1
|
Dill-Macky AS, Lee EN, Wertheim JA, Koss KM. Glia in tissue engineering: From biomaterial tools to transplantation. Acta Biomater 2024; 190:24-49. [PMID: 39396630 DOI: 10.1016/j.actbio.2024.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 10/01/2024] [Accepted: 10/10/2024] [Indexed: 10/15/2024]
Abstract
Glia are imperative in nearly every function of the nervous system, including neurotransmission, neuronal repair, development, immunity, and myelination. Recently, the reparative roles of glia in the central and peripheral nervous systems have been elucidated, suggesting a tremendous potential for these cells as novel treatments to central nervous system disorders. Glial cells often behave as 'double-edged swords' in neuroinflammation, ultimately deciding the life or death of resident cells. Compared to glia, neuronal cells have limited mobility, lack the ability to divide and self-renew, and are generally more delicate. Glia have been candidates for therapeutic use in many successful grafting studies, which have been largely focused on restoring myelin with Schwann cells, olfactory ensheathing glia, and oligodendrocytes with support from astrocytes. However, few therapeutics of this class have succeeded past clinical trials. Several tools and materials are being developed to understand and re-engineer these grafting concepts for greater success, such as extra cellular matrix-based scaffolds, bioactive peptides, biomolecular delivery systems, biomolecular discovery for neuroinflammatory mediation, composite microstructures such as artificial channels for cell trafficking, and graft enhanced electrical stimulation. Furthermore, advances in stem cell-derived cortical/cerebral organoid differentiation protocols have allowed for the generation of patient-derived glia comparable to those acquired from tissues requiring highly invasive procedures or are otherwise inaccessible. However, research on bioengineered tools that manipulate glial cells is nowhere near as comprehensive as that for systems of neurons and neural stem cells. This article explores the therapeutic potential of glia in transplantation with an emphasis on novel bioengineered tools for enhancement of their reparative properties. STATEMENT OF SIGNIFICANCE: Neural glia are responsible for a host of developmental, homeostatic, and reparative roles in the central nervous system but are often a major cause of tissue damage and cellular loss in insults and degenerative pathologies. Most glial grafts have employed Schwann cells for remyelination, but other glial with novel biomaterials have been employed, emphasizing their diverse functionality. Promising strategies have emerged, including neuroimmune mediation of glial scar tissues and facilitated migration and differentiation of stem cells for neural replacement. Herein, a comprehensive review of biomaterial tools for glia in transplantation is presented, highlighting Schwann cells, astrocytes, olfactory ensheating glia, oligodendrocytes, microglia, and ependymal cells.
Collapse
Affiliation(s)
- A S Dill-Macky
- Department of Surgery, University of Arizona, 1501 N Campbell Ave, Tucson, AZ 85724, United States
| | - E N Lee
- Department of Surgery, University of Arizona, 1501 N Campbell Ave, Tucson, AZ 85724, United States
| | - J A Wertheim
- Department of Surgery, University of Arizona, 1501 N Campbell Ave, Tucson, AZ 85724, United States
| | - K M Koss
- Department of Neurobiology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-0625, United States; Sealy Institute for Drug Discovery, University of Texas Medical Branch, 105 11th Street Galveston, TX 77555-1110, United States.
| |
Collapse
|
2
|
Minkelyte K, Li D, Li Y, Ibrahim A. Transplantation of Cryopreserved Olfactory Ensheathing Cells Restores Loss of Functions in an Experimental Model. Cell Transplant 2023; 32:9636897231199319. [PMID: 37771302 PMCID: PMC10541729 DOI: 10.1177/09636897231199319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 09/30/2023] Open
Abstract
In the past decades, the properties of olfactory ensheathing cells (OECs) have been widely investigated. Studies have shown that transplantation of OECs cultured from the olfactory bulb mediates axonal regeneration, remyelination and restores lost functions in experimental central nervous system (CNS) injury models. Autologously sourcing the cells from the nasal mucosa or the olfactory bulb to treat patients with spinal cord injuries would be ideal, but the cell yield achieved may be inadequate to cover the surface area of the lesions typically encountered in human spinal cord contusion injuries. Therefore, banking allogenic cryopreserved olfactory bulb cells from donors or generating cell lines could provide a marked increase in cell stock available for transplantation. This study is undertaken in two control and two intervention groups. The control groups have lesions alone and lesions with collagen gel but without cells. The intervention groups have either transplantation of primary cultured olfactory bulb OECs (bOECs) encapsulated in collagen gel or cryopreserved bulb OECs (CbOECs) encapsulated in collagen gel. Here, we report that transplantation of cryopreserved rat bOECs encapsulated in collagen restored the loss of function in a vertical climbing test in a unilateral C6-T1 dorsal root injury model. The loss of function returns in 80% of rats with injuries in about 3 weeks comparable to that we observed after transplantation of primary cultured bOECs. The regeneration axons induced by the transplant are identified by neurofilament antibodies and ensheathed by OECs. Our results indicate that cryopreserved OECs retain their properties of inducing axon regeneration and restoring loss of function in the experimental model. This is a step forward to translate the research into future clinical applications.
Collapse
Affiliation(s)
- Kamile Minkelyte
- Spinal Repair Unit, Department of Brain Repair and Rehabilitation, UCL Institute of Neurology, Queen Square, London, UK
| | - Daqing Li
- Spinal Repair Unit, Department of Brain Repair and Rehabilitation, UCL Institute of Neurology, Queen Square, London, UK
| | - Ying Li
- Spinal Repair Unit, Department of Brain Repair and Rehabilitation, UCL Institute of Neurology, Queen Square, London, UK
| | - Ahmed Ibrahim
- Spinal Repair Unit, Department of Brain Repair and Rehabilitation, UCL Institute of Neurology, Queen Square, London, UK
- Imperial College Healthcare NHS Trust, London, UK
| |
Collapse
|
3
|
Murtaza M, Mohanty L, Ekberg JAK, St John JA. Designing Olfactory Ensheathing Cell Transplantation Therapies: Influence of Cell Microenvironment. Cell Transplant 2022; 31:9636897221125685. [PMID: 36124646 PMCID: PMC9490465 DOI: 10.1177/09636897221125685] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Olfactory ensheathing cell (OEC) transplantation is emerging as a promising treatment option for injuries of the nervous system. OECs can be obtained relatively easily from nasal biopsies, and exhibit several properties such as secretion of trophic factors, and phagocytosis of debris that facilitate neural regeneration and repair. But a major limitation of OEC-based cell therapies is the poor survival of transplanted cells which subsequently limit their therapeutic efficacy. There is an unmet need for approaches that enable the in vitro production of OECs in a state that will optimize their survival and integration after transplantation into the hostile injury site. Here, we present an overview of the strategies to modulate OECs focusing on oxygen levels, stimulating migratory, phagocytic, and secretory properties, and on bioengineering a suitable environment in vitro.
Collapse
Affiliation(s)
- Mariyam Murtaza
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD, Australia.,Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia.,Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Brisbane, QLD, Australia
| | - Lipsa Mohanty
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD, Australia.,Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Brisbane, QLD, Australia
| | - Jenny A K Ekberg
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD, Australia.,Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia.,Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Brisbane, QLD, Australia
| | - James A St John
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD, Australia.,Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia.,Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Brisbane, QLD, Australia
| |
Collapse
|
4
|
Peng K, Sant D, Andersen N, Silvera R, Camarena V, Piñero G, Graham R, Khan A, Xu XM, Wang G, Monje PV. Magnetic separation of peripheral nerve-resident cells underscores key molecular features of human Schwann cells and fibroblasts: an immunochemical and transcriptomics approach. Sci Rep 2020; 10:18433. [PMID: 33116158 PMCID: PMC7595160 DOI: 10.1038/s41598-020-74128-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 09/24/2020] [Indexed: 12/11/2022] Open
Abstract
Nerve-derived human Schwann cell (SC) cultures are irreplaceable models for basic and translational research but their use can be limited due to the risk of fibroblast overgrowth. Fibroblasts are an ill-defined population consisting of highly proliferative cells that, contrary to human SCs, do not undergo senescence in culture. We initiated this study by performing an exhaustive immunological and functional characterization of adult nerve-derived human SCs and fibroblasts to reveal their properties and optimize a protocol of magnetic-activated cell sorting (MACS) to separate them effectively both as viable and biologically competent cells. We next used immunofluorescence microscopy imaging, flow cytometry analysis and next generation RNA sequencing (RNA-seq) to unambiguously characterize the post-MACS cell products. High resolution transcriptome profiling revealed the identity of key lineage-specific transcripts and the clearly distinct neural crest and mesenchymal origin of human SCs and fibroblasts, respectively. Our analysis underscored a progenitor- or stem cell-like molecular phenotype in SCs and fibroblasts and the heterogeneity of the fibroblast populations. In addition, pathway analysis of RNA-seq data highlighted putative bidirectional networks of fibroblast-to-SC signaling that predict a complementary, yet seemingly independent contribution of SCs and fibroblasts to nerve regeneration. In sum, combining MACS with immunochemical and transcriptomics approaches provides an ideal workflow to exhaustively assess the identity, the stage of differentiation and functional features of highly purified cells from human peripheral nerve tissues.
Collapse
Affiliation(s)
- Kaiwen Peng
- Stark Neurosciences Research Institute and Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
- Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - David Sant
- Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
- University of Utah, Salt Lake City, UT, USA
| | - Natalia Andersen
- The Miami Project To Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (CONICET), Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Risset Silvera
- The Miami Project To Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Vladimir Camarena
- Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Gonzalo Piñero
- The Miami Project To Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA
- Facultad de Farmacia Y Bioquímica, Departamento de Química Biológica, and CONICET, Instituto de Química Y Fisicoquímica Biológicas (IQUIFIB), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Regina Graham
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Aisha Khan
- The Miami Project To Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Xiao-Ming Xu
- Stark Neurosciences Research Institute and Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Gaofeng Wang
- Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Paula V Monje
- Stark Neurosciences Research Institute and Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA.
- The Miami Project To Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA.
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
5
|
Spitzbarth I, Moore SA, Stein VM, Levine JM, Kühl B, Gerhauser I, Baumgärtner W. Current Insights Into the Pathology of Canine Intervertebral Disc Extrusion-Induced Spinal Cord Injury. Front Vet Sci 2020; 7:595796. [PMID: 33195632 PMCID: PMC7653192 DOI: 10.3389/fvets.2020.595796] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 09/30/2020] [Indexed: 11/13/2022] Open
Abstract
Spinal cord injury (SCI) in dogs is commonly attributed to intervertebral disc extrusion (IVDE). Over the last years substantial progress was made in the elucidation of factors contributing to the pathogenesis of this common canine disease. A detailed understanding of the underlying histopathological and molecular alterations in the lesioned spinal cord represents a prerequisite to translate knowledge on the time course of secondary injury processes into the clinical setting. This review summarizes the current state of knowledge of the underlying pathology of canine IVDE-related SCI. Pathological alterations in the spinal cord of dogs affected by IVDE-related SCI include early and persisting axonal damage and glial responses, dominated by phagocytic microglia/macrophages. These processes are paralleled by a pro-inflammatory microenvironment with dysregulation of cytokines and matrix metalloproteinases within the spinal cord. These data mirror findings from a clinical and therapeutic perspective and can be used to identify biomarkers that are able to more precisely predict the clinical outcome. The pathogenesis of progressive myelomalacia, a devastating complication of SCI in dogs, is not understood in detail so far; however, a fulminant and exaggerating secondary injury response with massive reactive oxygen species formation seems to be involved in this unique neuropathological entity. There are substantial gaps in the knowledge of pathological changes in IVDE with respect to more advanced and chronic lesions and the potential involvement of demyelination. Moreover, the role of microglia/macrophage polarization in IVDE-related SCI still remains to be investigated. A close collaboration of clinical neurologists and veterinary pathologists will help to facilitate an integrative approach to a more detailed understanding of the molecular pathogenesis of canine IVDE and thus to identify therapeutic targets.
Collapse
Affiliation(s)
- Ingo Spitzbarth
- Faculty of Veterinary Medicine, Institute of Veterinary Pathology, Leipzig University, Leipzig, Germany
| | - Sarah A Moore
- Department of Veterinary Clinical Sciences, The Ohio State University College of Veterinary Medicine, Columbus, OH, United States
| | - Veronika M Stein
- Department for Clinical Veterinary Medicine, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Jonathan M Levine
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
| | - Bianca Kühl
- Department of Pathology, University of Veterinary Medicine Hannover, Hanover, Germany
| | - Ingo Gerhauser
- Department of Pathology, University of Veterinary Medicine Hannover, Hanover, Germany
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, Hanover, Germany
| | | |
Collapse
|
6
|
Lewis MJ, Granger N, Jeffery ND. Emerging and Adjunctive Therapies for Spinal Cord Injury Following Acute Canine Intervertebral Disc Herniation. Front Vet Sci 2020; 7:579933. [PMID: 33195591 PMCID: PMC7593405 DOI: 10.3389/fvets.2020.579933] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 09/04/2020] [Indexed: 11/13/2022] Open
Abstract
Some dogs do not make a full recovery following medical or surgical management of acute canine intervertebral disc herniation (IVDH), highlighting the limits of currently available treatment options. The multitude of difficulties in treating severe spinal cord injury are well-recognized, and they have spurred intense laboratory research, resulting in a broad range of strategies that might have value in treating spinal cord-injured dogs. These include interventions that aim to directly repair the spinal cord lesion, promote axonal sparing or regeneration, mitigate secondary injury through neuroprotective mechanisms, or facilitate functional compensation. Despite initial promise in experimental models, many of these techniques have failed or shown mild efficacy in clinical trials in humans and dogs, although high quality evidence is lacking for many of these interventions. However, the continued introduction of new options to the veterinary clinic remains important for expanding our understanding of the mechanisms of injury and repair and for development of novel and combined strategies for severely affected dogs. This review outlines adjunctive or emerging therapies that have been proposed as treatment options for dogs with acute IVDH, including discussion of local or lesion-based approaches as well as systemically applied treatments in both acute and subacute-to-chronic settings. These interventions include low-level laser therapy, electromagnetic fields or oscillating electrical fields, adjunctive surgical techniques (myelotomy or durotomy), systemically or locally-applied hypothermia, neuroprotective chemicals, physical rehabilitation, hyperbaric oxygen therapy, electroacupuncture, electrical stimulation of the spinal cord or specific peripheral nerves, nerve grafting strategies, 4-aminopyridine, chondroitinase ABC, and cell transplantation.
Collapse
Affiliation(s)
- Melissa J Lewis
- Department of Veterinary Clinical Sciences, Purdue University College of Veterinary Medicine, West Lafayette, IN, United States
| | - Nicolas Granger
- The Royal Veterinary College, University of London, Hertfordshire, United Kingdom.,CVS Referrals, Bristol Veterinary Specialists at Highcroft, Bristol, United Kingdom
| | - Nick D Jeffery
- Department of Small Animal Clinical Sciences, Texas A & M College of Veterinary Medicine and Biomedical Sciences, College Station, TX, United States
| | | |
Collapse
|
7
|
Schwann Cell Cultures: Biology, Technology and Therapeutics. Cells 2020; 9:cells9081848. [PMID: 32781699 PMCID: PMC7465416 DOI: 10.3390/cells9081848] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/01/2020] [Accepted: 08/05/2020] [Indexed: 12/14/2022] Open
Abstract
Schwann cell (SC) cultures from experimental animals and human donors can be prepared using nearly any type of nerve at any stage of maturation to render stage- and patient-specific populations. Methods to isolate, purify, expand in number, and differentiate SCs from adult, postnatal and embryonic sources are efficient and reproducible as these have resulted from accumulated refinements introduced over many decades of work. Albeit some exceptions, SCs can be passaged extensively while maintaining their normal proliferation and differentiation controls. Due to their lineage commitment and strong resistance to tumorigenic transformation, SCs are safe for use in therapeutic approaches in the peripheral and central nervous systems. This review summarizes the evolution of work that led to the robust technologies used today in SC culturing along with the main features of the primary and expanded SCs that make them irreplaceable models to understand SC biology in health and disease. Traditional and emerging approaches in SC culture are discussed in light of their prospective applications. Lastly, some basic assumptions in vitro SC models are identified in an attempt to uncover the combined value of old and new trends in culture protocols and the cellular products that are derived.
Collapse
|
8
|
Wood R, Durali P, Wall I. Impact of Dual Cell Co-culture and Cell-conditioned Media on Yield and Function of a Human Olfactory Cell Line for Regenerative Medicine. Bioengineering (Basel) 2020; 7:bioengineering7020037. [PMID: 32290611 PMCID: PMC7355638 DOI: 10.3390/bioengineering7020037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/05/2020] [Accepted: 04/10/2020] [Indexed: 02/06/2023] Open
Abstract
Olfactory ensheathing cells (OECs) are a promising candidate therapy for neuronal tissue repair. However, appropriate priming conditions to drive a regenerative phenotype are yet to be determined. We first assessed the effect of using a human fibroblast feeder layer and fibroblast conditioned media on primary rat olfactory mucosal cells (OMCs). We found that OMCs cultured on fibroblast feeders had greater expression of the key OEC marker p75NTR (25.1 ± 10.7 cells/mm2) compared with OMCs cultured on laminin (4.0 ± 0.8 cells/mm2, p = 0.001). However, the addition of fibroblast-conditioned media (CM) resulted in a significant increase in Thy1.1 (45.9 ± 9.0 cells/mm2 versus 12.5 ± 2.5 cells/mm2 on laminin, p = 0.006), an undesirable cell marker as it is regarded to be a marker of contaminating fibroblasts. A direct comparison between human feeders and GMP cell line Ms3T3 was then undertaken. Ms3T3 cells supported similar p75NTR levels (10.7 ± 5.3 cells/mm2) with significantly reduced Thy1.1 expression (4.8 ± 2.1 cells/mm2). Ms3T3 cells were used as feeder layers for human OECs to determine whether observations made in the rat model were conserved. Examination of the OEC phenotype (S100β expression and neurite outgrowth from NG108-15 cells) revealed that co-culture with fibroblast feeders had a negative effect on human OECs, contrary to observations of rat OECs. CM negatively affected rat and human OECs equally. When the best and worst conditions in terms of supporting S100β expression were used in NG108-15 neuron co-cultures, those with the highest S100β expression resulted in longer and more numerous neurites (22.8 ± 2.4 μm neurite length/neuron for laminin) compared with the lowest S100β expression (17.9 ± 1.1 μm for Ms3T3 feeders with CM). In conclusion, this work revealed that neither dual co-culture nor fibroblast-conditioned media support the regenerative OEC phenotype. In our case, a preliminary rat model was not predictive of human cell responses.
Collapse
Affiliation(s)
- Rachael Wood
- Department of Biochemical Engineering, University College London, Torrington Place, London WC1E 7JE, UK; (R.W.); (P.D.)
- School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Pelin Durali
- Department of Biochemical Engineering, University College London, Torrington Place, London WC1E 7JE, UK; (R.W.); (P.D.)
| | - Ivan Wall
- Department of Biochemical Engineering, University College London, Torrington Place, London WC1E 7JE, UK; (R.W.); (P.D.)
- School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Korea
- Correspondence:
| |
Collapse
|
9
|
Neurotrophic effects of G M1 ganglioside, NGF, and FGF2 on canine dorsal root ganglia neurons in vitro. Sci Rep 2020; 10:5380. [PMID: 32214122 PMCID: PMC7096396 DOI: 10.1038/s41598-020-61852-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 03/04/2020] [Indexed: 01/26/2023] Open
Abstract
Dogs share many chronic morbidities with humans and thus represent a powerful model for translational research. In comparison to rodents, the canine ganglioside metabolism more closely resembles the human one. Gangliosides are components of the cell plasma membrane playing a role in neuronal development, intercellular communication and cellular differentiation. The present in vitro study aimed to characterize structural and functional changes induced by GM1 ganglioside (GM1) in canine dorsal root ganglia (DRG) neurons and interactions of GM1 with nerve growth factor (NGF) and fibroblast growth factor (FGF2) using immunofluorescence for several cellular proteins including neurofilaments, synaptophysin, and cleaved caspase 3, transmission electron microscopy, and electrophysiology. GM1 supplementation resulted in increased neurite outgrowth and neuronal survival. This was also observed in DRG neurons challenged with hypoxia mimicking neurodegenerative conditions due to disruptions of energy homeostasis. Immunofluorescence indicated an impact of GM1 on neurofilament phosphorylation, axonal transport, and synaptogenesis. An increased number of multivesicular bodies in GM1 treated neurons suggested metabolic changes. Electrophysiological changes induced by GM1 indicated an increased neuronal excitability. Summarized, GM1 has neurotrophic and neuroprotective effects on canine DRG neurons and induces functional changes. However, further studies are needed to clarify the therapeutic value of gangliosides in neurodegenerative diseases.
Collapse
|
10
|
Monje PV. The properties of human Schwann cells: Lessons from in vitro culture and transplantation studies. Glia 2020; 68:797-810. [PMID: 32027424 DOI: 10.1002/glia.23793] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 01/23/2020] [Accepted: 01/23/2020] [Indexed: 11/10/2022]
Abstract
Human Schwann cells (hSCs) can be isolated directly from peripheral nerve and cultured using methods similar to those used for SCs from other species. Yet, important interspecies differences are revealed when the primary or expanded hSCs are compared to their nonhuman counterparts. This review addresses the special properties of nerve-derived hSCs that have resulted to date from both in vitro studies and in vivo research on cell transplantation in animal models and human subjects. A consensus has yet to emerge about the essential attributes of cultured normal hSCs. Thus, an emphasis is placed on the importance of validating hSC cultures by means of purity, identity, and biological activity to reliably use them as in vitro models of the SC phenotype and cell therapy products for injury repair. Combining traditional immunological methods, high-resolution omics approaches, and assorted cell-based assays is so far the best approach to unequivocally identify hSC populations obtained by direct isolation or derivation from stem cells. Special considerations are required to understand and manage the variability and heterogeneity proper of donor batches, as well as to evaluate risk factors. This is particularly important if the intended use of the hSCs is implantation in the human body, diagnosis of disease, or drug testing aimed at targeting any aspect of SC function in human patients. To conclude, in view of their unique properties, new concepts and methods are needed to better understand the biology of hSCs and exploit their full potential in basic science and regenerative medicine.
Collapse
Affiliation(s)
- Paula V Monje
- The Department of Neurological Surgery, Indiana University, Indianapolis, Indiana
| |
Collapse
|
11
|
Schwarz S, Spitzbarth I, Baumgärtner W, Lehmbecker A. Cryopreservation of Canine Primary Dorsal Root Ganglion Neurons and Its Impact upon Susceptibility to Paramyxovirus Infection. Int J Mol Sci 2019; 20:ijms20051058. [PMID: 30823498 PMCID: PMC6429404 DOI: 10.3390/ijms20051058] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/22/2019] [Accepted: 02/25/2019] [Indexed: 12/26/2022] Open
Abstract
Canine dorsal root ganglion (DRG) neurons, isolated post mortem from adult dogs, could provide a promising tool to study neuropathogenesis of neurotropic virus infections with a non-rodent host spectrum. However, access to canine DRG is limited due to lack of donor tissue and the cryopreservation of DRG neurons would greatly facilitate experiments. The present study aimed (i) to establish canine DRG neurons as an in vitro model for canine distemper virus (CDV) infection; and (ii) to determine whether DRG neurons are cryopreservable and remain infectable with CDV. Neurons were characterized morphologically and phenotypically by light microscopy, immunofluorescence, and functionally, by studying their neurite outgrowth and infectability with CDV. Cryopreserved canine DRG neurons remained in culture for at least 12 days. Furthermore, both non-cryopreserved and cryopreserved DRG neurons were susceptible to infection with two different strains of CDV, albeit only one of the two strains (CDV R252) provided sufficient absolute numbers of infected neurons. However, cryopreserved DRG neurons showed reduced cell yield, neurite outgrowth, neurite branching, and soma size and reduced susceptibility to CDV infection. In conclusion, canine primary DRG neurons represent a suitable tool for investigations upon the pathogenesis of neuronal CDV infection. Moreover, despite certain limitations, cryopreserved canine DRG neurons generally provide a useful and practicable alternative to address questions regarding virus tropism and neuropathogenesis.
Collapse
Affiliation(s)
- Sarah Schwarz
- Department of Pathology, University of Veterinary Medicine, 30559 Hannover, Germany.
- Center for Systems Neuroscience, 30559 Hannover, Germany.
| | - Ingo Spitzbarth
- Department of Pathology, University of Veterinary Medicine, 30559 Hannover, Germany.
- Center for Systems Neuroscience, 30559 Hannover, Germany.
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine, 30559 Hannover, Germany.
- Center for Systems Neuroscience, 30559 Hannover, Germany.
| | - Annika Lehmbecker
- Department of Pathology, University of Veterinary Medicine, 30559 Hannover, Germany.
- Center for Systems Neuroscience, 30559 Hannover, Germany.
| |
Collapse
|
12
|
Georgiou M, Reis JND, Wood R, Esteban PP, Roberton V, Mason C, Li D, Li Y, Choi D, Wall I. Bioprocessing strategies to enhance the challenging isolation of neuro-regenerative cells from olfactory mucosa. Sci Rep 2018; 8:14440. [PMID: 30262897 PMCID: PMC6160430 DOI: 10.1038/s41598-018-32748-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 09/10/2018] [Indexed: 01/01/2023] Open
Abstract
Olfactory ensheathing cells (OECs) are a promising potential cell therapy to aid regeneration. However, there are significant challenges in isolating and characterizing them. In the current study, we have explored methods to enhance the recovery of cells expressing OEC marker p75NTR from rat mucosa. With the addition of a 24-hour differential adhesion step, the expression of p75NTR was significantly increased to 73 ± 5% and 46 ± 18% on PDL and laminin matrices respectively. Additionally, the introduction of neurotrophic factor NT-3 and the decrease in serum concentration to 2% FBS resulted in enrichment of OECs, with p75NTR at nearly 100% (100 ± 0% and 98 ± 2% on PDL and laminin respectively), and candidate fibroblast marker Thy1.1 decreased to zero. Culturing OECs at physiologically relevant oxygen tension (2-8%) had a negative impact on p75NTR expression and overall cell survival. Regarding cell potency, co-culture of OECs with NG108-15 neurons resulted in more neuronal growth and potential migration at atmospheric oxygen. Moreover, OECs behaved similarly to a Schwann cell line positive control. In conclusion, this work identified key bioprocessing fundamentals that will underpin future development of OEC-based cell therapies for potential use in spinal cord injury repair. However, there is still much work to do to create optimized isolation methods.
Collapse
Affiliation(s)
- Melanie Georgiou
- Department of Biochemical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK.,Cell and Gene Therapy Catapult, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK
| | - Joana Neves Dos Reis
- Department of Biochemical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK
| | - Rachael Wood
- Department of Biochemical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK.,Aston Medical Research Institute and School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK
| | - Patricia Perez Esteban
- Department of Biochemical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK.,Aston Medical Research Institute and School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK
| | - Victoria Roberton
- Department of Biochemical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK
| | - Chris Mason
- Department of Biochemical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK
| | - Daqing Li
- Spinal Repair Unit, Department of Brain, Repair and Rehabilitation, Institute of Neurology, University College London, Queen Square, London, WC1N 3BG, UK
| | - Ying Li
- Spinal Repair Unit, Department of Brain, Repair and Rehabilitation, Institute of Neurology, University College London, Queen Square, London, WC1N 3BG, UK
| | - David Choi
- Spinal Repair Unit, Department of Brain, Repair and Rehabilitation, Institute of Neurology, University College London, Queen Square, London, WC1N 3BG, UK.,National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK
| | - Ivan Wall
- Department of Biochemical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK. .,Aston Medical Research Institute and School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK. .,Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea.
| |
Collapse
|
13
|
Spinal Cord Injuries in Dogs Part II: Standards of Care, Prognosis and New Perspectives. FOLIA VETERINARIA 2018. [DOI: 10.2478/fv-2018-0016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Severe spinal cord injuries (SCI), causing physical handicaps and accompanied by many serious complications, remains one of the most challenging problems in both, human and veterinary health care practices. The central nervous system in mammals does not regenerate, so the neurological deficits in a dog following SCI persists for the rest of its life and the affected animals display an image of permanent suffering. Diagnostics are based on: neurological examination, plain x-rays of vertebral column, x-rays of the vertebral column following intrathecal administration of a water-soluble contrast medium (myelography), x-rays of the vertebral column following epidural administration of a contrast medium (epidurography), computed tomography (CT) and/or magnetic resonance imaging (MRI). Currently, only limited therapeutic measures are available for the dogs with SCIs. They include: the administration of methylprednisolone sodium succinate (MPSS) during the acute stage; early spinal cord decompression; stabilisation of vertebral fractures or luxations; prevention and treatment of complications, and expert rehabilitation. Together with the progress in the understanding of pathophysiologic events occurring after SCI, different therapeutic strategies have been instituted, including the local delivery of MPSS, the utilisation of novel pharmacological agents, hypothermia, and stem/precursor cell transplantation have all been tested in the experimental models and preclinical trials with promising results. The aim of this review is the presentation of the generally accepted methods of diagnostics and management of dogs with SCIs, as well as to discuss new therapeutic modalities. The research strategy involved a PubMed, Medline (Ovid), Embase (Ovid) and ISI Web of Science literature search from January 2001 to December 2017 using the term “spinal cord injury”, in the English language literature; also references from selected papers were scanned and relevant articles included.
Collapse
|
14
|
Hansmann F, Jungwirth N, Zhang N, Skripuletz T, Stein VM, Tipold A, Stangel M, Baumgärtner W. Beneficial and detrimental impact of transplanted canine adipose-derived stem cells in a virus-induced demyelinating mouse model. Vet Immunol Immunopathol 2018; 202:130-140. [PMID: 30078587 DOI: 10.1016/j.vetimm.2018.07.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 07/01/2018] [Accepted: 07/07/2018] [Indexed: 01/17/2023]
Abstract
In recent years stem cell therapies have been broadly applied in various disease models specifically immune mediated and degenerative diseases. Whether adipose-derived stem cells might represent a useful therapeutic option in virus-triggered central nervous system diseases has not been investigated so far. Theiler's murine encephalomyelitis (TME) and canine distemper encephalitis are established, virus-mediated animal models sharing many similarities with multiple sclerosis (MS). Canine adipose-derived stem cells (ASC) were selected since dogs might serve as an important translational model for further therapeutic applications. The aim of the present study was to investigate whether canine ASC influence clinical signs, axonal damage, demyelination and inflammation during TME. ASC were transplanted intravenously (iv) or intra-cerebroventricularly (icv) at 7 (early) or 42 (late) days post infection (dpi) in TME virus (TMEV) infected mice. TMEV/ASC iv animals transplanted at 7dpi displayed a transient clinical deterioration in rotarod performance compared to TMEV/control animals. Worsening of clinical signs was associated with significantly increased numbers of microglia/macrophages and demyelination in the spinal cord. In contrast, late transplantation had no influence on clinical findings of TMEV-infected animals. However, late TMEV/ASC iv transplanted animals showed reduced axonal damage compared to TMEV/control animals. Screening of spinal cord and peripheral organs for transplanted ASC revealed no positive cells. Surprisingly, iv transplanted animals showed pulmonary follicular aggregates consisting of T- and B-lymphocytes. Thus, our data suggest that following intravenous application, the lung as priming organ for lymphocytes seems to play a pivotal role in the pathogenesis of TME. Consequences of T-lymphocyte priming in the lung depend on the disease phase and may be responsible for disease modifying effects of ASC.
Collapse
Affiliation(s)
- Florian Hansmann
- Department of Pathology, University of Veterinary Medicine Hannover, Bünteweg 17, 30559, Hannover, Germany; Center for Systems Neuroscience, Bünteweg 2, 30559, Hannover, Germany
| | - Nicole Jungwirth
- Department of Pathology, University of Veterinary Medicine Hannover, Bünteweg 17, 30559, Hannover, Germany; Center for Systems Neuroscience, Bünteweg 2, 30559, Hannover, Germany
| | - Ning Zhang
- Department of Pathology, University of Veterinary Medicine Hannover, Bünteweg 17, 30559, Hannover, Germany; Center for Systems Neuroscience, Bünteweg 2, 30559, Hannover, Germany
| | - Thomas Skripuletz
- Department of Neurology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Veronika Maria Stein
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Bünteweg 9, 30559, Hannover, Germany; Division of Neurology, Department of Clinical Veterinary Sciences, Vetsuisse Faculty, University of Bern, Länggassstrasse 128, 3012, Bern, Switzerland
| | - Andrea Tipold
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Bünteweg 9, 30559, Hannover, Germany; Center for Systems Neuroscience, Bünteweg 2, 30559, Hannover, Germany
| | - Martin Stangel
- Department of Neurology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany; Center for Systems Neuroscience, Bünteweg 2, 30559, Hannover, Germany
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, Bünteweg 17, 30559, Hannover, Germany; Center for Systems Neuroscience, Bünteweg 2, 30559, Hannover, Germany.
| |
Collapse
|
15
|
Becker K, Cana A, Baumgärtner W, Spitzbarth I. p75 Neurotrophin Receptor: A Double-Edged Sword in Pathology and Regeneration of the Central Nervous System. Vet Pathol 2018; 55:786-801. [PMID: 29940812 DOI: 10.1177/0300985818781930] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The low-affinity nerve growth factor receptor p75NTR is a major neurotrophin receptor involved in manifold and pleiotropic functions in the developing and adult central nervous system (CNS). Although known for decades, its entire functions are far from being fully elucidated. Depending on the complex interactions with other receptors and on the cellular context, p75NTR is capable of performing contradictory tasks such as mediating cell death as well as cell survival. In parallel, as a prototype marker for certain differentiation stages of Schwann cells and related CNS aldynoglial cells, p75NTR has recently gained increasing notice as a marker for cells with proposed regenerative potential in CNS diseases, such as demyelinating disease and traumatic CNS injury. Besides its pivotal role as a marker for transplantation candidate cells, recent studies in canine neuroinflammatory CNS conditions also highlight a spontaneous endogenous occurrence of p75NTR-positive glia, which potentially play a role in Schwann cell-mediated CNS remyelination. The aim of the present communication is to review the pleiotropic functions of p75NTR in the CNS with a special emphasis on its role as an immunohistochemical marker in neuropathology. Following a brief illustration of the expression of p75NTR in neurogenesis and in developed neuronal populations, the implications of p75NTR expression in astrocytes, oligodendrocytes, and microglia are addressed. A special focus is put on the role of p75NTR as a cell marker for specific differentiation stages of Schwann cells and a regeneration-promoting CNS population, collectively referred to as aldynoglia.
Collapse
Affiliation(s)
- Kathrin Becker
- 1 Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Armend Cana
- 1 Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany.,2 Center for Systems Neuroscience, Hannover, Germany
| | - Wolfgang Baumgärtner
- 1 Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany.,2 Center for Systems Neuroscience, Hannover, Germany
| | - Ingo Spitzbarth
- 1 Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany.,2 Center for Systems Neuroscience, Hannover, Germany
| |
Collapse
|
16
|
Development of an International Canine Spinal Cord Injury observational registry: a collaborative data-sharing network to optimize translational studies of SCI. Spinal Cord 2018; 56:656-665. [PMID: 29795173 PMCID: PMC6035082 DOI: 10.1038/s41393-018-0145-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/23/2018] [Accepted: 04/09/2018] [Indexed: 11/21/2022]
Abstract
Study Design Prospective cross sectional cohort study Objectives The canine spontaneous model of spinal cord injury (SCI) is as an important pre-clinical platform as it recapitulates key facets of human injury in a naturally occurring context. The establishment of an observational canine SCI registry constitutes a key step in performing epidemiologic studies and assessing the impact of therapeutic strategies to enhance translational research. Further, accumulating information on dogs with SCI may contribute to current “big data” approaches to enhance understanding of the disease using heterogeneous multi-institutional, multi-species data sets from both pre-clinical and human studies. Setting Multiple veterinary academic institutions across the United States and Europe. Methods Common data elements recommended for experimental and human SCI studies were reviewed and adapted for use in a web-based registry, to which all dogs presenting to member veterinary tertiary care facilities were prospectively entered over approximately one year. Results Analysis of data accumulated during the first year of the registry suggests that 16% of dogs with SCI present with severe, sensorimotor complete, injury and that 15% of cases are seen by a tertiary care facility within 8 hours of injury. Similar to the human SCI population, 34% were either overweight or obese. Conclusions Severity of injury and timing of presentation suggests that neuroprotective studies using the canine clinical model could be conducted efficiently using a multi-institutional approach. Additionally, pet dogs with SCI experience similar comorbidities to people with SCI, in particular obesity, and could serve as an important model to evaluate the effects of this condition.
Collapse
|
17
|
Monje PV, Sant D, Wang G. Phenotypic and Functional Characteristics of Human Schwann Cells as Revealed by Cell-Based Assays and RNA-SEQ. Mol Neurobiol 2018; 55:6637-6660. [PMID: 29327207 DOI: 10.1007/s12035-017-0837-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 12/12/2017] [Indexed: 12/14/2022]
Abstract
This study comprehensively addresses the phenotype, function, and whole transcriptome of primary human and rodent Schwann cells (SCs) and highlights key species-specific features beyond the expected donor variability that account for the differential ability of human SCs to proliferate, differentiate, and interact with axons in vitro. Contrary to rat SCs, human SCs were insensitive to mitogenic factors other than neuregulin and presented phenotypic variants at various stages of differentiation, along with a mixture of proliferating and senescent cells, under optimal growth-promoting conditions. The responses of human SCs to cAMP-induced differentiation featured morphological changes and cell cycle exit without a concomitant increase in myelin-related proteins and lipids. Human SCs efficiently extended processes along those of other SCs (human or rat) but failed to do so when placed in co-culture with sensory neurons under conditions supportive of myelination. Indeed, axon contact-dependent human SC alignment, proliferation, and differentiation were not observed and could not be overcome by growth factor supplementation. Strikingly, RNA-seq data revealed that ~ 44 of the transcriptome contained differentially expressed genes in human and rat SCs. A bioinformatics approach further highlighted that representative SC-specific transcripts encoding myelin-related and axon growth-promoting proteins were significantly affected and that a deficient expression of key transducers of cAMP and adhesion signaling explained the fairly limited potential of human SCs to differentiate and respond to axonal cues. These results confirmed the significance of combining traditional bioassays and high-resolution genomics methods to characterize human SCs and identify genes predictive of cell function and therapeutic value.
Collapse
Affiliation(s)
- Paula V Monje
- The Miami Project to Cure Paralysis and Department of Neurological Surgery, University of Miami Miller School of Medicine, 1095 NW 14th Terrace, Miami, FL, 33136, USA.
| | - David Sant
- John P. Hussman Institute for Human Genomics, Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Gaofeng Wang
- John P. Hussman Institute for Human Genomics, Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.,Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| |
Collapse
|
18
|
Canine dorsal root ganglia satellite glial cells represent an exceptional cell population with astrocytic and oligodendrocytic properties. Sci Rep 2017; 7:13915. [PMID: 29066783 PMCID: PMC5654978 DOI: 10.1038/s41598-017-14246-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 10/06/2017] [Indexed: 12/21/2022] Open
Abstract
Dogs can be used as a translational animal model to close the gap between basic discoveries in rodents and clinical trials in humans. The present study compared the species-specific properties of satellite glial cells (SGCs) of canine and murine dorsal root ganglia (DRG) in situ and in vitro using light microscopy, electron microscopy, and immunostainings. The in situ expression of CNPase, GFAP, and glutamine synthetase (GS) has also been investigated in simian SGCs. In situ, most canine SGCs (>80%) expressed the neural progenitor cell markers nestin and Sox2. CNPase and GFAP were found in most canine and simian but not murine SGCs. GS was detected in 94% of simian and 71% of murine SGCs, whereas only 44% of canine SGCs expressed GS. In vitro, most canine (>84%) and murine (>96%) SGCs expressed CNPase, whereas GFAP expression was differentially affected by culture conditions and varied between 10% and 40%. However, GFAP expression was induced by bone morphogenetic protein 4 in SGCs of both species. Interestingly, canine SGCs also stimulated neurite formation of DRG neurons. These findings indicate that SGCs represent an exceptional, intermediate glial cell population with phenotypical characteristics of oligodendrocytes and astrocytes and might possess intrinsic regenerative capabilities in vivo.
Collapse
|
19
|
Steffensen N, Lehmbecker A, Gerhauser I, Wang Y, Carlson R, Tipold A, Baumgärtner W, Stein VM. Generation and characterization of highly purified canine Schwann cells from spinal nerve dorsal roots as potential new candidates for transplantation strategies. J Tissue Eng Regen Med 2017; 12:e422-e437. [DOI: 10.1002/term.2478] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 05/06/2017] [Accepted: 05/09/2017] [Indexed: 12/15/2022]
Affiliation(s)
- Nicole Steffensen
- Department of Small Animal Medicine and Surgery; University of Veterinary Medicine; Hannover Germany
| | - Annika Lehmbecker
- Department of Pathology; University of Veterinary Medicine; Hannover Germany
- Center for Systems Neuroscience; Hannover Germany
| | - Ingo Gerhauser
- Department of Pathology; University of Veterinary Medicine; Hannover Germany
| | - Yimin Wang
- Department of Pathology; University of Veterinary Medicine; Hannover Germany
- Center for Systems Neuroscience; Hannover Germany
| | - Regina Carlson
- Department of Small Animal Medicine and Surgery; University of Veterinary Medicine; Hannover Germany
| | - Andrea Tipold
- Department of Small Animal Medicine and Surgery; University of Veterinary Medicine; Hannover Germany
- Center for Systems Neuroscience; Hannover Germany
| | - Wolfgang Baumgärtner
- Department of Pathology; University of Veterinary Medicine; Hannover Germany
- Center for Systems Neuroscience; Hannover Germany
| | - Veronika M. Stein
- Department of Small Animal Medicine and Surgery; University of Veterinary Medicine; Hannover Germany
| |
Collapse
|
20
|
Bastidas J, Athauda G, De La Cruz G, Chan WM, Golshani R, Berrocal Y, Henao M, Lalwani A, Mannoji C, Assi M, Otero PA, Khan A, Marcillo AE, Norenberg M, Levi AD, Wood PM, Guest JD, Dietrich WD, Bartlett Bunge M, Pearse DD. Human Schwann cells exhibit long-term cell survival, are not tumorigenic and promote repair when transplanted into the contused spinal cord. Glia 2017; 65:1278-1301. [PMID: 28543541 DOI: 10.1002/glia.23161] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Revised: 04/07/2017] [Accepted: 04/10/2017] [Indexed: 12/26/2022]
Abstract
The transplantation of rodent Schwann cells (SCs) provides anatomical and functional restitution in a variety of spinal cord injury (SCI) models, supporting the recent translation of SCs to phase 1 clinical trials for human SCI. Whereas human (Hu)SCs have been examined experimentally in a complete SCI transection paradigm, to date the reported behavior of SCs when transplanted after a clinically relevant contusive SCI has been restricted to the use of rodent SCs. Here, in a xenotransplant, contusive SCI paradigm, the survival, biodistribution, proliferation and tumorgenicity as well as host responses to HuSCs, cultured according to a protocol analogous to that developed for clinical application, were investigated. HuSCs persisted within the contused nude rat spinal cord through 6 months after transplantation (longest time examined), exhibited low cell proliferation, displayed no evidence of tumorigenicity and showed a restricted biodistribution to the lesion. Neuropathological examination of the CNS revealed no adverse effects of HuSCs. Animals exhibiting higher numbers of surviving HuSCs within the lesion showed greater volumes of preserved white matter and host rat SC and astrocyte ingress as well as axon ingrowth and myelination. These results demonstrate the safety of HuSCs when employed in a clinically relevant experimental SCI paradigm. Further, signs of a potentially positive influence of HuSC transplants on host tissue pathology were observed. These findings show that HuSCs exhibit a favorable toxicity profile for up to 6 months after transplantation into the contused rat spinal cord, an important outcome for FDA consideration of their use in human clinical trials.
Collapse
Affiliation(s)
- Johana Bastidas
- The Miami Project to Cure Paralysis, The Department of Neurological Surgery, The University of Miami Miller School of Medicine, Miami, Florida, 33136
| | - Gagani Athauda
- The Department of Cellular Biology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, 33199.,The Department of Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, 33199
| | - Gabriela De La Cruz
- Translational Pathology Laboratory, Lineberger Comprehensive Cancer Center, Department of Pathology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, 27599
| | - Wai-Man Chan
- The Miami Project to Cure Paralysis, The Department of Neurological Surgery, The University of Miami Miller School of Medicine, Miami, Florida, 33136
| | - Roozbeh Golshani
- The Miami Project to Cure Paralysis, The Department of Neurological Surgery, The University of Miami Miller School of Medicine, Miami, Florida, 33136
| | - Yerko Berrocal
- The Department of Cellular Biology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, 33199.,The Department of Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, 33199
| | - Martha Henao
- The Miami Project to Cure Paralysis, The Department of Neurological Surgery, The University of Miami Miller School of Medicine, Miami, Florida, 33136
| | - Anil Lalwani
- The Miami Project to Cure Paralysis, The Department of Neurological Surgery, The University of Miami Miller School of Medicine, Miami, Florida, 33136
| | - Chikato Mannoji
- The Department of Orthopedic Surgery, Chiba University School of Medicine, Chiba, Japan
| | - Mazen Assi
- The Miami Project to Cure Paralysis, The Department of Neurological Surgery, The University of Miami Miller School of Medicine, Miami, Florida, 33136
| | - P Anthony Otero
- The Miami Project to Cure Paralysis, The Department of Neurological Surgery, The University of Miami Miller School of Medicine, Miami, Florida, 33136
| | - Aisha Khan
- The Miami Project to Cure Paralysis, The Department of Neurological Surgery, The University of Miami Miller School of Medicine, Miami, Florida, 33136
| | - Alexander E Marcillo
- The Miami Project to Cure Paralysis, The Department of Neurological Surgery, The University of Miami Miller School of Medicine, Miami, Florida, 33136
| | - Michael Norenberg
- The Department of Pathology, The University of Miami Miller School of Medicine, Miami, Florida, 33136
| | - Allan D Levi
- The Miami Project to Cure Paralysis, The Department of Neurological Surgery, The University of Miami Miller School of Medicine, Miami, Florida, 33136.,The Department of Neurological Surgery, The University of Miami Miller School of Medicine, Miami, Florida, 33136
| | - Patrick M Wood
- The Miami Project to Cure Paralysis, The Department of Neurological Surgery, The University of Miami Miller School of Medicine, Miami, Florida, 33136
| | - James D Guest
- The Miami Project to Cure Paralysis, The Department of Neurological Surgery, The University of Miami Miller School of Medicine, Miami, Florida, 33136.,The Department of Neurological Surgery, The University of Miami Miller School of Medicine, Miami, Florida, 33136
| | - W Dalton Dietrich
- The Miami Project to Cure Paralysis, The Department of Neurological Surgery, The University of Miami Miller School of Medicine, Miami, Florida, 33136.,The Department of Neurological Surgery, The University of Miami Miller School of Medicine, Miami, Florida, 33136.,The Department of Neurology, The University of Miami Miller School of Medicine, Miami, Florida, 33136.,The Neuroscience Program, The University of Miami Miller School of Medicine, Miami, Florida, 33136.,The Interdisciplinary Stem Cell Institute, The University of Miami Miller School of Medicine, Miami, Florida, 33136.,The Department of Cell Biology, The University of Miami Miller School of Medicine, Miami, Florida, 33136
| | - Mary Bartlett Bunge
- The Miami Project to Cure Paralysis, The Department of Neurological Surgery, The University of Miami Miller School of Medicine, Miami, Florida, 33136.,The Department of Neurological Surgery, The University of Miami Miller School of Medicine, Miami, Florida, 33136.,The Neuroscience Program, The University of Miami Miller School of Medicine, Miami, Florida, 33136.,The Interdisciplinary Stem Cell Institute, The University of Miami Miller School of Medicine, Miami, Florida, 33136.,The Department of Cell Biology, The University of Miami Miller School of Medicine, Miami, Florida, 33136
| | - Damien D Pearse
- The Miami Project to Cure Paralysis, The Department of Neurological Surgery, The University of Miami Miller School of Medicine, Miami, Florida, 33136.,The Department of Neurological Surgery, The University of Miami Miller School of Medicine, Miami, Florida, 33136.,The Neuroscience Program, The University of Miami Miller School of Medicine, Miami, Florida, 33136.,The Interdisciplinary Stem Cell Institute, The University of Miami Miller School of Medicine, Miami, Florida, 33136.,Bruce W. Carter Department of Veterans Affairs Medical Center, Miami, Florida, 33136
| |
Collapse
|
21
|
Śmieszek A, Stręk Z, Kornicka K, Grzesiak J, Weiss C, Marycz K. Antioxidant and Anti-Senescence Effect of Metformin on Mouse Olfactory Ensheathing Cells (mOECs) May Be Associated with Increased Brain-Derived Neurotrophic Factor Levels-An Ex Vivo Study. Int J Mol Sci 2017; 18:ijms18040872. [PMID: 28425952 PMCID: PMC5412453 DOI: 10.3390/ijms18040872] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 04/11/2017] [Accepted: 04/13/2017] [Indexed: 12/22/2022] Open
Abstract
Metformin, the popular anti-diabetic drug was shown to exert multiple biological effects. The most recent metformin gained attention as an agent that mobilizes endogenous progenitor cells and enhances regenerative potential of organisms, for example by promoting neurogenesis. In the present study, we examined the role of metformin on mouse olfactory ensheathing cells (mOECs) derived from animals receiving metformin for eight weeks at a concentration equal to 2.8 mg/day. The mOECs expanded ex vivo were characterized in terms of their cellular phenotype, morphology, proliferative activity, viability and accumulation of oxidative stress factors. Moreover, we determined the mRNA and protein levels of brain-derived neurotrophic factor (BDNF), distinguishing the secretion of BDNF by mOECs in cultures and circulating serum levels of BDNF. The mOECs used in the experiment were glial fibrillary acidic protein (GFAP) and p75 neurotrophin receptor (p75NTR) positive and exhibited both astrocyte-like and non-myelin Schwann cell-like morphologies. Our results revealed that the proliferation of OECs derived from mice treated with metformin was lowered, when compared to control group. Simultaneously, we noted increased cell viability, reduced expression of markers associated with cellular senescence and a decreased amount of reactive oxygen species. We observed increased mRNA expression of BDNF and its down-stream genes. Obtained results indicate that metformin may exert antioxidant, anti-apoptotic and senolytic action on OECs expanded ex vivo.
Collapse
Affiliation(s)
- Agnieszka Śmieszek
- Department of Experimental Biology and Electron Microscope Facility, The Faculty of Biology and Animal Science, Wroclaw University of Environmental and Life Sciences, Norwida 25, 50-375 Wroclaw, Poland.
| | - Zuzanna Stręk
- Department of Experimental Biology and Electron Microscope Facility, The Faculty of Biology and Animal Science, Wroclaw University of Environmental and Life Sciences, Norwida 25, 50-375 Wroclaw, Poland.
| | - Katarzyna Kornicka
- Department of Experimental Biology and Electron Microscope Facility, The Faculty of Biology and Animal Science, Wroclaw University of Environmental and Life Sciences, Norwida 25, 50-375 Wroclaw, Poland.
| | - Jakub Grzesiak
- Wroclaw Research Centre EIT+, Stablowicka 147, 54-066 Wroclaw, Poland.
| | - Christine Weiss
- PferdePraxis Dr. Med. Vet. Daniel Weiss, Postmatte 14, CH-8807 Freienbach, Switzerland.
| | - Krzysztof Marycz
- Wroclaw Research Centre EIT+, Stablowicka 147, 54-066 Wroclaw, Poland.
| |
Collapse
|
22
|
Leonard AV, Menendez JY, Pat BM, Hadley MN, Floyd CL. Localization of the corticospinal tract within the porcine spinal cord: Implications for experimental modeling of traumatic spinal cord injury. Neurosci Lett 2017; 648:1-7. [PMID: 28323088 DOI: 10.1016/j.neulet.2017.03.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 02/15/2017] [Accepted: 03/14/2017] [Indexed: 11/24/2022]
Abstract
Spinal cord injury (SCI) researchers have predominately utilized rodents for SCI modeling and experimentation. Unfortunately, a large number of novel therapies developed in rodent models have failed to demonstrate efficacy in human clinical trials which suggests that improved animal models are an important translational tool. Recently, porcine models of SCI have been identified as a valuable intermediary model for preclinical evaluation of promising therapies to aid clinical translation. However, the localization of the major spinal tracts in pigs has not yet been described. Given that significant differences exist in the location of the corticospinal tract (CST) between rodents and humans, determining its location in pigs will provide important information related to the translational potential of the porcine pre-clinical model of SCI. Thus, the goal of this study is to investigate the localization of the CST within the porcine spinal cord. Mature female domestic pigs (n=4, 60kg) received microinjections of fluorescent dextran tracers (Alexa Fluor, 10,000MW) into the primary motor cortex, using image-guided navigation (StealthStation®), to label the CST. At 5 weeks post-tracer injection animals were euthanized, the entire neuroaxis harvested and processed for histological examination. Serial sections of the brain and spinal cord were prepared and imaged using confocal microscopy to observe the location of the CST in pigs. Results demonstrate that the CST of pigs is located in the lateral white matter, signifying greater similarity to human anatomical structure compared to that of rodents. We conclude that the corticospinal tract in pigs demonstrates anatomical similarity to human, suggesting that the porcine model has importance as a translational intermediary pre-clinical model.
Collapse
Affiliation(s)
- Anna Victoria Leonard
- Spain Rehabilitation Center, Department of Physical Medicine and Rehabilitation, School of Medicine, The University of Alabama at Birmingham, USA; Discipline of Anatomy and Pathology, School of Medicine, The University of Adelaide, Australia.
| | - Joshua York Menendez
- Department of Neurosurgery, School of Medicine, The University of Alabama at Birmingham, USA.
| | - Betty Maki Pat
- Spain Rehabilitation Center, Department of Physical Medicine and Rehabilitation, School of Medicine, The University of Alabama at Birmingham, USA.
| | - Mark N Hadley
- Department of Neurosurgery, School of Medicine, The University of Alabama at Birmingham, USA.
| | - Candace Lorraine Floyd
- Spain Rehabilitation Center, Department of Physical Medicine and Rehabilitation, School of Medicine, The University of Alabama at Birmingham, USA.
| |
Collapse
|
23
|
Oprych K, Cotfas D, Choi D. Common olfactory ensheathing glial markers in the developing human olfactory system. Brain Struct Funct 2016; 222:1877-1895. [PMID: 27718014 PMCID: PMC5406434 DOI: 10.1007/s00429-016-1313-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 09/14/2016] [Indexed: 12/14/2022]
Abstract
The in situ immunocytochemical properties of olfactory ensheathing cells (OECs) have been well studied in several small to medium sized animal models including rats, mice, guinea pigs, cats and canines. However, we know very little about the antigenic characteristics of OECs in situ within the adult and developing human olfactory bulb and nerve roots. To address this gap in knowledge we undertook an immunocytochemical analysis of the 11–19 pcw human foetal olfactory system. Human foetal OECs in situ possessed important differences compared to rodents in the expression of key surface markers. P75NTR was not observed in OECs but was strongly expressed by human foetal Schwann cells and perineurial olfactory nerve fibroblasts surrounding OECs. We define OECs throughout the 11–19 pcw human olfactory system as S100/vimentin/SOX10+ with low expression of GFAP. Our results suggest that P75NTR is a robust marker that could be utilised with cell sorting techniques to generate enriched OEC cultures by first removing P75NTR expressing Schwann cells and fibroblasts, and subsequently to isolate OECs after P75NTR upregulation in vitro. O4 and PSA-NCAM were not found to be suitable surface antigens for OEC purification owing to their ambiguous and heterogeneous expression. Our results highlight the importance of corroborating cell markers when translating cell therapies from animal models to the clinic.
Collapse
Affiliation(s)
- Karen Oprych
- Department of Brain, Repair and Rehabilitation, Institute of Neurology, University College London, Queen Square, London, WC1N 3BG, UK.
| | - Daniel Cotfas
- Department of Brain, Repair and Rehabilitation, Institute of Neurology, University College London, Queen Square, London, WC1N 3BG, UK
| | - David Choi
- Department of Brain, Repair and Rehabilitation, Institute of Neurology, University College London, Queen Square, London, WC1N 3BG, UK.,National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK
| |
Collapse
|
24
|
Zhang J, Chen H, Duan Z, Chen K, Liu Z, Zhang L, Yao D, Li B. The Effects of Co-transplantation of Olfactory Ensheathing Cells and Schwann Cells on Local Inflammation Environment in the Contused Spinal Cord of Rats. Mol Neurobiol 2016; 54:943-953. [PMID: 26790672 DOI: 10.1007/s12035-016-9709-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 01/07/2016] [Indexed: 11/27/2022]
Abstract
Inflammatory response following spinal cord injury (SCI) is important in regulation of the repair process. Olfactory ensheathing cells (OECs) and Schwann cells (SCs) are important donor cells for repairing SCI in different animal models. However, synergistic or complementary effects of co-transplantation of both cells for this purpose have not been extensively investigated. In the present study, we investigated the effects of co-transplantation of OECs and SCs on expression of pro- or anti-inflammatory factor and polarization of macrophages in the injured spinal cord of rats. Mixed cell suspensions containing OECs and SCs were transplanted into the injured site at 7 days after contusion at the vertebral T10 level. Compared with the DMEM, SC, or OEC group, the co-transplantation group had a more extensive distribution of the grafted cells and significantly reduced number of astrocytes, microglia/macrophage infiltration, and expression of chemokines (CCL2 and CCL3) at the injured site. The co-transplantation group also significantly increased arginase+/CD206+ macrophages (IL-4) and decreased iNOS+/CD16/32+ macrophages (IFN-γ), which was followed by higher IL-10 and IL-13 and lower IL-6 and TNF-α in their expression levels, a smaller cystic cavity area, and improved motor functions. These results indicate that OEC and SC co-transplantation could promote the shift of the macrophage phenotype from M(IFN-γ) to M(IL-4), reduce inflammatory cell infiltration in the injured site, and regulate inflammatory factors and chemokine expression, which provide a better immune environment for SCI repair.
Collapse
Affiliation(s)
- Jieyuan Zhang
- State Key Laboratory of Trauma, Burn and Combined Injury, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Daping, Chongqing, 400042, China
| | - Huijun Chen
- State Key Laboratory of Trauma, Burn and Combined Injury, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Daping, Chongqing, 400042, China
| | - Zhaoxia Duan
- State Key Laboratory of Trauma, Burn and Combined Injury, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Daping, Chongqing, 400042, China
| | - Kuijun Chen
- State Key Laboratory of Trauma, Burn and Combined Injury, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Daping, Chongqing, 400042, China
| | - Zeng Liu
- State Key Laboratory of Trauma, Burn and Combined Injury, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Daping, Chongqing, 400042, China
| | - Lu Zhang
- State Key Laboratory of Trauma, Burn and Combined Injury, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Daping, Chongqing, 400042, China
| | - Dongdong Yao
- State Key Laboratory of Trauma, Burn and Combined Injury, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Daping, Chongqing, 400042, China
| | - Bingcang Li
- State Key Laboratory of Trauma, Burn and Combined Injury, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Daping, Chongqing, 400042, China.
| |
Collapse
|
25
|
Stem cells in canine spinal cord injury--promise for regenerative therapy in a large animal model of human disease. Stem Cell Rev Rep 2015; 11:180-93. [PMID: 25173879 DOI: 10.1007/s12015-014-9553-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The use of cell transplantation for spinal cord injury is a rapidly evolving field in regenerative medicine. Numerous animal models are currently being used. However, translation to human patients is still a challenging step. Dogs are of increasing importance as a translational model for human disease since there is a greater awareness of the need to increase the quality of preclinical data. The use of dogs ultimately brings benefit to both human and veterinary medicine. In this review we analyze experimental and clinical studies using cell transplantation for canine spinal cord injury. Overall, in experimental studies, transplantation groups showed improvement over control groups. Improvements were measured at the functional, electrophysiological, histological, RNA and protein levels. Most clinical studies support beneficial effects of cell transplantation despite the fact that methodological limitations preclude definitive conclusions. However, the mechanisms of action and underlying the behavior of transplanted cells in the injured spinal cord remain unclear. Overall, we conclude here that stem cell interventions are a promising avenue for the treatment of spinal cord injury. Canines are a promising model that may help bridge the gap between translational research and human clinical trials.
Collapse
|
26
|
Kegler K, Spitzbarth I, Imbschweiler I, Wewetzer K, Baumgärtner W, Seehusen F. Contribution of Schwann Cells to Remyelination in a Naturally Occurring Canine Model of CNS Neuroinflammation. PLoS One 2015. [PMID: 26196511 PMCID: PMC4510361 DOI: 10.1371/journal.pone.0133916] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Gliogenesis under pathophysiological conditions is of particular clinical relevance since it may provide evidence for regeneration promoting cells recruitable for therapeutic purposes. There is evidence that neurotrophin receptor p75 (p75NTR)-expressing cells emerge in the lesioned CNS. However, the phenotype and identity of these cells, and signals triggering their in situ generation under normal conditions and certain pathological situations has remained enigmatic. In the present study, we used a spontaneous, idiopathic and inflammatory CNS condition in dogs with prominent lympho-histiocytic infiltration as a model to study the phenotype of Schwann cells and their relation to Schwann cell remyelination within the CNS. Furthermore, the phenotype of p75NTR-expressing cells within the injured CNS was compared to their counter-part in control sciatic nerve and after peripheral nerve injury. In addition, organotypic slice cultures were used to further elucidate the origin of p75NTR-positive cells. In cerebral and cerebellar white and grey matter lesions as well as in the brain stem, p75NTR-positive cells co-expressed the transcription factor Sox2, but not GAP-43, GFAP, Egr2/Krox20, periaxin and PDGFR-α. Interestingly, and contrary to the findings in control sciatic nerves, p75NTR-expressing cells only co-localized with Sox2 in degenerative neuropathy, thus suggesting that such cells might represent dedifferentiated Schwann cells both in the injured CNS and PNS. Moreover, effective Schwann cell remyelination represented by periaxin- and P0-positive mature myelinating Schwann cells, was strikingly associated with the presence of p75NTR/Sox2-expressing Schwann cells. Intriguingly, the emergence of dedifferentiated Schwann cells was not affected by astrocytes, and a macrophage-dominated inflammatory response provided an adequate environment for Schwann cells plasticity within the injured CNS. Furthermore, axonal damage was reduced in brain stem areas with p75NTR/Sox2-positive cells. This study provides novel insights into the involvement of Schwann cells in CNS remyelination under natural occurring CNS inflammation. Targeting p75NTR/Sox2-expressing Schwann cells to enhance their differentiation into competent remyelinating cells appears to be a promising therapeutic approach for inflammatory/demyelinating CNS diseases.
Collapse
Affiliation(s)
- Kristel Kegler
- Department of Pathology, University of Veterinary Medicine, Hannover, Germany
- Center of Systems Neuroscience, Hannover, Germany
| | - Ingo Spitzbarth
- Department of Pathology, University of Veterinary Medicine, Hannover, Germany
- Center of Systems Neuroscience, Hannover, Germany
| | - Ilka Imbschweiler
- Department of Pathology, University of Veterinary Medicine, Hannover, Germany
| | - Konstantin Wewetzer
- Center of Systems Neuroscience, Hannover, Germany
- Department of Functional and Applied Anatomy, Center of Anatomy, Hannover Medical School, Hannover, Germany
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine, Hannover, Germany
- Center of Systems Neuroscience, Hannover, Germany
- * E-mail:
| | - Frauke Seehusen
- Department of Pathology, University of Veterinary Medicine, Hannover, Germany
| |
Collapse
|
27
|
Pabst R. Mucosal vaccination by the intranasal route. Nose-associated lymphoid tissue (NALT)-Structure, function and species differences. Vaccine 2015. [PMID: 26196324 DOI: 10.1016/j.vaccine.2015.07.022] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The advantage of mucosal vaccination in viral and bacterial infections in different age groups is of enormous clinical relevance. The advantages and potential hazards of intranasal vaccination have always to be considered. The intranasal route for vaccination is very successful for some antigens. Specific adjuvants are necessary. In the nose of rodents there is a structured lymphoid tissue (nose-associated lymphoid tissue (NALT)). This abbreviation should not be used for nasopharynx-associated lymphoid tissue, as this includes parts of the tonsils. In children lymphoid tissue is more dispersed in the nose and not concentrated at the bottom of the dorsal nose ducts as in rodents. There are no data on organized lymphoid tissue in the nose of adults. In NALT of rodents there is a unique structure of adhesion molecule expression; the postnatal development and the different composition of T and B lymphocytes in comparison with Peyer's patches document the uniqueness of this lymphoid organ. There is also a mucosa in the nose with antigen-presenting dendritic cells. Thus, it is often unclear whether intranasal vaccination is initiated via NALT or the diffuse nasal mucosa. There are still many open questions e. g., which adjuvant is necessary for a specific virus, bacterium or other allergen, how many doses are critical for an effective nasal vaccination. Species differences are of major importance when extrapolating results from rodents to humans.
Collapse
Affiliation(s)
- Reinhard Pabst
- Institute of Immunomorphology Centre of Anatomy Medical School, Hannover, Germany.
| |
Collapse
|
28
|
Li Y, Li D, Raisman G. Functional Repair of Rat Corticospinal Tract Lesions Does Not Require Permanent Survival of an Immunoincompatible Transplant. Cell Transplant 2015; 25:293-9. [PMID: 26132822 DOI: 10.3727/096368915x688551] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Cell transplantation is one of the most promising strategies for repair of human spinal cord injuries. Animal studies from a number of laboratories have shown that transplantation of olfactory ensheathing cells cultured from biopsies of the olfactory bulb mediate axonal regeneration and remyelination and restore lost functions in spinal cord injuries. For translation from small laboratory experimental injuries to the large spinal cord injuries encountered in human patients the numbers of cells that can be obtained from a patient's own olfactory bulb becomes a serious limiting factor. Furthermore, removal of an olfactory bulb requires invasive surgery and risks unilateral anosmia. We here report that xenografted mouse bulbar olfactory ensheathing cells immunoprotected by daily cyclosporine restore directed forepaw reaching function in rats with chronic C1/2 unilateral corticospinal tract lesions. Once function had been established for 10 days, cyclosporine was withdrawn. Thirteen out of 13 rats continued to increase directed forepaw reaching. Immunohistochemistry shows that in all cases neurofilament-positive axons were present in the lesion, but that the grafted cells had been totally rejected. This implies that once grafted cells have acted as bridges for axon regeneration across the lesion site their continued presence is no longer necessary for maintaining the restored function. This raises the possibility that in the future a protocol of temporary immunoprotection might allow for the use of the larger available numbers of immunoincompatible allografted cells or cell lines, which would avoid the need for removing a patient's olfactory bulb.
Collapse
Affiliation(s)
- Ying Li
- Spinal Repair Unit, Department of Brain Repair and Rehabilitation, UCL Institute of Neurology, Queen Square, London, UK
| | | | | |
Collapse
|
29
|
Granger N, Carwardine D. Acute spinal cord injury: tetraplegia and paraplegia in small animals. Vet Clin North Am Small Anim Pract 2014; 44:1131-56. [PMID: 25441629 DOI: 10.1016/j.cvsm.2014.07.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Spinal cord injury (SCI) is a common problem in animals for which definitive treatment is lacking, and information gained from its study has benefit for both companion animals and humans in developing new therapeutic approaches. This review provides an overview of the main concepts that are useful for clinicians in assessing companion animals with severe acute SCI. Current available advanced ancillary tests and those in development are reviewed. In addition, the current standard of care for companion animals following SCI and recent advances in the development of new therapies are presented, and new predictors of recovery discussed.
Collapse
Affiliation(s)
- Nicolas Granger
- The School of Veterinary Sciences, University of Bristol, Langford House, Langford, North Somerset BS40 5HU, UK.
| | - Darren Carwardine
- The School of Veterinary Sciences, University of Bristol, Langford House, Langford, North Somerset BS40 5HU, UK
| |
Collapse
|
30
|
Chen L, Huang H, Xi H, Zhang F, Liu Y, Chen D, Xiao J. A prospective randomized double-blind clinical trial using a combination of olfactory ensheathing cells and Schwann cells for the treatment of chronic complete spinal cord injuries. Cell Transplant 2014; 23 Suppl 1:S35-44. [PMID: 25333925 DOI: 10.3727/096368914x685014] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The aim of this prospective randomized double-blind clinical study is to examine the benefits of using olfactory ensheathing cells (OECs) combined with or without Schwann cells (SCs) in treating chronic complete spinal cord injuries (SCIs). This would offer patients a better alternative for neurological functional recovery. According to the initial design, 28 eligible participants with cervical chronic complete SCI were recruited and randomly allocated into four groups of seven participants each. The neurological assessments were to be performed according to the American Spinal Injury Association (ASIA) and International Association of Neurorestoratology (IANR) Functional Rating Scales, in combination with electrophysiological tests, for example, electromyography (EMG) and paraspinal somatosensory evoked potentials (PSSEPs). Here we have summarized the data from seven patients; three patients received an OEC intraspinal transplantation, one underwent SC implantation, and one received a combination of OECs and SCs. The remaining two patients were used as controls. The scores were evaluated independently by at least two neurologists in a blinded fashion for comparing the neurological functional changes during pre- and post-cell transplantation (6-month follow-up). All patients who received OECs, SCs alone, and a combination of them showed functional improvement. Mild fever occurred in one of the patients with OEC transplant that subsided after symptomatic treatments. All treated patients except one showed improvement in the electrophysiological tests. The functional improvement rate comprises 5/5 (100%) in the treated group, but 0/2 (0%) in the control group (p = 0.008). These preliminary findings show that transplanting OECs, SCs, or a combination of them is well tolerated and that they have beneficial effects in patients. Thus, further studies in larger patient cohorts are warranted to assess the benefits and risks of these intervention strategies. This manuscript is published as part of the IANR special issue of Cell Transplantation.
Collapse
Affiliation(s)
- Lin Chen
- Center of Neurorestoratology, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
31
|
Transcriptional profiling predicts overwhelming homology of schwann cells, olfactory ensheathing cells, and schwann cell-like glia. Glia 2014; 62:1559-81. [DOI: 10.1002/glia.22700] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 05/15/2014] [Accepted: 05/16/2014] [Indexed: 01/26/2023]
|
32
|
Roet KCD, Verhaagen J. Understanding the neural repair-promoting properties of olfactory ensheathing cells. Exp Neurol 2014; 261:594-609. [PMID: 24842489 DOI: 10.1016/j.expneurol.2014.05.007] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 05/02/2014] [Accepted: 05/06/2014] [Indexed: 12/13/2022]
Abstract
Olfactory ensheathing glial cells (OECs) are a specialized type of glia that form a continuously aligned cellular pathway that actively supports unprecedented regeneration of primary olfactory axons from the periphery into the central nervous system. Implantation of OECs stimulates neural repair in experimental models of spinal cord, brain and peripheral nerve injury and delays disease progression in animal models for neurodegenerative diseases like amyotrophic lateral sclerosis. OECs implanted in the injured spinal cord display a plethora of pro-regenerative effects; they promote axonal regeneration, reorganize the glial scar, remyelinate axons, stimulate blood vessel formation, have phagocytic properties and modulate the immune response. Recently genome wide transcriptional profiling and proteomics analysis combined with classical or larger scale "medium-throughput" bioassays have provided novel insights into the molecular mechanism that endow OECs with their pro-regenerative properties. Here we review these studies and show that the gaps that existed in our understanding of the molecular basis of the reparative properties of OECs are narrowing. OECs express functionally connected sets of genes that can be linked to at least 10 distinct processes directly relevant to neural repair. The data indicate that OECs exhibit a range of synergistic cellular activities, including active and passive stimulation of axon regeneration (by secretion of growth factors, axon guidance molecules and basement membrane components) and critical aspects of tissue repair (by structural remodeling and support, modulation of the immune system, enhancement of neurotrophic and antigenic stimuli and by metabolizing toxic macromolecules). Future experimentation will have to further explore the newly acquired knowledge to enhance the therapeutic potential of OECs.
Collapse
Affiliation(s)
- Kasper C D Roet
- Department of Neuroregeneration, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105BA Amsterdam, The Netherlands.
| | - Joost Verhaagen
- Department of Neuroregeneration, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105BA Amsterdam, The Netherlands; Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, Boelelaan 1085, Amsterdam 1081HV, The Netherlands.
| |
Collapse
|
33
|
Liu SJ, Zou Y, Belegu V, Lv LY, Lin N, Wang TY, McDonald JW, Zhou X, Xia QJ, Wang TH. Co-grafting of neural stem cells with olfactory en sheathing cells promotes neuronal restoration in traumatic brain injury with an anti-inflammatory mechanism. J Neuroinflammation 2014; 11:66. [PMID: 24690089 PMCID: PMC3977666 DOI: 10.1186/1742-2094-11-66] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Accepted: 03/24/2014] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND We sought to investigate the effects of co-grafting neural stem cells (NSCs) with olfactory ensheathing cells (OECs) on neurological behavior in rats subjected to traumatic brain injury (TBI) and explore underlying molecular mechanisms. METHODS TBI was established by percussion device made through a weight drop (50 g) from a 30 cm height. Cultured NSCs and OECs isolated from rats were labeled by Hoechst 33342 (blue) and chloromethyl-benzamidodialkyl carbocyanine (CM-Dil) (red), respectively. Then, NSCs and/or OECs, separately or combined, were transplanted into the area surrounding the injury site. Fourteen days after transplantation, neurological severity score (NSS) were recorded. The brain tissue was harvested and processed for immunocytochemistry, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL), and reverse transcription-polymerase chain reaction (RT-PCR). RESULTS Significant neurological function improvement was observed in the three transplant groups, compared to the TBI group, and co-transplantation gave rise to the best improvement. Morphological evaluation showed that the number of neurons in cortex from combination implantation was more than for other groups (P <0.05); conversely, the number of apoptotic cells showed a significant decrease by TUNEL staining. Transplanted NSCs and OECs could survive and migrate in the brain, and the number of neurons differentiating from NSCs in the co-transplantation group was significantly greater than in the NSCs group. At the molecular level, the expressions of IL-6 and BAD in the co-graft group were found to be down regulated significantly, when compared to either the NSC or OEC alone groups. CONCLUSION The present study demonstrates for the first time the optimal effects of co-grafting NSCs and OECs as a new strategy for the treatment of TBI via an anti-inflammation mechanism.
Collapse
Affiliation(s)
- Su-Juan Liu
- Department of Histology, Embryology and Neurobiology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yu Zou
- Institute of Neurological Disease, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Visar Belegu
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Long-Yun Lv
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan 650031, China
| | - Na Lin
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan 650031, China
| | - Ting-Yong Wang
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan 650031, China
| | - John W McDonald
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Xue Zhou
- Department of Histology, Embryology and Neurobiology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | - Qing-Jie Xia
- Institute of Neurological Disease, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ting-Hua Wang
- Department of Histology, Embryology and Neurobiology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China
- Institute of Neurological Disease, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan 650031, China
| |
Collapse
|
34
|
Kegler K, Imbschweiler I, Ulrich R, Kovermann P, Fahlke C, Deschl U, Kalkuhl A, Baumgärnter W, Wewetzer K. CNS Schwann cells display oligodendrocyte precursor-like potassium channel activation and antigenic expression in vitro. J Neural Transm (Vienna) 2014; 121:569-81. [PMID: 24487976 DOI: 10.1007/s00702-014-1163-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 01/18/2014] [Indexed: 12/14/2022]
Abstract
Central nervous system (CNS) injury triggers production of myelinating Schwann cells from endogenous oligodendrocyte precursors (OLPs). These CNS Schwann cells may be attractive candidates for novel therapeutic strategies aiming to promote endogenous CNS repair. However, CNS Schwann cells have been so far mainly characterized in situ regarding morphology and marker expression, and it has remained enigmatic whether they display functional properties distinct from peripheral nervous system (PNS) Schwann cells. Potassium channels (K+) have been implicated in progenitor and glial cell proliferation after injury and may, therefore, represent a suitable pharmacological target. In the present study, we focused on the function and expression of voltage-gated K+ channels Kv(1-12) and accessory β-subunits in purified adult canine CNS and PNS Schwann cell cultures using electrophysiology and microarray analysis and characterized their antigenic phenotype. We show here that K+ channels differed significantly in both cell types. While CNS Schwann cells displayed prominent K D-mediated K+ currents, PNS Schwann cells elicited K(D-) and K(A-type) K+ currents. Inhibition of K+ currents by TEA and Ba2+ was more effective in CNS Schwann cells. These functional differences were not paralleled by differential mRNA expression of Kv(1-12) and accessory β-subunits. However, O4/A2B5 and GFAP expressions were significantly higher and lower, respectively, in CNS than in PNS Schwann cells. Taken together, this is the first evidence that CNS Schwann cells display specific properties not shared by their peripheral counterpart. Both Kv currents and increased O4/A2B5 expression were reminiscent of OLPs suggesting that CNS Schwann cells retain OLP features during maturation.
Collapse
Affiliation(s)
- Kristel Kegler
- Department of Pathology, University of Veterinary Medicine, Bünteweg 17, 30559, Hannover, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Grimoldi N, Colleoni F, Tiberio F, Vetrano IG, Cappellari A, Costa A, Belicchi M, Razini P, Giordano R, Spagnoli D, Pluderi M, Gatti S, Morbin M, Gaini SM, Rebulla P, Bresolin N, Torrente Y. Stem cell salvage of injured peripheral nerve. Cell Transplant 2013; 24:213-22. [PMID: 24268028 DOI: 10.3727/096368913x675700] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We previously developed a collagen tube filled with autologous skin-derived stem cells (SDSCs) for bridging long rat sciatic nerve gaps. Here we present a case report describing a compassionate use of this graft for repairing the polyinjured motor and sensory nerves of the upper arms of a patient. Preclinical assessment was performed with collagen/SDSC implantation in rats after sectioning the sciatic nerve. For the patient, during the 3-year follow-up period, functional recovery of injured median and ulnar nerves was assessed by pinch gauge test and static two-point discrimination and touch test with monofilaments, along with electrophysiological and MRI examinations. Preclinical experiments in rats revealed rescue of sciatic nerve and no side effects of patient-derived SDSC transplantation (30 and 180 days of treatment). In the patient treatment, motor and sensory functions of the median nerve demonstrated ongoing recovery postimplantation during the follow-up period. The results indicate that the collagen/SDSC artificial nerve graft could be used for surgical repair of larger defects in major lesions of peripheral nerves, increasing patient quality of life by saving the upper arms from amputation.
Collapse
Affiliation(s)
- Nadia Grimoldi
- Unit of Neurosurgery, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Università degli Studi di Milano, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Roloff F, Ziege S, Baumgärtner W, Wewetzer K, Bicker G. Schwann cell-free adult canine olfactory ensheathing cell preparations from olfactory bulb and mucosa display differential migratory and neurite growth-promoting properties in vitro. BMC Neurosci 2013; 14:141. [PMID: 24219805 PMCID: PMC3840578 DOI: 10.1186/1471-2202-14-141] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 11/07/2013] [Indexed: 12/04/2022] Open
Abstract
Background Transplantation of olfactory ensheathing cells (OEC) and Schwann cells (SC) is a promising therapeutic strategy to promote axonal growth and remyelination after spinal cord injury. Previous studies mainly focused on the rat model though results from primate and porcine models differed from those in the rat model. Interestingly, canine OECs show primate-like in vitro characteristics, such as absence of early senescence and abundance of stable p75NTR expression indicating that this species represents a valuable translational species for further studies. So far, few investigations have tested different glial cell types within the same study under identical conditions. This makes it very difficult to evaluate contradictory or confirmatory findings reported in various studies. Moreover, potential contamination of OEC preparations with Schwann cells was difficult to exclude. Thus, it remains rather controversial whether the different glial types display distinct cellular properties. Results Here, we established cultures of Schwann cell-free OECs from olfactory bulb (OB-OECs) and mucosa (OM-OECs) and compared them in assays to Schwann cells. These glial cultures were obtained from a canine large animal model and used for monitoring migration, phagocytosis and the effects on in vitro neurite growth. OB-OECs and Schwann cells migrated faster than OM-OECs in a scratch wound assay. Glial cell migration was not modulated by cGMP and cAMP signaling, but activating protein kinase C enhanced motility. All three glial cell types displayed phagocytic activity in a microbead assay. In co-cultures with of human model (NT2) neurons neurite growth was maximal on OB-OECs. Conclusions These data provide evidence that OB- and OM-OECs display distinct migratory behavior and interaction with neurites. OB-OECs migrate faster and enhance neurite growth of human model neurons better than Schwann cells, suggesting distinct and inherent properties of these closely-related cell types. Future studies will have to address whether, and how, these cellular properties correlate with the in vivo behavior after transplantation.
Collapse
Affiliation(s)
| | | | | | | | - Gerd Bicker
- Division of Cell Biology, University of Veterinary Medicine Hannover, Bischofsholer Damm 15/102, 30173 Hannover, Germany.
| |
Collapse
|
37
|
Cell type- and isotype-specific expression and regulation of β-tubulins in primary olfactory ensheathing cells and Schwann cells in vitro. Neurochem Res 2013; 38:981-8. [PMID: 23430470 DOI: 10.1007/s11064-013-1006-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2012] [Revised: 02/10/2013] [Accepted: 02/13/2013] [Indexed: 12/20/2022]
Abstract
Olfactory ensheathing cells (OECs) and Schwann cells (SCs) are closely-related cell types with regeneration-promoting properties. Comparative gene expression analysis is particularly relevant since it may explain cell type-specific effects and guide the use of each cell type into special clinical applications. In the present study, we focused on β-tubulin isotype expression in primary adult canine glia as a translational large animal model. β-tubulins so far have been studied mainly in non-neuronal tumors and implied in tumorigenic growth. We show here that primary OECs and SCs expressed βII-V isotype mRNA. Interestingly, βIII-tubulin mRNA and protein expression was high in OECs and low in SCs, while fibroblast growth factor-2 (FGF-2) induced its down-regulation in both cell types to the same extent. This was in contrast to βV-tubulin mRNA which was similarly expressed in both cell types and unaltered by FGF-2. Immunocytochemical analysis revealed that OEC cultures contained a higher percentage of βIII-tubulin-positive cells compared to SC cultures. Addition of FGF-2 reduced the number of βIII-tubulin-positive cells in both cultures and significantly increased the percentage of cells with a multipolar morphology. Taken together, we demonstrate cell type-specific expression (βIII) and isotype-specific regulation (βIII, βV) of β-tubulin isotypes in OECs and SCs. While differential expression of βIII-tubulin in primary glial cell types with identical proliferative behaviour argues for novel functions unrelated to tumorigenic growth, strong βIII-tubulin expression in OECs may help to explain the specific properties of this glial cell type.
Collapse
|
38
|
Piltti KM, Salazar DL, Uchida N, Cummings BJ, Anderson AJ. Safety of epicenter versus intact parenchyma as a transplantation site for human neural stem cells for spinal cord injury therapy. Stem Cells Transl Med 2013; 2:204-16. [PMID: 23413374 DOI: 10.5966/sctm.2012-0110] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Neural stem cell transplantation may have the potential to yield repair and recovery of function in central nervous system injury and disease, including spinal cord injury (SCI). Multiple pathological processes are initiated at the epicenter of a traumatic spinal cord injury; these are generally thought to make the epicenter a particularly hostile microenvironment. Conversely, the injury epicenter is an appealing potential site of therapeutic human central nervous system-derived neural stem cell (hCNS-SCns) transplantation because of both its surgical accessibility and the avoidance of spared spinal cord tissue. In this study, we compared hCNS-SCns transplantation into the SCI epicenter (EPI) versus intact rostral/caudal (R/C) parenchyma in contusion-injured athymic nude rats, and assessed the cell survival, differentiation, and migration. Regardless of transplantation site, hCNS-SCns survived and proliferated; however, the total number of hCNS-SCns quantified in the R/C transplant animals was twice that in the EPI animals, demonstrating increased overall engraftment. Migration and fate profile were unaffected by transplantation site. However, although transplantation site did not alter the proportion of human astrocytes, EPI transplantation shifted the localization of these cells and exhibited a correlation with calcitonin gene-related peptide fiber sprouting. Critically, no changes in mechanical allodynia or thermal hyperalgesia were observed. Taken together, these data suggest that the intact parenchyma may be a more favorable transplantation site than the injury epicenter in the subacute period post-SCI.
Collapse
Affiliation(s)
- Katja M Piltti
- Sue and Bill Gross Stem Cell Research Center, Uiversity of California, Irvine, CA, USA
| | | | | | | | | |
Collapse
|
39
|
Yang JR, Liao CH, Pang CY, Huang LLH, Chen YL, Shiue YL, Chen LR. Transplantation of porcine embryonic stem cells and their derived neuronal progenitors in a spinal cord injury rat model. Cytotherapy 2012; 15:201-8. [PMID: 23245953 DOI: 10.1016/j.jcyt.2012.09.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Revised: 09/04/2012] [Accepted: 09/17/2012] [Indexed: 02/07/2023]
Abstract
BACKGROUND AIMS The purpose of this study was to investigate therapeutic potential of green fluorescent protein expressing porcine embryonic stem (pES/GFP(+)) cells in A rat model of spinal cord injury (SCI). METHODS Undifferentiated pES/GFP(+) cells and their neuronal differentiation derivatives were transplanted into the contused spinal cord of the Long Evans rat, and in situ development of the cells was determined by using a live animal fluorescence optical imaging system every 15 days. After pES/GFP(+) cell transplantation, the behavior functional recovery of the SCI rats was assessed with the Basso, Beattie, and Bresnahan Locomotor Rating Scale (BBB scale), and the growth and differentiation of the grafted pES/GFP(+) cells in the SCI rats were analyzed by immunohistochemical staining. RESULTS The relative green fluorescent protein expression level was decreased for 3 months after transplantation. The pES/GFP(+)-derived cells positively stained with neural specific antibodies of anti-NFL, anti-MBP, anti-SYP and anti-Tuj 1 were detected at the transplanted position. The SCI rats grafted with the D18 neuronal progenitors showed a significant functional recovery of hindlimbs and exhibited the highest BBB scale score of 15.20 ± 1.43 at week 24. The SCI rats treated with pES/GFP(+)-derived neural progenitors demonstrated a better functional recovery. CONCLUSIONS Transplantation of porcine embryonic stem (pES)-derived D18 neuronal progenitors has treatment potential for SCI, and functional behavior improvement of grafted pES-derived cells in SCI model rats suggests the potential for further application of pES cells in the study of replacement medicine and functionally degenerative pathologies.
Collapse
Affiliation(s)
- Jenn-Rong Yang
- Division of Physiology, Livestock Research Institute, Council of Agriculture, Executive Yuan, Tainan, Taiwan
| | | | | | | | | | | | | |
Collapse
|
40
|
Alpha-crystallin promotes rat olfactory ensheathing cells survival and proliferation through regulation of PI3K/Akt/mTOR signaling pathways. Neurosci Lett 2012; 531:170-5. [PMID: 23142719 DOI: 10.1016/j.neulet.2012.10.057] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 10/05/2012] [Accepted: 10/24/2012] [Indexed: 12/22/2022]
Abstract
Transplantation of cultured olfactory ensheathing cells (OECs) into lesions can promote axonal regeneration. However, the acutely injured CNS environment affects the survival and proliferation of OECs which might impair its therapy effects. To investigate whether α-crystallin can promote the survival and proliferation of OECs, OECs were cultured with α-crystallin. The survival of OECs was assessed by counting the numbers of p75-labeled OECs. Cellular proliferative activity was estimated by flow cytometry and quantification of BrdU-labeled cells. Phosphorylated p85, Akt and mammalian target of rapamycin (mTOR) were detected when OECs were culture for 7 days. Our results showed that the numbers of p75-labeled or Brdu-labeled OECs in α-crystallin group were much more than that in control group. And α-crystallin increased the phosphorylation of both p85, Akt and mTOR. LY294002 abrogated the ability of α-crystallin to phosphorylate Akt and mTOR, and decreased the percentage of cells in S and G2/M stage which were treated with α-crystallin. These findings indicated that α-crystallin positively regulated the activation of PI3K/Akt/mTOR signaling pathway and promote the proliferation and survival of cultured OECs.
Collapse
|
41
|
Ziege S, Baumgärtner W, Wewetzer K. Toward defining the regenerative potential of olfactory mucosa: establishment of Schwann cell-free adult canine olfactory ensheathing cell preparations suitable for transplantation. Cell Transplant 2012; 22:355-67. [PMID: 23006619 DOI: 10.3727/096368912x656108] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Olfactory mucosa (OM)-derived olfactory ensheathing cells (OECs) are attractive candidates for autologous cell transplantation-based therapy of nervous system injury. However, defining the regenerative capacity of OM-derived OECs is impeded by the fact that cell cultures used for transplantation may contain significant amounts of contaminating trigeminal nerve Schwann cells that escape identification by sharing in vitro expression of OEC markers. The aim of the present study, therefore, was to quantify contaminating Schwann cells in OEC preparations and to develop a protocol for their specific depletion. Based on the observation that freshly dissociated, but not cultured, OECs and Schwann cells display differential expression of HNK-1 and p75(NTR), magnet-activated cell sorting (MACS) was used to deplete myelinating (HNK-1-positive) and nonmyelinating (p75(NTR)-positive) Schwann cells from primary cell suspensions containing HNK-1-/p75(NTR)-negative OECs. Upregulation of p75(NTR) expression in OECs during culturing allowed their subsequent MACS-based separation from fibroblasts. Immunofluorescence analysis of freshly dissociated OM prior to MACS depletion revealed that 21% of the total and 56% of all CNPase-positive cells, representing both OECs and Schwann cells, expressed the Schwann cell antigens HNK-1 or p75(NTR), indicating that freshly dissociated OM prior to culturing contained as many Schwann cells as OECs, while olfactory bulb (OB) primary cell suspensions revealed lower levels of Schwann cell contamination. Interestingly, neurite growth of neonatal rat dorsal root ganglion (DRG) neurons cocultured with OM-OECs, OB-OECs, and fibular nerve (FN) Schwann cells used as control was significantly higher in the presence of OECs than of Schwann cells. The first report on identification and specific depletion of Schwann cells from OEC preparations provides a solid basis for future efforts to fully define the regenerative potential of nasal mucosa OECs.
Collapse
Affiliation(s)
- Susanne Ziege
- Department of Pathology, University of Veterinary Medicine, Hannover, Germany
| | | | | |
Collapse
|
42
|
Bock P, Spitzbarth I, Haist V, Stein VM, Tipold A, Puff C, Beineke A, Baumgärtner W. Spatio-temporal development of axonopathy in canine intervertebral disc disease as a translational large animal model for nonexperimental spinal cord injury. Brain Pathol 2012; 23:82-99. [PMID: 22805224 DOI: 10.1111/j.1750-3639.2012.00617.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 07/08/2012] [Indexed: 12/15/2022] Open
Abstract
Spinal cord injury (SCI) represents a devastating central nervous system disease that still lacks sufficient therapies. Here, dogs are increasingly recognized as a preclinical animal model for the development of future therapies. The aim of this study was a detailed characterization of axonopathy in canine intervertebral disc disease, which produces a mixed contusive and compressive injury and functions as a spontaneous translational animal model for human SCI. The results revealed an early occurrence of ultrastructurally distinct axonal swelling. Immunohistochemically, enhanced axonal expression of β-amyloid precursor protein, non-phosphorylated neurofilament (n-NF) and growth-associated protein-43 was detected in the epicenter during acute canine SCI. Indicative of a progressive axonopathy, these changes showed a cranial and caudally accentuated spatial progression in the subacute disease phase. In canine spinal cord slice cultures, immunoreactivity of axons was confined to n-NF. Real-time quantitative polymerase chain reaction of naturally traumatized tissue and slice cultures revealed a temporally distinct dysregulation of the matrix metalloproteinases (MMP)-2 and MMP-9 with a dominating expression of the latter. Contrasting to early axonopathy, diminished myelin basic protein immunoreactivity and phagocytosis were delayed. The results present a basis for assessing new therapies in the canine animal model for translational research that might allow partial extrapolation to human SCI.
Collapse
Affiliation(s)
- Patricia Bock
- Department of Pathology, University of Veterinary Medicine, Hannover, Germany
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Rutten MJ, Janes MA, Chang IR, Gregory CR, Gregory KW. Development of a functional schwann cell phenotype from autologous porcine bone marrow mononuclear cells for nerve repair. Stem Cells Int 2012; 2012:738484. [PMID: 22792117 PMCID: PMC3388598 DOI: 10.1155/2012/738484] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Accepted: 03/29/2012] [Indexed: 01/10/2023] Open
Abstract
Adult bone marrow mononuclear cells (BM-MNCs) are a potential resource for making Schwann cells to repair damaged peripheral nerves. However, many methods of producing Schwann-like cells can be laborious with the cells lacking a functional phenotype. The objective of this study was to develop a simple and rapid method using autologous BM-MNCs to produce a phenotypic and functional Schwann-like cell. Adult porcine bone marrow was collected and enriched for BM-MNCs using a SEPAX device, then cells cultured in Neurobasal media, 4 mM L-glutamine and 20% serum. After 6-8 days, the cultures expressed Schwann cell markers, S-100, O4, GFAP, were FluoroMyelin positive, but had low p75(NGF) expression. Addition of neuregulin (1-25 nM) increased p75(NGF) levels at 24-48 hrs. We found ATP dose-dependently increased intracellular calcium [Ca(2+)](i), with nucleotide potency being UTP = ATP > ADP > AMP > adenosine. Suramin blocked the ATP-induced [Ca(2+)](i) but α, β,-methylene-ATP had little effect suggesting an ATP purinergic P2Y2 G-protein-coupled receptor is present. Both the Schwann cell markers and ATP-induced [Ca(2+)](i) sensitivity decreased in cells passaged >20 times. Our studies indicate that autologous BM-MNCs can be induced to form a phenotypic and functional Schwann-like cell which could be used for peripheral nerve repair.
Collapse
Affiliation(s)
- Michael J. Rutten
- Providence Health and Services, 9555 SW Barnes Rd., Portland, OR 97225, USA
- OHSU Center for Regenerative Medicine, Oregon Health & Science University, 3181 S.W. Sam Jackson Park Road, Portland, OR 97239, USA
| | - Michael Ann Janes
- Providence Health and Services, 9555 SW Barnes Rd., Portland, OR 97225, USA
| | - Ivy R. Chang
- Providence Health and Services, 9555 SW Barnes Rd., Portland, OR 97225, USA
| | - Cynthia R. Gregory
- OHSU Center for Regenerative Medicine, Oregon Health & Science University, 3181 S.W. Sam Jackson Park Road, Portland, OR 97239, USA
- Oregon Biomedical Engineering Institute, 25999 SW Canyon Creek Rd., Wilsonville, OR 97070, USA
- Portland VA Medical Center, 3710 SW U.S. Veterans Hospital Rd., Portland, OR 97239, USA
| | - Kenton W. Gregory
- Providence Health and Services, 9555 SW Barnes Rd., Portland, OR 97225, USA
- OHSU Center for Regenerative Medicine, Oregon Health & Science University, 3181 S.W. Sam Jackson Park Road, Portland, OR 97239, USA
- Oregon Biomedical Engineering Institute, 25999 SW Canyon Creek Rd., Wilsonville, OR 97070, USA
| |
Collapse
|
44
|
Penna V, Stark GB, Wewetzer K, Radtke C, Lang EM. Comparison of Schwann cells and olfactory ensheathing cells for peripheral nerve gap bridging. Cells Tissues Organs 2012; 196:534-42. [PMID: 22699447 DOI: 10.1159/000338059] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2012] [Indexed: 01/21/2023] Open
Abstract
INTRODUCTION Previously, we introduced the biogenic conduit (BC) as a novel autologous nerve conduit for bridging peripheral nerve defects and tested its regenerative capacity in a short- and long-term setting. The aim of the present study was to clarify whether intraluminal application of regeneration-promoting glial cells, including Schwann cells (SC) and olfactory ensheathing cells (OEC), displayed differential effects after sciatic nerve gap bridging. MATERIAL AND METHODS BCs were generated as previously described. The conduits filled with fibrin/SC (n = 8) and fibrin/OEC (n = 8) were compared to autologous nerve transplants (NT; n = 8) in the 15-mm sciatic nerve gap lesion model of the rat. The sciatic functional index was evaluated every 4 weeks. After 16 weeks, histological evaluation followed regarding nerve area, axon number, myelination index and N ratio. RESULTS Common to all groups was a continual improvement in motor function during the observation period. Recovery was significantly better after SC transplantation compared to OEC (p < 0.01). Both cell transplantation groups showed significantly worse function than the NT group (p < 0.01). Whereas nerve area and axon number were correlated to function, being significantly lowest in the OEC group (p < 0.001), both cell groups showed lowered myelination (p < 0.001) and lower N ratio compared to the NT group. DISCUSSION SC-filled BCs led to improved regeneration compared to OEC-filled BCs in a 15-mm-long nerve gap model of the rat.
Collapse
Affiliation(s)
- Vincenzo Penna
- Department of Plastic and Hand Surgery, University Medical Center Freiburg, Freiburg, Germany.
| | | | | | | | | |
Collapse
|
45
|
Liu N, Tang Z, Yu Z, Xie M, Zhang Y, Yang E, Xu S. Morphological properties and proliferation analysis of olfactory ensheathing cells seeded onto three-dimensional collagen-heparan sulfate biological scaffolds. Neural Regen Res 2012; 7:1213-9. [PMID: 25709618 PMCID: PMC4336954 DOI: 10.3969/j.issn.1673-5374.2012.16.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2012] [Accepted: 04/23/2012] [Indexed: 11/30/2022] Open
Abstract
This study aimed to examine the differences in the morphological properties and proliferation of olfactory ensheathing cells in three-dimensional culture on collagen-heparan sulfate biological scaffolds and in two-dimensional culture on common flat culture plates. The proliferation rate of olfactory ensheathing cells in three-dimensional culture was higher than that in two-dimensional culture, as detected by an MTT assay. In addition, more than half of the olfactory ensheathing cells subcultured using the trypsinization method in three-dimensional culture displayed a spindly Schwann cell-like morphology with extremely long processes, while they showed a flat astrocyte-like morphology in two-dimensional culture. Moreover, spindle-shaped olfactory ensheathing cells tended to adopt an elongated bipolar morphology under both culture conditions. Experimental findings indicate that the morphological properties and proliferation of olfactory ensheathing cells in three-dimensional culture on collagen-heparan sulfate biological scaffolds are better than those in two-dimensional culture.
Collapse
Affiliation(s)
- Na Liu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Zhouping Tang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Zhiyuan Yu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Minjie Xie
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Yu Zhang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Erfang Yang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Shabei Xu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| |
Collapse
|
46
|
Ji Y, Shen M, Wang X, Zhang S, Yu S, Chen G, Gu X, Ding F. Comparative proteomic analysis of primary schwann cells and a spontaneously immortalized schwann cell line RSC 96: a comprehensive overview with a focus on cell adhesion and migration related proteins. J Proteome Res 2012; 11:3186-98. [PMID: 22519560 DOI: 10.1021/pr201221u] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Schwann cells (SCs) are the principal glial cells of the peripheral nervous system (PNS). As a result of tissue heterogeneity and difficulties in the isolation and culture of primary SCs, a considerable understanding of SC biology is obtained from SC lines. However, the differences between the primary SCs and SC lines remain uncertain. In the present study, quantitative proteomic analysis based on isobaric tags for relative and absolute quantitation (iTRAQ) labeling was conducted to obtain an unbiased view of the proteomic profiles of primary rat SCs and RSC96, a spontaneously immortalized rat SC line. Out of 1757 identified proteins (FDR < 1%), 1702 were quantified, while 61 and 78 were found to be, respectively, up- or down-regulated (90% confidence interval) in RSC96. Bioinformatics analysis indicated the unique features of spontaneous immortalization, illustrated the dedifferentiated state of RSC96, and highlighted a panel of novel proteins associated with cell adhesion and migration including CADM4, FERMT2, and MCAM. Selected proteomic data and the requirement of these novel proteins in SC adhesion and migration were properly validated. Taken together, our data collectively revealed proteome differences between primary SCs and RSC96, validated several differentially expressed proteins with potential biological significance, and generated a database that may serve as a useful resource for studies of SC biology and pathology.
Collapse
Affiliation(s)
- Yuhua Ji
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University , 19 Qixiu Road, Nantong, JS 226001, P. R. China
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Spitzbarth I, Baumgärtner W, Beineke A. The role of pro- and anti-inflammatory cytokines in the pathogenesis of spontaneous canine CNS diseases. Vet Immunol Immunopathol 2012; 147:6-24. [PMID: 22542984 DOI: 10.1016/j.vetimm.2012.04.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Revised: 04/02/2012] [Accepted: 04/03/2012] [Indexed: 11/16/2022]
Abstract
Dogs are comparatively frequently affected by various spontaneously occurring inflammatory and degenerative central nervous system (CNS) conditions, and immunopathological processes are a hallmark of the associated neuropathology. Due to the low regenerative capacity of the CNS a sophisticated understanding of the underlying molecular basis for disease initiation, progression and remission in canine CNS diseases represents a prerequisite for the development of novel therapeutical approaches. In addition, as many spontaneous canine CNS diseases share striking similarities with their human counterpart, knowledge about the immune pathogenesis may in part be translated for a better understanding of certain human diseases. In addition to cytokine-driven differentiation of peripheral leukocytes including different subsets of T cells recent research suggests a pivotal role of these mediators also in phenotype polarization of resident glial cells. Cytokines thus represent the key mediators of the local and systemic immune response in CNS diseases and their orchestration significantly decides on either lesion progression or remission. The aim of the present review is to summarize the growing number of data focusing on the molecular basis of the immune response during spontaneous canine CNS diseases and to detail the effect of cytokines on the immune pathogenesis of selected idiopathic, infectious, and traumatic canine CNS diseases. Steroid-responsive meningitis arteritis (SRMA) represents a unique idiopathic disease of leptomeningeal blood vessels characterized by excessive IgA secretion into the cerebrospinal fluid. Recent reports have given sophisticated insights into the cytokine-driven, immune-mediated pathogenesis of SRMA that is characterized by a biased T helper 2 cell response. Canine distemper associated leukoencephalitis represents an important spontaneously occurring disease that allows investigations on the basic pathogenesis of immune-mediated myelin loss. It is characterized by an early virus-induced up-regulation of pro-inflammatory cytokines with chronic bystander immune-mediated demyelinating processes. Lastly, canine spinal cord injury (SCI) shares many similarities with the human counterpart and most commonly results from intervertebral disk disease. The knowledge of its pathogenesis is largely restricted to experimental studies in rodents, and the impact of immune processes that accompany secondary injury is discussed controversially. Recent investigations on canine SCI highlight the pivotal role of pro-inflammatory cytokine expression that is paralleled by a dominating reaction of microglia/macrophages potentially indicating a polarization of these immune cells into a neurotoxic and harmful phenotype. This report will review the role of cytokines in the immune processes of the mentioned representative canine CNS diseases and highlight the importance of cytokine/cytokine interaction as a useful therapeutic target in canine CNS diseases.
Collapse
Affiliation(s)
- I Spitzbarth
- Department of Pathology, University of Veterinary Medicine, Bünteweg 17, 30559 Hannover, Germany
| | | | | |
Collapse
|
48
|
Reier PJ, Lane MA, Hall ED, Teng YD, Howland DR. Translational spinal cord injury research: preclinical guidelines and challenges. HANDBOOK OF CLINICAL NEUROLOGY 2012; 109:411-33. [PMID: 23098728 PMCID: PMC4288927 DOI: 10.1016/b978-0-444-52137-8.00026-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Advances in the neurobiology of spinal cord injury (SCI) have prompted increasing attention to opportunities for moving experimental strategies towards clinical applications. Preclinical studies are the centerpiece of the translational process. A major challenge is to establish strategies for achieving optimal translational progression while minimizing potential repetition of previous disappointments associated with clinical trials. This chapter reviews and expands upon views pertaining to preclinical design reported in recently published opinion surveys. Subsequent discussion addresses other preclinical considerations more specifically related to current and potentially imminent cellular and pharmacological approaches to acute/subacute and chronic SCI. Lastly, a retrospective and prospective analysis examines how guidelines currently under discussion relate to select examples of past, current, and future clinical translations. Although achieving definition of the "perfect" preclinical scenario is difficult to envision, this review identifies therapeutic robustness and independent replication of promising experimental findings as absolutely critical prerequisites for clinical translation. Unfortunately, neither has been fully embraced thus far. Accordingly, this review challenges the notion "everything works in animals and nothing in humans", since more rigor must first be incorporated into the bench-to-bedside translational process by all concerned, whether in academia, clinical medicine, or corporate circles.
Collapse
Affiliation(s)
- Paul J Reier
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL, USA.
| | | | | | | | | |
Collapse
|
49
|
Imbschweiler I, Seehusen F, Peck CT, Omar M, Baumgärtner W, Wewetzer K. Increased p75 neurotrophin receptor expression in the canine distemper virus model of multiple sclerosis identifies aldynoglial Schwann cells that emerge in response to axonal damage. Glia 2011; 60:358-71. [PMID: 22072443 DOI: 10.1002/glia.22270] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Accepted: 10/24/2011] [Indexed: 12/15/2022]
Abstract
Gliogenesis under pathophysiological conditions is of particular clinical relevance since it may provide regeneration-promoting cells recruitable for therapeutic purposes. There is accumulating evidence that aldynoglial cells with Schwann cell-like growth-promoting properties emerge in the lesioned CNS. However, the characterization of these cells and the signals triggering their in situ generation have remained enigmatic. In the present study, we used the p75 neurotrophin receptor (p75(NTR) ) as a marker for Schwann cells to study gliogenesis in the well-defined canine distemper virus (CDV)-induced demyelination model. White matter lesions of CDV-infected dogs contained bi- to multipolar, p75(NTR) -expressing cells that neither expressed MBP, GFAP, BS-1, or P0 identifying oligodendroglia, astrocytes, microglia, and myelinating Schwann cells nor CDV antigen. Interestingly, p75(NTR) -expression became apparent prior to the onset of demyelination in parallel to the expression of β-amyloid precursor protein (β-APP), nonphosphorylated neurofilament (n-NF), BS-1, and CD3, and peaked in subacute lesions with inflammation. To study the role of infiltrating immune cells during differentiation of Schwann cell-like glia, organotypic slice cultures from the normal olfactory bulb were established. Despite the absence of infiltrating lymphocytes and macrophages, a massive appearance of p75(NTR) -positive Schwann-like cells and BS-1-positive microglia was noticed at 10 days in vitro. It is concluded that axonal damage as an early signal triggers the differentiation of tissue-resident precursor cells into p75(NTR) -expressing aldynoglial Schwann cells that retain an immature pre-myelin state. Further studies have to address the role of microglia during this process and the regenerative potential of aldynoglial cells in CDV infection and other demyelinating diseases.
Collapse
Affiliation(s)
- Ilka Imbschweiler
- Department of Pathology, University of Veterinary Medicine, Bünteweg 17, D-30559 Hannover, Germany
| | | | | | | | | | | |
Collapse
|
50
|
Gerhauser I, Hahn K, Baumgärtner W, Wewetzer K. Culturing adult canine sensory neurons to optimise neural repair. Vet Rec 2011; 170:102. [PMID: 22068333 DOI: 10.1136/vr.100255] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- I Gerhauser
- Department of Pathology, University of Veterinary Medicine Hannover, Bünteweg 17, D-30559, Hannover, Germany
| | | | | | | |
Collapse
|