1
|
Sadik ME, Ozturk AK, Albayar A, Branche M, Sullivan PZ, Schlosser LO, Browne KD, Jaye AH, Smith DH. A Strategy Toward Bridging a Complete Spinal Cord Lesion Using Stretch-Grown Axons. Tissue Eng Part A 2020; 26:623-635. [DOI: 10.1089/ten.tea.2019.0230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- Mindy Ezra Sadik
- Center for Brain Injury and Repair, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ali K. Ozturk
- Department of Neurosurgery, Pennsylvania Hospital, University of Pennsylvania Health System, Philadelphia, Pennsylvania
| | - Ahmed Albayar
- Center for Brain Injury and Repair, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Marc Branche
- Center for Brain Injury and Repair, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Patricia Zadnik Sullivan
- Department of Neurosurgery, Pennsylvania Hospital, University of Pennsylvania Health System, Philadelphia, Pennsylvania
| | - Laura O. Schlosser
- Center for Brain Injury and Repair, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kevin D. Browne
- Center for Brain Injury and Repair, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Andrew H. Jaye
- Center for Brain Injury and Repair, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Douglas H. Smith
- Center for Brain Injury and Repair, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
2
|
V. S. H, Krishnan LK, Abelson KSP. A novel technique to develop thoracic spinal laminectomy and a methodology to assess the functionality and welfare of the contusion spinal cord injury (SCI) rat model. PLoS One 2019; 14:e0219001. [PMID: 31265469 PMCID: PMC6605676 DOI: 10.1371/journal.pone.0219001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 06/13/2019] [Indexed: 11/26/2022] Open
Abstract
This study reports the advantage of a novel technique employing a motorised dental burr to assist laminectomy over the conventional manual technique at T10-T11 vertebra level in a rat model of spinal cord injury. Twenty-four female rats were randomly assigned to four groups: (1) conventionally laminectomised, (2) dental burr assisted laminectomised, (3) conventionally laminectomised with spinal cord contusion and (4) dental burr assisted laminectomised with spinal cord contusion. Basso Beattie Bresnahan (BBB) score, postoperative body weights, rat grimace scale (RGS), open cage activity and rearing was studied at 1, 7, 14, 21 and 28 days postoperatively, and area of spinal tissue affected was evaluated histologically. Laminectomised and spinal cord injured rats from dental burr groups showed significantly more weight gain and less weight loss respectively in comparison with respective conventionally laminectomised groups at various time points. Significantly higher RGS score was noticed in conventionally laminectomised animals on Day 1 in comparison to burr assisted laminectomy and presence of pain was evident until Day 7 in the conventionally spinal cord injured group. BBB score did not differ between techniques, whereas laminectomy groups showed more resting time than spinal injury groups. High rearing score was significantly higher in groups which underwent dental burr assisted technique at various time points with respect to their conventional counterparts. This study suggests that the use of dental burr assisted technique to perform laminectomy will bring refinement by producing less pain, aiding in better recovery, removing procedural artefacts without affecting the outcome of the model.
Collapse
Affiliation(s)
- Harikrishnan V. S.
- Division of Laboratory Animal Science, Department of Applied Biology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, India
- Department of Experimental Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lissy K. Krishnan
- Division of Thrombosis Research, Department of Applied Biology, Bio Medical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, India
| | - Klas S. P. Abelson
- Department of Experimental Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
3
|
Kjell J, Olson L. Rat models of spinal cord injury: from pathology to potential therapies. Dis Model Mech 2017; 9:1125-1137. [PMID: 27736748 PMCID: PMC5087825 DOI: 10.1242/dmm.025833] [Citation(s) in RCA: 262] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
A long-standing goal of spinal cord injury research is to develop effective spinal cord repair strategies for the clinic. Rat models of spinal cord injury provide an important mammalian model in which to evaluate treatment strategies and to understand the pathological basis of spinal cord injuries. These models have facilitated the development of robust tests for assessing the recovery of locomotor and sensory functions. Rat models have also allowed us to understand how neuronal circuitry changes following spinal cord injury and how recovery could be promoted by enhancing spontaneous regenerative mechanisms and by counteracting intrinsic inhibitory factors. Rat studies have also revealed possible routes to rescuing circuitry and cells in the acute stage of injury. Spatiotemporal and functional studies in these models highlight the therapeutic potential of manipulating inflammation, scarring and myelination. In addition, potential replacement therapies for spinal cord injury, including grafts and bridges, stem primarily from rat studies. Here, we discuss advantages and disadvantages of rat experimental spinal cord injury models and summarize knowledge gained from these models. We also discuss how an emerging understanding of different forms of injury, their pathology and degree of recovery has inspired numerous treatment strategies, some of which have led to clinical trials. Summary: In this Review, we discuss the advantages and disadvantages of the rat for studies of experimental spinal cord injury and summarize the knowledge gained from such studies.
Collapse
Affiliation(s)
- Jacob Kjell
- Department of Physiological Genomics, Ludwig-Maximilians-Universität München, Munich 80336, Germany
| | - Lars Olson
- Department of Neuroscience, Karolinska Institutet, Stockholm 171 77, Sweden
| |
Collapse
|
4
|
Kaneko A, Matsushita A, Sankai Y. A 3D nanofibrous hydrogel and collagen sponge scaffold promotes locomotor functional recovery, spinal repair, and neuronal regeneration after complete transection of the spinal cord in adult rats. Biomed Mater 2015; 10:015008. [DOI: 10.1088/1748-6041/10/1/015008] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
5
|
Estrada V, Müller HW. Spinal cord injury - there is not just one way of treating it. F1000PRIME REPORTS 2014; 6:84. [PMID: 25343041 PMCID: PMC4166939 DOI: 10.12703/p6-84] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In the last century, research in the field of spinal cord trauma has brought insightful knowledge which has led to a detailed understanding of mechanisms that are involved in injury- and recovery-related processes. The quest for a cure for the yet generally incurable condition as well as the exponential rise in gained information has brought about the development of numerous treatment approaches while at the same time the abundance of data has become quite unmanageable. Owing to an enormous amount of preclinical therapeutic approaches, this report highlights important trends rather than specific treatment strategies. We focus on current advances in the treatment of spinal cord injury and want to further draw attention to arising problems in spinal cord injury (SCI) research and discuss possible solutions.
Collapse
Affiliation(s)
- Veronica Estrada
- Molecular Neurobiology Laboratory, Department of Neurology, Heinrich-Heine-University Medical Center Düsseldorf Moorenstr. 5, 40225 Düsseldorf Germany
| | - Hans Werner Müller
- Molecular Neurobiology Laboratory, Department of Neurology, Heinrich-Heine-University Medical Center Düsseldorf Moorenstr. 5, 40225 Düsseldorf Germany
| |
Collapse
|
6
|
Olson L. Combinatory treatments needed for spinal cord injury. Exp Neurol 2013; 248:309-15. [DOI: 10.1016/j.expneurol.2013.06.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 06/20/2013] [Accepted: 06/24/2013] [Indexed: 01/02/2023]
|
7
|
Renno WM, Al-Khaledi G, Mousa A, Karam SM, Abul H, Asfar S. (-)-Epigallocatechin-3-gallate (EGCG) modulates neurological function when intravenously infused in acute and, chronically injured spinal cord of adult rats. Neuropharmacology 2013; 77:100-19. [PMID: 24071567 DOI: 10.1016/j.neuropharm.2013.09.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 08/13/2013] [Accepted: 09/09/2013] [Indexed: 12/17/2022]
Abstract
Spinal cord injury (SCI) causes severe and long lasting motor and sensory deficits, chronic pain, and autonomic dysreflexia. (-)-epigallocatechin-3-gallate (EGCG) has shown to produce neuroprotective effect in a broad range of neurodegenerative disease animal models. This study designed to test the efficacy of intravenous infusion of EGCG for 36 h, in acutely injured rats' spinal cord: within first 4 h post-injury and, in chronically SC injured rats: after one year of injury. Functional outcomes measured using standard BBB scale, The Louisville Swim Scale (LSS) and, pain behavior assessment tests. 72 Female adult rats subjected to moderate thoracic SCI using MASCIS Impactor, blindly randomized as the following: (I) Acute SCI + EGCG (II) Acute SCI + saline. (III) Chronic SCI + EGCG. (IV) Chronic SCI + saline and, sham SCI animals. EGCG i.v. treatment of acute and, chronic SCI animals resulted in significantly better recovery of motor and sensory functions, BBB and LSS (P < 0.005) and (P < 0.05) respectively. Tactile allodynia, mechanical nociception (P < 0.05) significantly improved. Paw withdrawal and, tail flick latencies increase significantly (P < 0.05). Moreover, in the EGCG treated acute SCI animals the percentage of lesion size area significantly reduced (P < 0.0001) and, the number of neurons in the spinal cord increased (P < 0.001). Percent areas of GAP-43 and GFAP immunohistochemistry showed significant (P < 0.05) increase. We conclude that the therapeutic window of opportunity for EGCG to depict neurological recovery in SCI animals, is viable up to one year post SCI when intravenously infused for 36 h.
Collapse
Affiliation(s)
- Waleed M Renno
- Department of Anatomy, Kuwait University, Faculty of Medicine, Kuwait.
| | - Ghanim Al-Khaledi
- Department of Pharmacology, Kuwait University, Faculty of Medicine, Kuwait
| | - Alyaa Mousa
- Department of Anatomy, Kuwait University, Faculty of Medicine, Kuwait
| | - Shaima M Karam
- Department of Pharmacology, Kuwait University, Faculty of Medicine, Kuwait
| | - Habib Abul
- Department of Pharmacology, Kuwait University, Faculty of Medicine, Kuwait
| | - Sami Asfar
- Department of Surgery, Kuwait University, Faculty of Medicine, Kuwait
| |
Collapse
|
8
|
It takes two to tango: activation of cortex and lumbosacral circuitry restores locomotion in spinal cord injury. World Neurosurg 2012; 78:380-3. [PMID: 22960539 DOI: 10.1016/j.wneu.2012.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
9
|
The pig model of chronic paraplegia: A challenge for experimental studies in spinal cord injury. Prog Neurobiol 2012; 97:288-303. [DOI: 10.1016/j.pneurobio.2012.04.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Revised: 01/22/2012] [Accepted: 04/17/2012] [Indexed: 12/27/2022]
|
10
|
Chondroitinase combined with rehabilitation promotes recovery of forelimb function in rats with chronic spinal cord injury. J Neurosci 2011; 31:9332-44. [PMID: 21697383 DOI: 10.1523/jneurosci.0983-11.2011] [Citation(s) in RCA: 156] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Chondroitinase ABC (ChABC) in combination with rehabilitation has been shown to promote functional recovery in acute spinal cord injury. For clinical use, the optimal treatment window is concurrent with the beginning of rehabilitation, usually 2-4 weeks after injury. We show that ChABC is effective when given 4 weeks after injury combined with rehabilitation. After C4 dorsal spinal cord injury, rats received no treatment for 4 weeks. They then received either ChABC or penicillinase control treatment followed by hour-long daily rehabilitation specific for skilled paw reaching. Animals that received both ChABC and task-specific rehabilitation showed the greatest recovery in skilled paw reaching, approaching similar levels to animals that were treated at the time of injury. There was also a modest increase in skilled paw reaching ability in animals receiving task-specific rehabilitation alone. Animals treated with ChABC and task-specific rehabilitation also showed improvement in ladder and beam walking. ChABC increased sprouting of the corticospinal tract, and these sprouts had more vGlut1(+ve) presynaptic boutons than controls. Animals that received rehabilitation showed an increase in perineuronal net number and staining intensity. Our results indicate that ChABC treatment opens a window of opportunity in chronic spinal cord lesions, allowing rehabilitation to improve functional recovery.
Collapse
|
11
|
Abstract
Different MR techniques, such as relaxation times, diffusion, perfusion, and spectroscopy have been employed to study rodent spinal cord. In this chapter, a description of these methods is given, along with examples of normal metrics that can be derived from the MR acquisitions, as well as examples of applications to pathology.
Collapse
Affiliation(s)
- Virginie Callot
- Centre de Résonance Magnétique Biologique et Médicale (CRMBM), UMR 6612, CNRS, Université de la Méditerranée, 13385 Marseille Cedex 05, France.
| | | | | |
Collapse
|
12
|
Salazar DL, Uchida N, Hamers FPT, Cummings BJ, Anderson AJ. Human neural stem cells differentiate and promote locomotor recovery in an early chronic spinal cord injury NOD-scid mouse model. PLoS One 2010; 5:e12272. [PMID: 20806064 PMCID: PMC2923623 DOI: 10.1371/journal.pone.0012272] [Citation(s) in RCA: 168] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Accepted: 06/28/2010] [Indexed: 12/20/2022] Open
Abstract
Background Traumatic spinal cord injury (SCI) results in partial or complete paralysis and is characterized by a loss of neurons and oligodendrocytes, axonal injury, and demyelination/dysmyelination of spared axons. Approximately 1,250,000 individuals have chronic SCI in the U.S.; therefore treatment in the chronic stages is highly clinically relevant. Human neural stem cells (hCNS-SCns) were prospectively isolated based on fluorescence-activated cell sorting for a CD133+ and CD24−/lo population from fetal brain, grown as neurospheres, and lineage restricted to generate neurons, oligodendrocytes and astrocytes. hCNS-SCns have recently been transplanted sub-acutely following spinal cord injury and found to promote improved locomotor recovery. We tested the ability of hCNS-SCns transplanted 30 days post SCI to survive, differentiate, migrate, and promote improved locomotor recovery. Methods and Findings hCNS-SCns were transplanted into immunodeficient NOD-scid mice 30 days post spinal cord contusion injury. hCNS-SCns transplanted mice demonstrated significantly improved locomotor recovery compared to vehicle controls using open field locomotor testing and CatWalk gait analysis. Transplanted hCNS-SCns exhibited long-term engraftment, migration, limited proliferation, and differentiation predominantly to oligodendrocytes and neurons. Astrocytic differentiation was rare and mice did not exhibit mechanical allodynia. Furthermore, differentiated hCNS-SCns integrated with the host as demonstrated by co-localization of human cytoplasm with discrete staining for the paranodal marker contactin-associated protein. Conclusions The results suggest that hCNS-SCns are capable of surviving, differentiating, and promoting improved locomotor recovery when transplanted into an early chronic injury microenvironment. These data suggest that hCNS-SCns transplantation has efficacy in an early chronic SCI setting and thus expands the “window of opportunity” for intervention.
Collapse
Affiliation(s)
- Desirée L. Salazar
- Department of Anatomy and Neurobiology, University of California Irvine, Irvine, California, United States of America
- Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, California, United States of America
- Reeve-Irvine Research Center, University of California Irvine, Irvine, California, United States of America
| | - Nobuko Uchida
- StemCells, Inc., Palo Alto, California, United States of America
| | | | - Brian J. Cummings
- Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, California, United States of America
- Reeve-Irvine Research Center, University of California Irvine, Irvine, California, United States of America
- Department of Physical Medicine and Rehabilitation, University of California Irvine, Irvine, California United States of America
| | - Aileen J. Anderson
- Department of Anatomy and Neurobiology, University of California Irvine, Irvine, California, United States of America
- Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, California, United States of America
- Reeve-Irvine Research Center, University of California Irvine, Irvine, California, United States of America
- Department of Physical Medicine and Rehabilitation, University of California Irvine, Irvine, California United States of America
- * E-mail:
| |
Collapse
|
13
|
Smith GM, Onifer SM. Construction of pathways to promote axon growth within the adult central nervous system. Brain Res Bull 2010; 84:300-5. [PMID: 20554000 DOI: 10.1016/j.brainresbull.2010.05.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Revised: 05/25/2010] [Accepted: 05/31/2010] [Indexed: 12/12/2022]
Abstract
Inducing significant axon growth or regeneration after spinal cord injury has been difficult, primarily due to the poor growth supportive environment and low intrinsic growth ability of neurons within the CNS. Neurotrophins alone have been shown to readily induce regeneration of sensory axons after dorsal root lesions, however if neurotrophin gradients are expressed within the spinal cord these axons fail to terminate within appropriate target regions. Under such conditions, addition of a "stop" signal reduces growth into deeper dorsal laminae to support more specific targeting. Such neurotrophin gradients alone lose their effectiveness when lesions are within the spinal cord, requiring a combined treatment regime. Construction of pathways using combined treatments support good regeneration when they increase the intrinsic growth properties of neurons, provide a bridge across the lesion site, and supply a growth supportive substrate to induce axon growth out of the bridge and back into the host. Neurotrophin gradients distal to the bridge greatly enhance axon outgrowth. In disorders where neuronal circuits are lost, construction of preformed growth supportive pathways sustain long distance axon growth from a neuronal transplant to distal target locations.
Collapse
Affiliation(s)
- George M Smith
- Department of Physiology, Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, 40536, USA.
| | | |
Collapse
|
14
|
Xu XM, Onifer SM. Transplantation-mediated strategies to promote axonal regeneration following spinal cord injury. Respir Physiol Neurobiol 2009; 169:171-82. [PMID: 19665611 PMCID: PMC2800078 DOI: 10.1016/j.resp.2009.07.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Revised: 07/16/2009] [Accepted: 07/20/2009] [Indexed: 12/19/2022]
Abstract
Devastating central nervous system injuries and diseases continue to occur in spite of the tremendous efforts of various prevention programs. The enormity and annual escalation of healthcare costs due to them require that therapeutic strategies be responsibly developed. The dysfunctions that occur after injury and disease are primarily due to neurotransmission damage. The last two decades of both experimental and clinical research have demonstrated that neural and non-neural tissue and cell transplantation is a viable option for ameliorating dysfunctions to markedly improve quality of life. Moreover, significant progress has been made with tissue and cell transplantation in studies of pathophysiology, plasticity, sprouting, regeneration, and functional recovery. This article will review information about the ability and potential, particularly for traumatic spinal cord injury, that neural and non-neural tissue and cell transplantation has to replace lost neurons and glia, to reconstruct damaged neural circuitry, and to restore neurotransmitters, hormones, neurotrophic factors, and neurotransmission. Donor tissues and cells to be discussed include peripheral nerve, fetal spinal cord and brain, central and peripheral nervous systems' glia, stem cells, those that have been genetically engineered, and non-neural ones. Combinatorial approaches and clinical research are also reviewed.
Collapse
Affiliation(s)
- Xiao-Ming Xu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, United States.
| | | |
Collapse
|
15
|
Scholtes F, Phan-Ba R, Theunissen E, Adriaensens P, Brook G, Franzen R, Bouhy D, Gelan J, Martin D, Schoenen J. Rapid, postmortem 9.4 T MRI of spinal cord injury: correlation with histology and survival times. J Neurosci Methods 2008; 174:157-67. [PMID: 18708093 DOI: 10.1016/j.jneumeth.2008.06.038] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2008] [Revised: 06/16/2008] [Accepted: 06/17/2008] [Indexed: 10/21/2022]
Abstract
High field magnetic resonance imaging (MRI) has been increasingly used to assess experimental spinal cord injury (SCI). In the present investigation, after partial spinal cord injury and excision of the whole spine, pathological changes of the spinal cord were studied in spinal cord-spine blocks, from the acute to the chronic state (24 h to 5 months). Using proton density (PD) weighted imaging parameters at a magnetic field strength of 9.4 tesla (T), acquisition times ranging from <1 to 10 h per specimen were used. High in-plane pixel resolution (68 and 38 microm, respectively) was obtained, as well as high signal-to-noise ratio (SNR), which is important for optimal contrast settings. The quality of the resulting MR images was demonstrated by comparison with histology. The cord and the lesion were shown in their anatomical surroundings, detecting cord swelling in the acute phase (24 h to 1 week) and cord atrophy at the chronic stage. Haemorrhage was detected as hypo-intense signal. Oedema, necrosis and scarring were hyper-intense but could not be distinguished. Histology confirmed that the anatomical delimitation of the lesion extent by MRI was precise, both with high and moderate resolution. The present investigation thus demonstrates the precision of spinal cord MRI at different survival delays after compressive partial SCI and establishes efficient imaging parameters for postmortem PD MRI.
Collapse
Affiliation(s)
- Felix Scholtes
- Centre for Cellular and Molecular Neurobiology (CNCM), Department of Neuroanatomy, University of Liège, Sart Tilman B36, 4000 Liège, Belgium.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Lee YS, Lin CY, Caiozzo VJ, Robertson RT, Yu J, Lin VW. Repair of spinal cord transection and its effects on muscle mass and myosin heavy chain isoform phenotype. J Appl Physiol (1985) 2007; 103:1808-14. [PMID: 17717118 DOI: 10.1152/japplphysiol.00588.2007] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A number of significant advances have been developed for treating spinal cord injury during the past two decades. The combination of peripheral nerve grafts and acidic fibroblast growth factor (hereafter referred to as PNG) has been shown to partially restore hindlimb function. However, very little is known about the effects of such treatments in restoring normal muscle phenotype. The primary goal of the current study was to test the hypothesis that PNG would completely or partially restore 1) muscle mass and muscle fiber cross-sectional area and 2) the slow myosin heavy chain phenotype of the soleus muscle. To test this hypothesis, we assigned female Sprague-Dawley rats to three groups: 1) sham control, 2) spinal cord transection (Tx), and 3) spinal cord transection plus PNG (Tx+PNG). Six months following spinal cord transection, the open-field test was performed to assess locomotor function, and then the soleus muscles were harvested and analyzed. SDS-PAGE for single muscle fiber was used to evaluate the myosin heavy chain (MHC) isoform expression pattern following the injury and treatment. Immunohistochemistry was used to identify serotonin (5-HT) fibers in the spinal cord. Compared with the Tx group, the Tx+PNG group showed 1) significantly improved Basso, Beattie, and Bresnahan scores (hindlimb locomotion test), 2) less muscle atrophy, 3) a higher percentage of slow type I fibers, and 4) 5-HT fibers distal to the lesion site. We conclude that the combined treatment of PNG is partially effective in restoring the muscle mass and slow phenotype of the soleus muscle in a T-8 spinal cord-transected rat model.
Collapse
MESH Headings
- Animals
- Body Weight
- Disease Models, Animal
- Female
- Fibroblast Growth Factor 1/pharmacology
- Fibroblast Growth Factor 1/therapeutic use
- Intercostal Nerves/transplantation
- Motor Activity/drug effects
- Muscle Fibers, Skeletal/drug effects
- Muscle Fibers, Skeletal/metabolism
- Muscle Fibers, Skeletal/pathology
- Muscle Fibers, Slow-Twitch/drug effects
- Muscle Fibers, Slow-Twitch/metabolism
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/innervation
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscle, Skeletal/physiopathology
- Myosin Heavy Chains/metabolism
- Nerve Regeneration/drug effects
- Organ Size
- Phenotype
- Protein Isoforms/metabolism
- Rats
- Rats, Sprague-Dawley
- Recovery of Function
- Serotonin/metabolism
- Spinal Cord Injuries/drug therapy
- Spinal Cord Injuries/metabolism
- Spinal Cord Injuries/pathology
- Spinal Cord Injuries/physiopathology
- Spinal Cord Injuries/surgery
- Time Factors
Collapse
Affiliation(s)
- Yu-Shang Lee
- Department of Anatomy & Neurobiology, University of California, Irvine, CA, USA
| | | | | | | | | | | |
Collapse
|
17
|
Pfeifer K, Vroemen M, Caioni M, Aigner L, Bogdahn U, Weidner N. Autologous adult rodent neural progenitor cell transplantation represents a feasible strategy to promote structural repair in the chronically injured spinal cord. Regen Med 2007; 1:255-66. [PMID: 17465808 DOI: 10.2217/17460751.1.2.255] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Adult neural progenitor cells (NPCs) represent an attractive source for cell-based regenerative strategies in CNS disease. In animal models of spinal cord injury, syngenic adult NPCs, which were isolated from pooled post-mortem CNS tissue and co-transplanted together with fibroblasts, have been shown to promote substantial structural repair. The autologous transplantation of adult NPCs represents a major advantage compared with other sources of neural stem/progenitor cells. However, the feasibility of autologous NPC generation from a single biopsy in a relevant preclinical CNS disease model has yet to be demonstrated. To investigate this matter, adult Wistar rats underwent a cervical spinal cord lesion, which was followed by a minimal subventricular zone aspiration biopsy 2 days later. NPCs were isolated and propagated separately for each animal for the following 8 weeks. Thereafter, they were co-transplanted with simultaneously harvested skin fibroblasts in an autologous fashion into the cervical spinal cord lesion site. A total of 4 weeks later, graft survival, tissue replacement and axonal regeneration were assessed histologically. Animals receiving either allogenic NPCs combined with fibroblasts or autologous pure fibroblast grafts served as control groups. Within 8 weeks after the biopsy more than 3 million NPCs could be generated from a single aspiration biopsy, which displayed a differentiation pattern indistinguishable from syngenic NPC grafts. NPCs within autologous co-grafts readily survived, replaced cystic lesion defects completely and differentiated exclusively into glial phenotypes, thus paralleling previous findings with syngenic NPCs. The delayed transplantation 8 weeks after the spinal cord lesion elicited substantial axonal regeneration. These findings demonstrate that the therapeutic strategy to induce structural repair by transplanting adult autologous NPCs, after the successful propagation from a small brain biopsy into an acute CNS disease model, such as spinal cord injury, is feasible at the preclinical level.
Collapse
Affiliation(s)
- Katharina Pfeifer
- University of Regensburg, Department of Neurology, Regensburg, Germany
| | | | | | | | | | | |
Collapse
|
18
|
Fraidakis MJ, Kiyotani T, Pernold K, Bergström J, Olson L. Recovery from spinal cord injury in tumor necrosis factor-alpha, signal transducers and activators of transcription 4 and signal transducers and activators of transcription 6 null mice. Neuroreport 2007; 18:185-9. [PMID: 17301687 DOI: 10.1097/wnr.0b013e328011516a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Tumor necrosis factor-alpha is a central cytokine involved in the regulation of the innate immune response. Signal transducers and activators of transcription 4 and signal transducers and activators of transcription 6 are second messengers mediating the Th1 and Th2-specific immune responses, respectively. We studied the outcome of spinal cord injury with respect to the locomotion and axonal regeneration in tumor necrosis factor-alpha, signal transducers and activators of transcription 4 and signal transducers and activators of transcription 6 knockout mice. Locomotor behavior after injury differed between mouse strains, but not between wild-type and the knockout genotypes of the same strain. Regeneration of descending tracts, assessed by fluorogold/fluororuby retrograde double-labeling, however, appeared hampered by Th2 deficiency.
Collapse
|
19
|
Kwon BK, Fisher CG, Dvorak MF, Tetzlaff W. Strategies to promote neural repair and regeneration after spinal cord injury. Spine (Phila Pa 1976) 2005; 30:S3-13. [PMID: 16138063 DOI: 10.1097/01.brs.0000175186.17923.87] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Retrospective review of current literature regarding neuroprotection and axonal regeneration therapies for acute spinal cord injury. OBJECTIVES To provide an update for spine clinicians of the emerging therapeutic strategies for promoting neural repair and regeneration after spinal cord injury. SUMMARY OF BACKGROUND DATA The neuroscientific community has generated a number of novel potential treatments for spinal injuries, some of which have entered clinical trials. Clinicians who manage spinal cord trauma are likely to encounter patients and their families who have questions or wish to be involved in these emerging treatments. METHODS Literature review, with particular focus on currently used medications that may have neuroprotective potential in spinal cord injury, and axonal regeneration strategies that are emerging in preliminary human clinical trials. RESULTS A number of medications such as erythropoietin and minocycline have demonstrated neuroprotective properties in animal models of spinal cord injury, and their long-established safety in humans make them appealing candidates for clinical trials. Human experience with novel neuroprotective and axonal regeneration strategies is growing around the world, and the peer-reviewed reporting of this is anxiously awaited. CONCLUSIONS The initiation of human clinical trials for spinal cord-injured patients heralds great hope that effective therapies will be forthcoming, although a great deal remains to be learned. Clinicians must provide leadership in the epidemiologic design and rigor of these initial forays into human evaluation.
Collapse
Affiliation(s)
- Brian K Kwon
- Division of Spine, Department of Orthopaedics, International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, British Columbia, Canada.
| | | | | | | |
Collapse
|
20
|
Barakat DJ, Gaglani SM, Neravetla SR, Sanchez AR, Andrade CM, Pressman Y, Puzis R, Garg MS, Bunge MB, Pearse DD. Survival, integration, and axon growth support of glia transplanted into the chronically contused spinal cord. Cell Transplant 2005; 14:225-40. [PMID: 15929557 DOI: 10.3727/000000005783983106] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Due to an ever-growing population of individuals with chronic spinal cord injury, there is a need for experimental models to translate efficacious regenerative and reparative acute therapies to chronic injury application. The present study assessed the ability of fluid grafts of either Schwann cells (SCs) or olfactory ensheathing glia (OEG) to facilitate the growth of supraspinal and afferent axons and promote restitution of hind limb function after transplantation into a 2-month-old, moderate, thoracic (T8) contusion in the rat. The use of cultured glial cells, transduced with lentiviral vectors encoding enhanced green fluorescent protein (EGFP), permitted long-term tracking of the cells following spinal cord transplantation to examine their survival, migration, and axonal association. At 3 months following grafting of 2 million SCs or OEG in 6 microl of DMEM/F12 medium into the injury site, stereological quantification of the three-dimensional reconstructed spinal cords revealed that an average of 17.1 +/- 6.8% of the SCs and 2.3 +/- 1.4% of the OEG survived from the number transplanted. In the OEG grafted spinal cord, a limited number of glia were unable to prevent central cavitation and were found in patches around the cavity rim. The transplanted SCs, however, formed a substantive graft within the injury site capable of supporting the ingrowth of numerous, densely packed neurofilament-positive axons. The SC grafts were able to support growth of both ascending calcitonin gene-related peptide (CGRP)-positive and supraspinal serotonergic axons and, although no biotinylated dextran amine (BDA)-traced corticospinal axons were present within the center of the grafts, the SC transplants significantly increased corticospinal axon numbers immediately rostral to the injury-graft site compared with injury-only controls. Moreover, SC grafted animals demonstrated modest, though significant, improvements in open field locomotion and exhibited less foot position errors (base of support and foot rotation). Whereas these results demonstrate that SC grafts survive, support axon growth, and can improve functional outcome after chronic contusive spinal cord injury, further development of OEG grafting procedures in this model and putative combination strategies with SC grafts need to be further explored to produce substantial improvements in axon growth and function.
Collapse
Affiliation(s)
- D J Barakat
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Ramer LM, Ramer MS, Steeves JD. Setting the stage for functional repair of spinal cord injuries: a cast of thousands. Spinal Cord 2005; 43:134-61. [PMID: 15672094 DOI: 10.1038/sj.sc.3101715] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Here we review mechanisms and molecules that necessitate protection and oppose axonal growth in the injured spinal cord, representing not only a cast of villains but also a company of therapeutic targets, many of which have yet to be fully exploited. We next discuss recent progress in the fields of bridging, overcoming conduction block and rehabilitation after spinal cord injury (SCI), where several treatments in each category have entered the spotlight, and some are being tested clinically. Finally, studies that combine treatments targeting different aspects of SCI are reviewed. Although experiments applying some treatments in combination have been completed, auditions for each part in the much-sought combination therapy are ongoing, and performers must demonstrate robust anatomical regeneration and/or significant return of function in animal models before being considered for a lead role.
Collapse
Affiliation(s)
- L M Ramer
- ICORD (International Collaboration on Repair Discoveries), The University of British Columbia, Vancouver, BC, Canada
| | | | | |
Collapse
|