molecular Medicine, Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA
| | - Yunfeng Ruan
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | | | - Tetsushi Nakao
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Cardiovascular Research Center and Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Md Mesbah Uddin
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Cardiovascular Research Center and Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Taralynn Mack
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Abhishek Niroula
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - J. Brett Heimlich
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Seyedeh M. Zekavat
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Cardiovascular Research Center and Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Ophthalmology, Massachusetts Eye and Ear Institute, Boston, Massachusetts, USA
| | - Christopher J. Gibson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Gabriel K. Griffin
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Yuxuan Wang
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, USA
| | - Gina M. Peloso
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, USA
| | - Nancy Heard-Costa
- Department of Medicine, School of Medicine, Boston University, Boston, Massachusetts, USA
- Framingham Heart Study, Framingham, Massachusetts, USA
| | - Daniel Levy
- Framingham Heart Study, Framingham, Massachusetts, USA
- Division of Intramural Research, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, Maryland, USA
| | - Ramachandran S. Vasan
- Department of Medicine, School of Medicine, Boston University, Boston, Massachusetts, USA
- Framingham Heart Study, Framingham, Massachusetts, USA
- Department of Epidemiology, Boston University School of Public Health, Boston, Massachusetts, USA
| | - François Aguet
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | | | - Kent D. Taylor
- Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
| | - Stephen S. Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, USA
| | - Jerome I. Rotter
- Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
| | - Peter Libby
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Siddhartha Jaiswal
- Department of Pathology and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Benjamin L. Ebert
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Alexander G. Bick
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Alan R. Tall
- Division of Molecular Medicine, Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA
| | - Pradeep Natarajan
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Cardiovascular Research Center and Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
17
|
Kim YS, Bang CH, Chung YJ. Mutational Landscape of Normal Human Skin: Clues to Understanding Early-Stage Carcinogenesis in Keratinocyte Neoplasia. J Invest Dermatol 2023; 143:1187-1196.e9. [PMID: 36716918 DOI: 10.1016/j.jid.2023.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 12/15/2022] [Accepted: 01/07/2023] [Indexed: 01/29/2023]
Abstract
Normal skin contains numerous clones carrying cancer driver mutations. However, the mutational landscape of normal skin and its clonal relationship with skin cancer requires further elucidation. The aim of our study was to investigate the mutational landscape of normal human skin. We performed whole-exome sequencing using physiologically normal skin tissues and the matched peripheral blood (n = 39) and adjacent-matched skin cancers from a subset of patients (n = 10). Exposed skin harbored a median of 530 mutations (10.4/mb, range = 51-2,947), whereas nonexposed skin majorly exhibited significantly fewer mutations (median = 13, 0.25/mb, range = 1-166). Patient age was significantly correlated with the mutational burden. Mutations in six driver genes (NOTCH1, FAT1, TP53, PPM1D, KMT2D, and ASXL1) were identified. De novo mutational signature analysis identified a single signature with components of UV- and aging-related signatures. Normal skin harbored only three instances of copy-neutral loss of heterozygosity in 9q (n = 2) and 6q (n = 1). The mutational burden of normal skin was not correlated with that of matched skin cancers, and no protein-coding mutations were shared. In conclusion, we revealed the mutational landscape of normal skin, highlighting the role of driver genes in the malignant progression of normal skin.
Collapse
Affiliation(s)
- Yoon-Seob Kim
- Precision Medicine Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea; Integrated Research Center for Genome Polymorphism, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea; Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Chul Hwan Bang
- Department of Dermatology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yeun-Jun Chung
- Precision Medicine Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea; Integrated Research Center for Genome Polymorphism, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea; Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| |
Collapse
|
18
|
Xie X, Su M, Ren K, Ma X, Lv Z, Li Z, Mei Y, Ji P. Clonal hematopoiesis and bone marrow inflammation. Transl Res 2023; 255:159-170. [PMID: 36347490 PMCID: PMC11992924 DOI: 10.1016/j.trsl.2022.11.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/22/2022] [Accepted: 11/01/2022] [Indexed: 11/07/2022]
Abstract
Clonal hematopoiesis (CH) occurs in hematopoietic stem cells with increased risks of progressing to hematologic malignancies. CH mutations are predominantly found in aged populations and correlate with an increased incidence of cardiovascular and other diseases. Increased lines of evidence demonstrate that CH mutations are closely related to the inflammatory bone marrow microenvironment. In this review, we summarize the recent advances in this topic starting from the discovery of CH and its mutations. We focus on the most commonly mutated and well-studied genes in CH and their contributions to the innate immune responses and inflammatory signaling, especially in the hematopoietic cells of bone marrow. We also aimed to discuss the interrelationship between inflammatory bone marrow microenvironment and CH mutations. Finally, we provide our perspectives on the challenges in the field and possible future directions to help understand the pathophysiology of CH.
Collapse
Affiliation(s)
- Xinshu Xie
- School of Biomedical Sciences, Hunan University, Changsha, China
| | - Meng Su
- School of Biomedical Sciences, Hunan University, Changsha, China
| | - Kehan Ren
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois
| | - Xuezhen Ma
- School of Biomedical Sciences, Hunan University, Changsha, China
| | - Zhiyi Lv
- School of Biomedical Sciences, Hunan University, Changsha, China
| | - Zhaofeng Li
- School of Biomedical Sciences, Hunan University, Changsha, China
| | - Yang Mei
- School of Biomedical Sciences, Hunan University, Changsha, China; Hunan Provincial Key Laboratory of Medical Virology, Hunan University, Changsha, China.
| | - Peng Ji
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois.
| |
Collapse
|
19
|
Tajiri K, Suehara Y, Suzuki T, Sekine I. Clonal heamatopoiesis and associated cardiovascular diseases. Jpn J Clin Oncol 2023; 53:187-194. [PMID: 36629281 DOI: 10.1093/jjco/hyac210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/29/2022] [Indexed: 01/12/2023] Open
Abstract
Cancer and cardiovascular disease share several risk factors. Clonal heamatopoiesis, a novel risk factor associated with both diseases, has received increasing attention in the fields of cardiology, heamatology and oncology. Clonal heamatopoiesis of indeterminate potential refers to the presence of at least one driver mutation in the heamatopoietic cells of peripheral blood without heamatological malignancy. Clonal heamatopoiesis of indeterminate potential is a common age-related condition that affects up to 60% of individuals aged > 80 years. Importantly, clonal heamatopoiesis of indeterminate potential carriers have a 2- to 4-fold higher risk of developing cardiovascular disease than non-carriers. Therefore, we performed an up-to-date review of clonal heamatopoiesis and its association with various forms of cardiovascular disease, including atherosclerotic disease, heart failure, aortic stenosis and pulmonary hypertension. In addition, we reviewed experimental studies that examined the causality and directionality between clonal heamatopoiesis and cardiovascular disease. Lastly, we discussed future research directions that will aid in the design of personalized therapies and preventive strategies for individuals with clonal heamatopoiesis. This review showed that clonal heamatopoiesis of indeterminate potential is a common condition, especially in older patients, and is associated with an increased risk of cardiovascular disease and worse prognosis. However, further research is needed to determine whether anti-inflammatory therapies or therapies that can reduce or eliminate clone size are effective in preventing cardiovascular disease in patients with clonal heamatopoiesis of indeterminate potential.
Collapse
Affiliation(s)
- Kazuko Tajiri
- Department of Cardiology, National Cancer Center Hospital East, Kashiwa, Japan.,Department of Cardiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yasuhito Suehara
- Department of Hematology, University of Tsukuba Hospital, Tsukuba, Japan
| | - Toshio Suzuki
- Department of Medical Oncology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Ikuo Sekine
- Department of Medical Oncology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
20
|
Jia WB, Liu JT, Yang XY, Wu HY, Wei YH, Can C, Wang RQ, He N, Gu CY, Ma DX, Ji CY. [Clinical features and survival analysis in non-M(3) acute myeloid leukemia patients with ASXL1 gene mutation]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2022; 43:833-840. [PMID: 36709197 PMCID: PMC9669635 DOI: 10.3760/cma.j.issn.0253-2727.2022.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Indexed: 11/29/2022]
Abstract
Objective: To examine the survival rates and clinical characteristics of people with newly discovered non-M(3) acute myeloid leukemia (AML) who carry the ASXL1 gene mutation. Methods: From January 2016 to April 2021, the clinical information of patients with newly diagnosed non-M(3) AML at Shandong University's Qilu Hospital was retrospectively examined, and their clinical characteristics and survival were compared and analyzed. Gene mutation was detected by next-generation sequencing. Results: ① The study included 256 AML patients who were initially diagnosed and had complete data, including 47 cases of ASXL1 gene mutation-positive (ASXL1(+)) patients and 209 cases of ASXL1 gene mutation-negative (ASXL1(-)) patients. All patients were divided into three groups: elderly (≥60 years old, n=92) , middle-aged (45-59 years old, n=92) , and young (≤44 years old, n=72) . ②WBC, and age were higher in patients with ASXL1 mutations compared to ASXL1(-) patients, while complete response after the first round of treatment (CR(1)) was lower (P<0.05) . In the elderly group, WBC and the proportion of aberrant cells in nuclear cells in ASXL1(+) patients were higher than those in ASXL1(-) patients (P<0.05) . In the young group, the WBC of ASXL1(+) patients was higher than that of ASXL1(-) patients (z=-2.314, P=0.021) . ③IDH2 mutation and ASXL1 mutation was related (P=0.018, r=0.34) . In ASXL1(+) patients, the proportion of peripheral blasts in the high VAF group (VAF>40% ) was higher than that in the low VAF group (VAF<20% ) , and the proportion of aberrant nuclear cells was higher in the duplication and replacement mutation patients than in the deletion mutation patients (P<0.05) . ④The overall survival (OS) and progression-free survival (PFS) of ASXL1(+) patients were shorter than those of ASXL1(-) patients (median, 10 months vs 20 months, 10 months vs 17 months; P<0.05) . The proportion number of aberrant cells in nuclear cells (≥20% ) , complex karyotypes, and TET2 mutation were all independent risk variables that had an impact on the prognosis of ASXL1(+) patients, according to multivariate analysis (P<0.05) . Conclusion: ASXL1-mutated non-M(3) AML patients have higher WBC in peripheral blood, a higher proportion of aberrant cells in nuclear cells, lower CR(1) rate, and shorter OS and PFS. Additionally, a poor prognosis is linked to higher VAF, duplication, and substitution mutations in the ASXL1 gene, as well as the high proportion of aberrant cells in nuclear cells, complex karyotype, and TET2 mutation.
Collapse
Affiliation(s)
- W B Jia
- Department of Hematology, Qilu Hospital, Shandong University, Jinan 250012, China
| | - J T Liu
- Department of Hematology, Qilu Hospital, Shandong University, Jinan 250012, China
| | - X Y Yang
- Department of Hematology, Qilu Hospital, Shandong University, Jinan 250012, China
| | - H Y Wu
- Department of Hematology, Qilu Hospital, Shandong University, Jinan 250012, China
| | - Y H Wei
- Department of Hematology, Qilu Hospital, Shandong University, Jinan 250012, China
| | - C Can
- Department of Hematology, Qilu Hospital, Shandong University, Jinan 250012, China
| | - R Q Wang
- Department of Hematology, Qilu Hospital, Shandong University, Jinan 250012, China
| | - N He
- Department of Hematology, Qilu Hospital, Shandong University, Jinan 250012, China
| | - C Y Gu
- Department of Hematology, Qilu Hospital, Shandong University, Jinan 250012, China
| | - D X Ma
- Department of Hematology, Qilu Hospital, Shandong University, Jinan 250012, China
| | - C Y Ji
- Department of Hematology, Qilu Hospital, Shandong University, Jinan 250012, China
| |
Collapse
|
21
|
Abstract
OBJECTIVES People with HIV (PWH) are at increased risk for premature cardiovascular disease (CVD). Clonal hematopoiesis is a common age-related condition that may be associated with increased CVD risk. The goal of this study was to determine the prevalence of clonal hematopoiesis and its association with chronic inflammation and CVD in PWH. DESIGN Cross-sectional study utilizing archived specimens and data from 118 men (86 PWH and 32 HIV-uninfected) from the Baltimore-Washington DC center of the Multicenter AIDS Cohort Study (MACS) who had had coronary computed tomography angiography (CTA) and measurement of 34 serologic inflammatory biomarkers. METHODS Clonal hematopoiesis was assessed on peripheral blood mononuclear cells utilizing targeted error-corrected next generation sequencing (NGS) focused on 92 genes frequently mutated in hematologic malignancies. Clinical and laboratory data were obtained from the MACS database. RESULTS Clonal hematopoiesis with a variant allele frequency (VAF) greater than 1% was significantly more common in PWH [20/86 (23.3%)] than in HIV-uninfected men [2/32 (6.3%)] ( P = 0.035). PWH with clonal hematopoiesis (VAF > 1%) were more likely to have coronary artery stenosis of at least 50% than those without clonal hematopoiesis [6/20 (30%) vs. 6/64 (9%); P = 0.021]. Presence of clonal hematopoiesis was not significantly associated with serological inflammatory markers, except for significantly lower serum leptin levels; this was not significant after adjustment for abdominal or thigh subcutaneous fat area. CONCLUSION Clonal hematopoiesis was more common in PWH and among PWH was associated with the extent of coronary artery disease. Larger studies are needed to further examine the biological and clinical consequences of clonal hematopoiesis in PWH.
Collapse
|
22
|
Taha I, Foroni S, Valli R, Frattini A, Roccia P, Porta G, Zecca M, Bergami E, Cipolli M, Pasquali F, Danesino C, Scotti C, Minelli A. Case Report: Heterozygous Germline Variant in EIF6 Additional to Biallelic SBDS Pathogenic Variants in a Patient With Ribosomopathy Shwachman–Diamond Syndrome. Front Genet 2022; 13:896749. [PMID: 36035165 PMCID: PMC9411639 DOI: 10.3389/fgene.2022.896749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/23/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Shwachman–Diamond syndrome (SDS) is a rare autosomal recessive ribosomopathy mainly characterized by exocrine pancreatic insufficiency, skeletal alterations, neutropenia, and a relevant risk of hematological transformation. At least 90% of SDS patients have pathogenic variants in SBDS, the first gene associated with the disease with very low allelic heterogeneity; three variants, derived from events of genetic conversion between SBDS and its pseudogene, SBDSP1, provided the alleles observed in about 62% of SDS patients. Methods: We performed a reanalysis of the available WES files of a group of SDS patients with biallelic SBDS pathogenic variants, studying the results by next bioinformatic and protein structural analysis. Parallelly, careful clinical attention was given to the patient focused in this study. Results: We found and confirmed in one SDS patient a germline heterozygous missense variant (c.100T>C; p.Phe34Leu) in the EIF6 gene. This variant, inherited from his mother, has a very low frequency, and it is predicted as pathogenic, according to several in silico prediction tools. The protein structural analysis also envisages the variant could reduce the binding to the nascent 60S ribosomal. Conclusion: This study focused on the hypothesis that the EIF6 germline variant mimics the effect of somatic deletions of chromosome 20, always including the locus of this gene, and similarly may rescue the ribosomal stress and ribosomal dysfunction due to SBDS mutations. It is likely that this rescue may contribute to the stable and not severe hematological status of the proband, but a definite answer on the role of this EIF6 variant can be obtained only by adding a functional layer of evidence. In the future, these results are likely to be useful for selected cases in personalized medicine and therapy.
Collapse
Affiliation(s)
- Ibrahim Taha
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Selena Foroni
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Roberto Valli
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Annalisa Frattini
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
- Istituto di Ricerca Genetica e Biomedica, CNR, Milano, Italy
| | - Pamela Roccia
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Giovanni Porta
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Marco Zecca
- Pediatric Hematology/Oncology, Fondazione IRCCS Policlinico S, Matteo, Pavia, Italy
| | - Elena Bergami
- Pediatric Hematology/Oncology, Fondazione IRCCS Policlinico S, Matteo, Pavia, Italy
| | - Marco Cipolli
- Centro Fibrosi Cistica, Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy
| | - Francesco Pasquali
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Cesare Danesino
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Claudia Scotti
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Antonella Minelli
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- *Correspondence: Antonella Minelli,
| |
Collapse
|
23
|
Dang Q, Wu Q, Yu F, Sheng Y, Yu C, Song G, Paulsen K, Lyu J, Qian Z. m 6A reader Ythdf3 protects hematopoietic stem cell integrity under stress by promoting the translation of Foxm1 and Asxl1 transcripts. Haematologica 2022; 107:1922-1927. [PMID: 34818872 PMCID: PMC9335087 DOI: 10.3324/haematol.2021.279300] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 10/15/2021] [Indexed: 12/05/2022] Open
Affiliation(s)
- Qinglin Dang
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Department of Medicine and Department of Biochemistry and Molecular Biology, UF Health Cancer Center, University of Florida, Gainesville, FL, USA; These authors contribute equally
| | - Qiong Wu
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Department of Medicine and Department of Biochemistry and Molecular Biology, UF Health Cancer Center, University of Florida, Gainesville, FL, USA; These authors contribute equally
| | - Fang Yu
- Department of Medicine and Department of Biochemistry and Molecular Biology, UF Health Cancer Center, University of Florida, Gainesville, FL, USA; These authors contribute equally
| | - Yue Sheng
- Department of Medicine and Department of Biochemistry and Molecular Biology, UF Health Cancer Center, University of Florida, Gainesville, FL, USA; These authors contribute equally
| | - Chunjie Yu
- Department of Medicine and Department of Biochemistry and Molecular Biology, UF Health Cancer Center, University of Florida, Gainesville, FL
| | - Guangzhong Song
- Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, and Laboratory Medicine of Hangzhou Medical College, Zhejiang, 310014
| | - Kimberly Paulsen
- Department of Medicine and Department of Biochemistry and Molecular Biology, UF Health Cancer Center, University of Florida, Gainesville, FL
| | - Jianxin Lyu
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, and Laboratory Medicine of Hangzhou Medical College, Zhejiang, 310014.
| | - Zhijian Qian
- Department of Medicine and Department of Biochemistry and Molecular Biology, UF Health Cancer Center, University of Florida, Gainesville, FL.
| |
Collapse
|
24
|
Gaulin C, Kelemen K, Arana Yi C. Molecular Pathways in Clonal Hematopoiesis: From the Acquisition of Somatic Mutations to Transformation into Hematologic Neoplasm. Life (Basel) 2022; 12:1135. [PMID: 36013314 PMCID: PMC9410004 DOI: 10.3390/life12081135] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/23/2022] [Accepted: 07/26/2022] [Indexed: 11/16/2022] Open
Abstract
Hematopoietic stem cell aging, through the acquisition of somatic mutations, gives rise to clonal hematopoiesis (CH). While a high prevalence of CH has been described in otherwise healthy older adults, CH confers an increased risk of both hematologic and non-hematologic diseases. Classification of CH into clonal hematopoiesis of indeterminate potential (CHIP) and clonal cytopenia of undetermined significance (CCUS) further describes this neoplastic myeloid precursor state and stratifies individuals at risk of developing clinically significant complications. The sequential acquisition of driver mutations, such as DNMT3A, TET2, and ASXL1, provide a selective advantage and lead to clonal expansion. Inflammation, microbiome signatures, and external selective pressures also contribute to clonal evolution. Despite significant progress in recent years, the precise molecular mechanisms driving CH transformation to hematologic neoplasms are not well defined. Further understanding of these complex mechanisms may improve risk stratification and introduce therapeutic interventions in CH. Here we discuss the genetic drivers underpinning CH, mechanisms for clonal evolution, and transformation to hematologic neoplasm.
Collapse
Affiliation(s)
- Charles Gaulin
- Division of Hematology and Medical Oncology, Department of Medicine, Mayo Clinic, Phoenix, AZ 85054, USA;
| | - Katalin Kelemen
- Division of Hematopathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Phoenix, AZ 85054, USA;
| | - Cecilia Arana Yi
- Division of Hematology and Medical Oncology, Department of Medicine, Mayo Clinic, Phoenix, AZ 85054, USA;
| |
Collapse
|
25
|
Florez MA, Tran BT, Wathan TK, DeGregori J, Pietras EM, King KY. Clonal hematopoiesis: Mutation-specific adaptation to environmental change. Cell Stem Cell 2022; 29:882-904. [PMID: 35659875 PMCID: PMC9202417 DOI: 10.1016/j.stem.2022.05.006] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Clonal hematopoiesis of indeterminate potential (CHIP) describes a widespread expansion of genetically variant hematopoietic cells that increases exponentially with age and is associated with increased risks of cancers, cardiovascular disease, and other maladies. Here, we discuss how environmental contexts associated with CHIP, such as old age, infections, chemotherapy, or cigarette smoking, alter tissue microenvironments to facilitate the selection and expansion of specific CHIP mutant clones. Further, we consider major remaining gaps in knowledge, including intrinsic effects, clone size thresholds, and factors affecting clonal competition, that will determine future application of this field in transplant and preventive medicine.
Collapse
Affiliation(s)
- Marcus A Florez
- Medical Scientist Training Program and Program in Translational Biology and Molecular Medicine, Graduate School of Biomedical Sciences, Baylor College of Medicine, 1102 Bates Street, Suite 1150, Houston, TX 77030, USA; Division of Infectious Disease, Department of Pediatrics, Baylor College of Medicine, 1102 Bates Street, Suite 1150, Houston, TX 77030, USA
| | - Brandon T Tran
- Graduate School of Biomedical Sciences, Program in Cancer and Cell Biology, Baylor College of Medicine, 1102 Bates Street, Suite 1150, Houston, TX 77030, USA; Division of Infectious Disease, Department of Pediatrics, Baylor College of Medicine, 1102 Bates Street, Suite 1150, Houston, TX 77030, USA
| | - Trisha K Wathan
- Division of Infectious Disease, Department of Pediatrics, Baylor College of Medicine, 1102 Bates Street, Suite 1150, Houston, TX 77030, USA
| | - James DeGregori
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Division of Hematology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Department of Microbiology and Immunology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Eric M Pietras
- Division of Hematology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Department of Microbiology and Immunology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Katherine Y King
- Medical Scientist Training Program and Program in Translational Biology and Molecular Medicine, Graduate School of Biomedical Sciences, Baylor College of Medicine, 1102 Bates Street, Suite 1150, Houston, TX 77030, USA; Graduate School of Biomedical Sciences, Program in Cancer and Cell Biology, Baylor College of Medicine, 1102 Bates Street, Suite 1150, Houston, TX 77030, USA; Division of Infectious Disease, Department of Pediatrics, Baylor College of Medicine, 1102 Bates Street, Suite 1150, Houston, TX 77030, USA; Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, 1102 Bates Street, Suite 1150, Houston, TX 77030, USA.
| |
Collapse
|
26
|
Diefenbach RJ, Lee JH, Stewart A, Menzies AM, Carlino MS, Saw RPM, Stretch JR, Long GV, Scolyer RA, Rizos H. Anchored Multiplex PCR Custom Melanoma Next Generation Sequencing Panel for Analysis of Circulating Tumor DNA. Front Oncol 2022; 12:820510. [PMID: 35494035 PMCID: PMC9039342 DOI: 10.3389/fonc.2022.820510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 03/18/2022] [Indexed: 11/13/2022] Open
Abstract
Detection of melanoma mutations using circulating tumor DNA (ctDNA) is a potential alternative to using genomic DNA from invasive tissue biopsies. To date, mutations in the GC-rich TERT promoter region, which is commonly mutated in melanoma, have been technically difficult to detect in ctDNA using next-generation sequencing (NGS) panels. In this study, we developed a custom melanoma NGS panel for detection of ctDNA, which encompasses the top 15 gene mutations in melanoma including the TERT promoter. We analyzed 21 stage III and IV melanoma patient samples who were treatment-naïve or on therapy. The overall detection rate of the custom panel, based on BRAF/NRAS/TERT promoter mutations, was 14/21 (67%) patient samples which included a TERT C250T mutation in one BRAF and NRAS mutation negative sample. A BRAF or NRAS mutation was detected in the ctDNA of 13/21 (62%) patients while TERT promoter mutations were detected in 10/21 (48%) patients. Co-occurrence of TERT promoter mutations with BRAF or NRAS mutations was found in 9/10 (90%) patients. The custom ctDNA panel showed a concordance of 16/21 (76%) with tissue based-detection and included 12 BRAF/NRAS mutation positive and 4 BRAF/NRAS mutation negative patients. The ctDNA mutation detection rate for stage IV was 12/16 (75%) and for stage III was 1/5 (20%). Based on BRAF, NRAS and TERT promoter mutations, the custom melanoma panel displayed a limit of detection of ~0.2% mutant allele frequency and showed significant correlation with droplet digital PCR. For one patient, a novel MAP2K1 H119Y mutation was detected in an NRAS/BRAF/TERT promoter mutation negative background. To increase the detection rate to >90% for stage IV melanoma patients, we plan to expand our custom panel to 50 genes. This study represents one of the first to successfully detect TERT promoter mutations in ctDNA from cutaneous melanoma patients using a targeted NGS panel.
Collapse
Affiliation(s)
- Russell J Diefenbach
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia.,Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia
| | - Jenny H Lee
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia.,Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia.,Department of Medical Oncology, Chris O'Brien Lifehouse, Sydney, NSW, Australia
| | - Ashleigh Stewart
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia.,Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia
| | - Alexander M Menzies
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia.,The Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.,Department of Medical Oncology, Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, NSW, Australia
| | - Matteo S Carlino
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia.,The Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.,Crown Princess Mary Cancer Centre, Westmead and Blacktown Hospitals, Sydney, NSW, Australia
| | - Robyn P M Saw
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia.,The Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.,Department of Melanoma and Surgical Oncology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Jonathan R Stretch
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia
| | - Georgina V Long
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia.,The Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.,Department of Medical Oncology, Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, NSW, Australia.,Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - Richard A Scolyer
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia.,The Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.,Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia.,Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital and NSW Health Pathology, Sydney, NSW, Australia
| | - Helen Rizos
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia.,Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
27
|
Thorner PS, Chong AS, Nadaf J, Benlimame N, Marrano P, Chami R, Fu L, Foulkes WD. PRAME protein expression in DICER1-related tumours. JOURNAL OF PATHOLOGY CLINICAL RESEARCH 2022; 8:294-304. [PMID: 35297207 PMCID: PMC8977278 DOI: 10.1002/cjp2.264] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/28/2022] [Accepted: 01/30/2022] [Indexed: 11/09/2022]
Abstract
DICER1 syndrome is an autosomal dominant tumour predisposition syndrome usually affecting persons under 30 years of age. Many of the associated benign and malignant lesions occur almost exclusively in DICER1 syndrome. One such tumour, pituitary blastoma (pitB), overexpresses PRAME 500x above control levels. PRAME (PReferentially expressed Antigen in MElanoma) is expressed in malignancies that are not DICER1-related (e.g. melanoma). To address whether PRAME expression is part of the DICER1 phenotype, or simply a feature of pitB, a series of 75 DICER1-mutated specimens and 33 non-mutated specimens was surveyed using immunohistochemistry for PRAME, together with EZH2, which complexes with PRAME. In DICER1-mutated specimens, positive staining for PRAME was only seen in malignant tumours; 7 of 11 histological types and 34/62 individual tumours were positive, while non-tumourous lesions were always negative. Pleuropulmonary blastoma (PPB) showed a continuum in staining, with type I lesions being PRAME negative (n = 7) but all type II and type III lesions PRAME positive (n = 7). Similarly, cystic nephroma (CN) was negative (n = 8), with anaplastic sarcoma of the kidney being positive (n = 2). However, one atypical CN with mesenchymal cell proliferation was PRAME-positive. Embryonal rhabdomyosarcoma (RMS) with DICER1 pathogenic variants (PVs) was positive for PRAME (5/6), but the same tumour type without DICER1 PVs was also positive (9/15). Staining for EZH2 corresponded to that seen with PRAME, validating the latter. This study leads us to conclude that (1) PRAME expression occurs in two-thirds of DICER1-related malignancies; (2) PRAME may be a marker for the progression that certain DICER1-related lesions are thought to undergo, such as PPB and CN; and (3) PRAME expression in some tumours, such as RMS, appears to be an intrinsic feature of the tumour, rather than specifically related to DICER1 PVs. Therapy directed against PRAME may offer novel treatment options in patients with the DICER1 syndrome.
Collapse
Affiliation(s)
- Paul S Thorner
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Anne-Sophie Chong
- Department of Human Genetics, McGill University, Montreal, QC, Canada.,Cancer Axis, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada.,Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Javad Nadaf
- Department of Human Genetics, McGill University, Montreal, QC, Canada.,Cancer Axis, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada
| | - Naciba Benlimame
- Research Pathology Facility, Lady Davis Institute, Jewish General Hospital, Montreal, QC, Canada
| | - Paula Marrano
- Division of Pathology, Hospital for Sick Children, Toronto, ON, Canada
| | - Rose Chami
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Division of Pathology, Hospital for Sick Children, Toronto, ON, Canada
| | - Lili Fu
- Department of Pathology, McGill University Health Centre, McGill University, Montreal, QC, Canada
| | - William D Foulkes
- Department of Human Genetics, McGill University, Montreal, QC, Canada.,Cancer Axis, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada.,Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada.,Gerald Bronfman Department of Oncology, McGill University, Montreal, QC, Canada
| |
Collapse
|
28
|
Liu X, Sato N, Shimosato Y, Wang TW, Denda T, Chang YH, Yabushita T, Fujino T, Asada S, Tanaka Y, Fukuyama T, Enomoto Y, Ota Y, Sakamoto T, Kitamura T, Goyama S. CHIP-associated mutant ASXL1 in blood cells promotes solid tumor progression. Cancer Sci 2022; 113:1182-1194. [PMID: 35133065 PMCID: PMC8990791 DOI: 10.1111/cas.15294] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/23/2022] [Accepted: 01/28/2022] [Indexed: 11/30/2022] Open
Abstract
Clonal hematopoiesis of indeterminate potential (CHIP) is an age‐associated phenomenon characterized by clonal expansion of blood cells harboring somatic mutations in hematopoietic genes, including DNMT3A, TET2, and ASXL1. Clinical evidence suggests that CHIP is highly prevalent and associated with poor prognosis in solid‐tumor patients. However, whether blood cells with CHIP mutations play a causal role in promoting the development of solid tumors remained unclear. Using conditional knock‐in mice that express CHIP‐associated mutant Asxl1 (Asxl1‐MT), we showed that expression of Asxl1‐MT in T cells, but not in myeloid cells, promoted solid‐tumor progression in syngeneic transplantation models. We also demonstrated that Asxl1‐MT–expressing blood cells accelerated the development of spontaneous mammary tumors induced by MMTV‐PyMT. Intratumor analysis of the mammary tumors revealed the reduced T‐cell infiltration at tumor sites and programmed death receptor‐1 (PD‐1) upregulation in CD8+ T cells in MMTV‐PyMT/Asxl1‐MT mice. In addition, we found that Asxl1‐MT induced T‐cell dysregulation, including aberrant intrathymic T‐cell development, decreased CD4/CD8 ratio, and naïve‐memory imbalance in peripheral T cells. These results indicate that Asxl1‐MT perturbs T‐cell development and function, which contributes to creating a protumor microenvironment for solid tumors. Thus, our findings raise the possibility that ASXL1‐mutated blood cells exacerbate solid‐tumor progression in ASXL1‐CHIP carriers.
Collapse
Affiliation(s)
- Xiaoxiao Liu
- Division of Molecular Oncology, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Naru Sato
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yuko Shimosato
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Teh-Wei Wang
- Division of Cancer Cell Biology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Tamami Denda
- Department of Pathology, The Institute of Medical Science Research Hospital, The University of Tokyo, Tokyo, Japan
| | - Yu-Hsuan Chang
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Tomohiro Yabushita
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Takeshi Fujino
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Shuhei Asada
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,The Institute of Laboratory Animals, Tokyo Women's Medical University, Tokyo, Japan
| | - Yosuke Tanaka
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Tomofusa Fukuyama
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yutaka Enomoto
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yasunori Ota
- Department of Pathology, The Institute of Medical Science Research Hospital, The University of Tokyo, Tokyo, Japan
| | - Takeharu Sakamoto
- Department of Cancer Biology, Institute of Biomedical Science, Kansai Medical University, Osaka, Japan
| | - Toshio Kitamura
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Susumu Goyama
- Division of Molecular Oncology, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
29
|
Marnell CS, Bick A, Natarajan P. Clonal hematopoiesis of indeterminate potential (CHIP): Linking somatic mutations, hematopoiesis, chronic inflammation and cardiovascular disease. J Mol Cell Cardiol 2021; 161:98-105. [PMID: 34298011 PMCID: PMC8629838 DOI: 10.1016/j.yjmcc.2021.07.004] [Citation(s) in RCA: 135] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/10/2021] [Accepted: 07/16/2021] [Indexed: 12/13/2022]
Abstract
Clonal hematopoiesis of indeterminate potential (CHIP) is the presence of a clonally expanded hematopoietic stem cell caused by a leukemogenic mutation in individuals without evidence of hematologic malignancy, dysplasia, or cytopenia. CHIP is associated with a 0.5-1.0% risk per year of leukemia. Remarkably, it confers a two-fold increase in cardiovascular risk independent of traditional risk factors. Roughly 80% of patients with CHIP have mutations in epigenetic regulators DNMT3A, TET2, ASXL1, DNA damage repair genes PPM1D, TP53, the regulatory tyrosine kinase JAK2, or mRNA spliceosome components SF3B1, and SRSF2. CHIP is associated with a pro-inflammatory state that has been linked to coronary artery disease, myocardial infarction, and venous thromboembolic disease, as well as prognosis among those with aortic stenosis and heart failure. Heritable and acquired risk factors are associated with increased CHIP prevalence, including germline variation, age, unhealthy lifestyle behaviors (i.e. smoking, obesity), inflammatory conditions, premature menopause, HIV and exposure to cancer therapies. This review aims to summarize emerging research on CHIP, the mechanisms underlying its important role in propagating inflammation and accelerating cardiovascular disease, and new studies detailing the role of associated risk factors and co-morbidities that increase CHIP prevalence.
Collapse
Affiliation(s)
- Christopher S Marnell
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States of America; Cardiovascular Research Center and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, United States of America; Program in Medical and Population Genetics and the Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, MA, United States of America
| | - Alexander Bick
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Pradeep Natarajan
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States of America; Cardiovascular Research Center and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, United States of America; Program in Medical and Population Genetics and the Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, MA, United States of America.
| |
Collapse
|
30
|
Easwar A, Siddon AJ. Genetic Landscape of Myeloproliferative Neoplasms with an Emphasis on Molecular Diagnostic Laboratory Testing. Life (Basel) 2021; 11:1158. [PMID: 34833034 PMCID: PMC8625510 DOI: 10.3390/life11111158] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/18/2021] [Accepted: 10/27/2021] [Indexed: 12/27/2022] Open
Abstract
Chronic myeloproliferative neoplasms (MPNs) are hematopoietic stem cell neoplasms with driver events including the BCR-ABL1 translocation leading to a diagnosis of chronic myeloid leukemia (CML), or somatic mutations in JAK2, CALR, or MPL resulting in Philadelphia-chromosome-negative MPNs with constitutive activation of the JAK-STAT signaling pathway. In the Philadelphia-chromosome-negative MPNs, modern sequencing panels have identified a vast molecular landscape including additional mutations in genes involved in splicing, signal transduction, DNA methylation, and chromatin modification such as ASXL1, SF3B1, SRSF2, and U2AF1. These additional mutations often influence prognosis in MPNs and therefore are increasingly important for risk stratification. This review focuses on the molecular alterations within the WHO classification of MPNs and laboratory testing used for diagnosis.
Collapse
Affiliation(s)
- Arti Easwar
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT 06510, USA;
| | - Alexa J. Siddon
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT 06510, USA;
- Department of Pathology, Yale School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
31
|
Rodriguez Y Baena A, Manso BA, Forsberg EC. CFU-S assay: a historical single-cell assay that offers modern insight into clonal hematopoiesis. Exp Hematol 2021; 104:1-8. [PMID: 34688837 DOI: 10.1016/j.exphem.2021.10.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/10/2021] [Accepted: 10/12/2021] [Indexed: 10/20/2022]
Abstract
Hematopoietic stem cells (HSCs) have been studied extensively since their initial functional description in 1961 when Dr. James Till and Dr. Ernest McCulloch developed the first in vivo clonal strategy, termed the spleen colony-forming unit (CFU-S) assay, to assess the functional capacity of bone marrow-derived hematopoietic progenitors at the single-cell level. Through transplantation of bone marrow cells and analysis of the resulting cellular nodules in the spleen, the CFU-S assay revealed both the self-renewal and clonal differentiation capacity of hematopoietic progenitors. Further development and use of this assay have identified highly proliferative, self-renewing, and differentiating HSCs that possess clonal, multilineage differentiation. The CFU-S strategy has also been adapted to interrogating single purified hematopoietic stem and progenitor cell populations, advancing our knowledge of the hematopoietic hierarchy. In this review, we explore the major discoveries made with the CFU-S assay, consider its modern use and recent improvements, and compare it with commonly used long-term transplantation assays to determine the continued value of the CFU-S assay for understanding HSC biology and hematopoiesis.
Collapse
Affiliation(s)
- Alessandra Rodriguez Y Baena
- Institute for the Biology of Stem Cells, University of California-Santa Cruz, Santa Cruz, CA; Program in Biomedical Sciences and Engineering, Department of Molecular, Cell, and Developmental Biology, University of California-Santa Cruz, Santa Cruz, CA
| | - Bryce A Manso
- Institute for the Biology of Stem Cells, University of California-Santa Cruz, Santa Cruz, CA; Biomolecular Engineering, University of California-Santa Cruz, Santa Cruz, CA
| | - E Camilla Forsberg
- Institute for the Biology of Stem Cells, University of California-Santa Cruz, Santa Cruz, CA; Biomolecular Engineering, University of California-Santa Cruz, Santa Cruz, CA.
| |
Collapse
|
32
|
Insufficiency of non-canonical PRC1 synergizes with JAK2V617F in the development of myelofibrosis. Leukemia 2021; 36:452-463. [PMID: 34497325 DOI: 10.1038/s41375-021-01402-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 08/19/2021] [Accepted: 08/26/2021] [Indexed: 12/22/2022]
Abstract
Insufficiency of polycomb repressive complex 2 (PRC2), which trimethylates histone H3 at lysine 27, is frequently found in primary myelofibrosis and promotes the development of JAK2V617F-induced myelofibrosis in mice by enhancing the production of dysplastic megakaryocytes. Polycomb group ring finger protein 1 (Pcgf1) is a component of PRC1.1, a non-canonical PRC1 that monoubiquitylates H2A at lysine 119 (H2AK119ub1). We herein investigated the impact of PRC1.1 insufficiency on myelofibrosis. The deletion of Pcgf1 in JAK2V617F mice strongly promoted the development of lethal myelofibrosis accompanied by a block in erythroid differentiation. Transcriptome and chromatin immunoprecipitation sequence analyses showed the de-repression of PRC1.1 target genes in Pcgf1-deficient JAK2V617F hematopoietic progenitors and revealed Hoxa cluster genes as direct targets. The deletion of Pcgf1 in JAK2V617F hematopoietic stem and progenitor cells (HSPCs), as well as the overexpression of Hoxa9, restored the attenuated proliferation of JAK2V617F progenitors. The overexpression of Hoxa9 also enhanced JAK2V617F-mediated myelofibrosis. The expression of PRC2 target genes identified in PRC2-insufficient JAK2V617F HSPCs was not largely altered in Pcgf1-deleted JAK2V617F HSPCs. The present results revealed a tumor suppressor function for PRC1.1 in myelofibrosis and suggest that PRC1.1 insufficiency has a different impact from that of PRC2 insufficiency on the pathogenesis of myelofibrosis.
Collapse
|
33
|
Cochran M, East K, Greve V, Kelly M, Kelley W, Moore T, Myers RM, Odom K, Schroeder MC, Bick D. A study of elective genome sequencing and pharmacogenetic testing in an unselected population. Mol Genet Genomic Med 2021; 9:e1766. [PMID: 34313030 PMCID: PMC8457704 DOI: 10.1002/mgg3.1766] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 04/08/2021] [Accepted: 07/09/2021] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Genome sequencing (GS) of individuals without a medical indication, known as elective GS, is now available at a number of centers around the United States. Here we report the results of elective GS and pharmacogenetic panel testing in 52 individuals at a private genomics clinic in Alabama. METHODS Individuals seeking elective genomic testing and pharmacogenetic testing were recruited through a private genomics clinic in Huntsville, AL. Individuals underwent clinical genome sequencing with a separate pharmacogenetic testing panel. RESULTS Six participants (11.5%) had pathogenic or likely pathogenic variants that may explain one or more aspects of their medical history. Ten participants (19%) had variants that altered the risk of disease in the future, including two individuals with clonal hematopoiesis of indeterminate potential. Forty-four participants (85%) were carriers of a recessive or X-linked disorder. All individuals with pharmacogenetic testing had variants that affected current and/or future medications. CONCLUSION Our study highlights the importance of collecting detailed phenotype information to interpret results in elective GS.
Collapse
Affiliation(s)
- Meagan Cochran
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama, USA
| | - Kelly East
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama, USA
| | - Veronica Greve
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama, USA
| | - Melissa Kelly
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama, USA
| | - Whitley Kelley
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama, USA
| | - Troy Moore
- Kailos Genetics, Huntsville, Alabama, USA
| | - Richard M Myers
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama, USA
| | - Katherine Odom
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama, USA
| | - Molly C Schroeder
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - David Bick
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama, USA
| |
Collapse
|
34
|
Bazinet A, Heath J, Chong AS, Simo-Cheyou ER, Worme S, Rivera Polo B, Foulkes WD, Caplan S, Johnson NA, Orthwein A, Mercier FE. Common clonal origin of chronic myelomonocytic leukemia and B-cell acute lymphoblastic leukemia in a patient with a germline CHEK2 variant. Cold Spring Harb Mol Case Stud 2021; 7:mcs.a006090. [PMID: 33986034 PMCID: PMC8208041 DOI: 10.1101/mcs.a006090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/10/2021] [Indexed: 12/17/2022] Open
Abstract
Hematological malignancies are broadly divided into myeloid and lymphoid neoplasms, reflecting the two major cellular lineages of the hematopoietic system. It is generally rare for hematological malignancies to spontaneously progress with a switch from myeloid to lymphoid lineage. We describe the exceptional case of a patient who sequentially developed myelodysplastic syndrome (MDS), chronic myelomonocytic leukemia (CMML), and B-cell acute lymphoblastic leukemia (B-ALL), as well as our investigation into the underlying pathogenesis. Using whole-exome sequencing (WES) performed on sorted CMML and B-ALL cell fractions, we identified both common and unique potential driver mutations, suggesting a branching clonal evolution giving rise to both diseases. Interestingly, we also identified a germline variant in the cancer susceptibility gene CHEK2 We validated that this variant (c.475T > C; p.Y159H), located in the forkhead-associated (FHA) domain, impairs its capacity to bind BRCA1 in cellulo. This unique case provides novel insight into the genetics of complex hematological diseases and highlights the possibility that such patients may carry inherited predispositions.
Collapse
Affiliation(s)
- Alexandre Bazinet
- Lady Davis Institute, Jewish General Hospital, Montreal, Quebec H3T 1E2, Canada.,Division of Hematology, Department of Medicine, McGill University, Montreal, Quebec H4A 3J1, Canada.,Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, Quebec H4A 3J1, Canada
| | - John Heath
- Lady Davis Institute, Jewish General Hospital, Montreal, Quebec H3T 1E2, Canada.,Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, Quebec H4A 3J1, Canada
| | - Anne-Sophie Chong
- Lady Davis Institute, Jewish General Hospital, Montreal, Quebec H3T 1E2, Canada.,Department of Human Genetics, McGill University, Montreal, Quebec H3A 0C7, Canada
| | | | - Samantha Worme
- Lady Davis Institute, Jewish General Hospital, Montreal, Quebec H3T 1E2, Canada.,Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, Quebec H4A 3J1, Canada
| | - Barbara Rivera Polo
- Lady Davis Institute, Jewish General Hospital, Montreal, Quebec H3T 1E2, Canada.,Gerald Bronfman Department of Oncology, McGill University, Montreal, Quebec H4A 3T2, Canada
| | - William D Foulkes
- Lady Davis Institute, Jewish General Hospital, Montreal, Quebec H3T 1E2, Canada.,Department of Human Genetics, McGill University, Montreal, Quebec H3A 0C7, Canada.,Gerald Bronfman Department of Oncology, McGill University, Montreal, Quebec H4A 3T2, Canada
| | - Stephen Caplan
- Division of Hematology, Department of Medicine, McGill University, Montreal, Quebec H4A 3J1, Canada
| | - Nathalie A Johnson
- Lady Davis Institute, Jewish General Hospital, Montreal, Quebec H3T 1E2, Canada.,Division of Hematology, Department of Medicine, McGill University, Montreal, Quebec H4A 3J1, Canada.,Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, Quebec H4A 3J1, Canada
| | - Alexandre Orthwein
- Lady Davis Institute, Jewish General Hospital, Montreal, Quebec H3T 1E2, Canada.,Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, Quebec H4A 3J1, Canada.,Gerald Bronfman Department of Oncology, McGill University, Montreal, Quebec H4A 3T2, Canada.,Department of Microbiology and Immunology, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - François E Mercier
- Lady Davis Institute, Jewish General Hospital, Montreal, Quebec H3T 1E2, Canada.,Division of Hematology, Department of Medicine, McGill University, Montreal, Quebec H4A 3J1, Canada.,Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, Quebec H4A 3J1, Canada
| |
Collapse
|
35
|
Cattaneo D, Croci GA, Bucelli C, Tabano S, Cannone MG, Gaudioso G, Barbanti MC, Barbullushi K, Bianchi P, Fermo E, Fabris S, Baldini L, Gianelli U, Iurlo A. Triple-Negative Essential Thrombocythemia: Clinical-Pathological and Molecular Features. A Single-Center Cohort Study. Front Oncol 2021; 11:637116. [PMID: 33791220 PMCID: PMC8006378 DOI: 10.3389/fonc.2021.637116] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 02/18/2021] [Indexed: 02/02/2023] Open
Abstract
Lack of demonstrable mutations affecting JAK2, CALR, or MPL driver genes within the spectrum of BCR-ABL1-negative myeloproliferative neoplasms (MPNs) is currently referred to as a triple-negative genotype, which is found in about 10% of patients with essential thrombocythemia (ET) and 5-10% of those with primary myelofibrosis (PMF). Very few papers are presently available on triple-negative ET, which is basically described as an indolent disease, differently from triple-negative PMF, which is an aggressive myeloid neoplasm, with a significantly higher risk of leukemic evolution. The aim of the present study was to evaluate the bone marrow morphology and the clinical-laboratory parameters of triple-negative ET patients, as well as to determine their molecular profile using next-generation sequencing (NGS) to identify any potential clonal biomarkers. We evaluated a single-center series of 40 triple-negative ET patients, diagnosed according to the 2017 WHO classification criteria and regularly followed up at the Hematology Unit of our Institution, between January 1983 and January 2019. In all patients, NGS was performed using the Illumina Ampliseq Myeloid Panel; morphological and immunohistochemical features of the bone marrow trephine biopsies were also thoroughly reviewed. Nucleotide variants were detected in 35 out of 40 patients. In detail, 29 subjects harbored one or two variants and six cases showed three or more concomitant nucleotide changes. The most frequent sequence variants involved the TET2 gene (55.0%), followed by KIT (27.5%). Histologically, most of the cases displayed a classical ET morphology. Interestingly, prevalent megakaryocytes morphology was more frequently polymorphic with a mixture of giant megakaryocytes with hyperlobulated nuclei, normal and small sized maturing elements, and naked nuclei. Finally, in five cases a mild degree of reticulin fibrosis (MF-1) was evident together with an increase in the micro-vessel density. By means of NGS we were able to identify nucleotide variants in most cases, thus we suggest that a sizeable proportion of triple-negative ET patients do have a clonal disease. In analogy with driver genes-mutated MPNs, these observations may prevent issues arising concerning triple-negative ET treatment, especially when a cytoreductive therapy may be warranted.
Collapse
Affiliation(s)
- Daniele Cattaneo
- Hematology Division, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Giorgio Alberto Croci
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy.,Division of Pathology, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Cristina Bucelli
- Hematology Division, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Silvia Tabano
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy.,Laboratory of Medical Genetics, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Marta Giulia Cannone
- Laboratory of Medical Genetics, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Dermatology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Gabriella Gaudioso
- Division of Pathology, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Maria Chiara Barbanti
- Hematology Division, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Kordelia Barbullushi
- Hematology Division, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Paola Bianchi
- Hematology Division, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Elisa Fermo
- Hematology Division, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Sonia Fabris
- Hematology Division, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Luca Baldini
- Hematology Division, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Umberto Gianelli
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy.,Division of Pathology, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Alessandra Iurlo
- Hematology Division, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
36
|
Ochi Y, Ogawa S. Chromatin-Spliceosome Mutations in Acute Myeloid Leukemia. Cancers (Basel) 2021; 13:cancers13061232. [PMID: 33799787 PMCID: PMC7999050 DOI: 10.3390/cancers13061232] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 12/25/2022] Open
Abstract
Simple Summary Recent genomic studies have identified chromatin-spliceosome (CS)-acute myeloid leukemia (AML) as a new subgroup of AML. CS-AML is defined by several mutations that perturb epigenetic regulation, such as those affecting splicing factors, cohesin components, transcription factors, and chromatin modifiers, which are also frequently mutated in other myeloid malignancies, such as myelodysplastic syndrome and secondary AML. Thus, these mutations identify myeloid neoplasms that lie on the boundaries of conventional differential diagnosis. CS-AML shares several clinical characteristics with secondary AML. Therefore, the presence of CS-mutations may help to better classify and manage patients with AML and related disorders. The aim of this review is to discuss the genetic and clinical characteristics of CS-AML and roles of driver mutations defining this unique genomic subgroup of AML. Abstract Recent genetic studies on large patient cohorts with acute myeloid leukemia (AML) have cataloged a comprehensive list of driver mutations, resulting in the classification of AML into distinct genomic subgroups. Among these subgroups, chromatin-spliceosome (CS)-AML is characterized by mutations in the spliceosome, cohesin complex, transcription factors, and chromatin modifiers. Class-defining mutations of CS-AML are also frequently identified in myelodysplastic syndrome (MDS) and secondary AML, indicating the molecular similarity among these diseases. CS-AML is associated with myelodysplasia-related changes in hematopoietic cells and poor prognosis, and, thus, can be treated using novel therapeutic strategies and allogeneic stem cell transplantation. Functional studies of CS-mutations in mice have revealed that CS-mutations typically cause MDS-like phenotypes by altering the epigenetic regulation of target genes. Moreover, multiple CS-mutations often synergistically induce more severe phenotypes, such as the development of lethal MDS/AML, suggesting that the accumulation of many CS-mutations plays a crucial role in the progression of MDS/AML. Indeed, the presence of multiple CS-mutations is a stronger indicator of CS-AML than a single mutation. This review summarizes the current understanding of the genetic and clinical features of CS-AML and the functional roles of driver mutations characterizing this unique category of AML.
Collapse
Affiliation(s)
- Yotaro Ochi
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan;
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan;
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto 606-8501, Japan
- Department of Medicine, Centre for Hematology and Regenerative Medicine, Karolinska Institute, Stockholm 171 77, Sweden
- Correspondence: ; Tel.: +81-75-753-9285
| |
Collapse
|
37
|
Kaito S, Iwama A. Pathogenic Impacts of Dysregulated Polycomb Repressive Complex Function in Hematological Malignancies. Int J Mol Sci 2020; 22:ijms22010074. [PMID: 33374737 PMCID: PMC7793497 DOI: 10.3390/ijms22010074] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/17/2020] [Accepted: 12/19/2020] [Indexed: 02/06/2023] Open
Abstract
Polycomb repressive complexes (PRCs) are epigenetic regulators that mediate repressive histone modifications. PRCs play a pivotal role in the maintenance of hematopoietic stem cells through repression of target genes involved in cell proliferation and differentiation. Next-generation sequencing technologies have revealed that various hematologic malignancies harbor mutations in PRC2 genes, such as EZH2, EED, and SUZ12, and PRC1.1 genes, such as BCOR and BCORL1. Except for the activating EZH2 mutations detected in lymphoma, most of these mutations compromise PRC function and are frequently associated with resistance to chemotherapeutic agents and poor prognosis. Recent studies have shown that mutations in PRC genes are druggable targets. Several PRC2 inhibitors, including EZH2-specific inhibitors and EZH1 and EZH2 dual inhibitors have shown therapeutic efficacy for tumors with and without activating EZH2 mutations. Moreover, EZH2 loss-of-function mutations appear to be attractive therapeutic targets for implementing the concept of synthetic lethality. Further understanding of the epigenetic dysregulation associated with PRCs in hematological malignancies should improve treatment outcomes.
Collapse
Affiliation(s)
| | - Atsushi Iwama
- Correspondence: ; Tel.: +81-3-6409-2181; Fax: +81-3-6409-2182
| |
Collapse
|
38
|
Kurosawa S, Iwama A. Aging and leukemic evolution of hematopoietic stem cells under various stress conditions. Inflamm Regen 2020; 40:29. [PMID: 33292805 PMCID: PMC7643313 DOI: 10.1186/s41232-020-00138-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 08/13/2020] [Indexed: 12/18/2022] Open
Abstract
Hematopoietic stem cells (HSCs) have self-renewal capacity and differentiation potential into all lineages of blood cells throughout the lifetime of an organism. The function of HSCs gradually changes during aging. To date, various stress factors influencing HSC aging have been identified. The increased production of reactive oxygen species and DNA damage responses are causatively attributed to HSC aging. The increased apolarity is a prominent feature of aged HSCs, whereas it is less obvious in young HSCs. The bone marrow (BM) microenvironment niche is a crucial factor for HSC aging. Mesenchymal stem cells show skewed differentiation during aging, which leads to decreased bone formation and increased adipogenesis. The accumulation of adipocytes confers negative effects on hematopoiesis. Loss of sympathetic nerve fibers or adrenoreceptor β3 signaling induces premature HSC and niche aging. Epigenetic regulators such as polycomb group proteins and the sirtuin family of proteins act to prevent premature aging. Targeting these factors, several rejuvenation strategies for aged HSCs have been employed in mice. However, we still do not know whether these strategies can be extrapolated to human HSCs. Aging is frequently accompanied by the development of clonal hematopoiesis, which is called age-related clonal hematopoiesis (ARCH) or clonal hematopoiesis of indeterminate potential (CHIP). Most ARCH/CHIP mutations occur in genes encoding epigenetic regulators including DNMT3A, TET2, and ASXL1, which suggests the relevance of epigenetic drift during the aging process. ARCH/CHIP is a strong risk factor for subsequent hematologic cancer. Notably, it also has an impact on the development of non-malignant disorders such as coronary heart disease. Further studies are warranted to decipher the complete picture of molecular crosstalk that regulates HSC aging.
Collapse
Affiliation(s)
- Shuhei Kurosawa
- Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Atsushi Iwama
- Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan.
| |
Collapse
|
39
|
Rodrigues CP, Shvedunova M, Akhtar A. Epigenetic Regulators as the Gatekeepers of Hematopoiesis. Trends Genet 2020; 37:S0168-9525(20)30251-1. [PMID: 34756331 DOI: 10.1016/j.tig.2020.09.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/12/2020] [Accepted: 09/15/2020] [Indexed: 02/06/2023]
Abstract
Hematopoiesis is the process by which both fetal and adult organisms derive the full repertoire of blood cells from a single multipotent progenitor cell type, the hematopoietic stem cells (HSCs). Correct enactment of this process relies on a synergistic interplay between genetically encoded differentiation programs and a host of cell-intrinsic and cell-extrinsic factors. These include the influence of the HSC niche microenvironment, action of specific transcription factors, and alterations in intracellular metabolic state. The consolidation of these inputs with the genetically encoded program into a coherent differentiation program for each lineage is thought to rely on epigenetic modifiers. Recent work has delineated the precise contributions of different classes of epigenetic modifiers to HSC self-renewal as well as lineage specification and differentiation into various cell types. Here, we bring together what is currently known about chromatin status and the development of cells in the hematopoietic system under normal and abnormal conditions.
Collapse
Affiliation(s)
- Cecilia Pessoa Rodrigues
- Department of Chromatin Regulation, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany; University of Freiburg, Faculty of Biology, Schaenzlestrasse 1, 79104 Freiburg, Germany; International Max Planck Research School for Molecular and Cellular Biology (IMPRS-MCB), Freiburg, Germany
| | - Maria Shvedunova
- Department of Chromatin Regulation, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Asifa Akhtar
- Department of Chromatin Regulation, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany.
| |
Collapse
|