1
|
Nandakumar B, Blumenthal GH, Disse GD, Desmond PC, Ebinu JO, Ricard J, Bethea JR, Moxon KA. Exercise therapy guides cortical reorganization after midthoracic spinal contusion to enhance control of lower thoracic muscles, supporting functional recovery. Exp Neurol 2023; 364:114394. [PMID: 37001630 DOI: 10.1016/j.expneurol.2023.114394] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 03/20/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023]
Abstract
Postural control is critical for locomotion, allowing for gait changes, obstacle avoidance and navigation of rough terrain. A major problem after spinal cord injury (SCI) is regaining the control of balance to prevent falls and further injury. While the circuits for locomotor pattern generation reside in the spinal cord, postural control consists of multiple, complex networks that interact at the spinal, brainstem and cortical levels. After complete SCI, cortical reorganization establishes novel control of trunk musculature that is required for weight-supported stepping. In this study, we examined the impact of exercise therapy on cortical reorganization in the more clinically relevant models of both moderate and severe midthoracic contusion injury in the rat. Results demonstrate that both spontaneous recovery and therapy induced recovery of weight-supported stepping utilize cortical reorganization. Moreover, exercise therapy further improves outcome by enhancing cortical control of lower thoracic muscles enabling improvements in interlimb coordination associated with improved balance that increases weight-supported stepping. The outcome of this study suggest that cortical control of posture is key to functional improvement in locomotion. This information can be used to improve the timing and type of therapy after SCI by considering changes along the entire neural axis.
Collapse
Affiliation(s)
- Bharadwaj Nandakumar
- Department of Biomedical Engineering, University of California, Davis, CA 95616, USA; School of Biomedical Engineering Science and Health Systems, Drexel University, Philadelphia, PA 19104, USA
| | - Gary H Blumenthal
- Department of Biomedical Engineering, University of California, Davis, CA 95616, USA; School of Biomedical Engineering Science and Health Systems, Drexel University, Philadelphia, PA 19104, USA
| | - Gregory D Disse
- Neuroscience Graduate Program, University of California, Davis, CA 95616, USA
| | - Pierce C Desmond
- Department of Biomedical Engineering, University of California, Davis, CA 95616, USA
| | - Julius O Ebinu
- Department of Neurological Surgery, University of California, Davis, CA 95616, USA
| | - Jerome Ricard
- School of Biomedical Engineering Science and Health Systems, Drexel University, Philadelphia, PA 19104, USA
| | - John R Bethea
- School of Biomedical Engineering Science and Health Systems, Drexel University, Philadelphia, PA 19104, USA
| | - Karen A Moxon
- Department of Biomedical Engineering, University of California, Davis, CA 95616, USA; Neuroscience Graduate Program, University of California, Davis, CA 95616, USA; Department of Neurological Surgery, University of California, Davis, CA 95616, USA.
| |
Collapse
|
2
|
Randelman M, Zholudeva LV, Vinit S, Lane MA. Respiratory Training and Plasticity After Cervical Spinal Cord Injury. Front Cell Neurosci 2021; 15:700821. [PMID: 34621156 PMCID: PMC8490715 DOI: 10.3389/fncel.2021.700821] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 08/11/2021] [Indexed: 12/30/2022] Open
Abstract
While spinal cord injuries (SCIs) result in a vast array of functional deficits, many of which are life threatening, the majority of SCIs are anatomically incomplete. Spared neural pathways contribute to functional and anatomical neuroplasticity that can occur spontaneously, or can be harnessed using rehabilitative, electrophysiological, or pharmacological strategies. With a focus on respiratory networks that are affected by cervical level SCI, the present review summarizes how non-invasive respiratory treatments can be used to harness this neuroplastic potential and enhance long-term recovery. Specific attention is given to "respiratory training" strategies currently used clinically (e.g., strength training) and those being developed through pre-clinical and early clinical testing [e.g., intermittent chemical stimulation via altering inhaled oxygen (hypoxia) or carbon dioxide stimulation]. Consideration is also given to the effect of training on non-respiratory (e.g., locomotor) networks. This review highlights advances in this area of pre-clinical and translational research, with insight into future directions for enhancing plasticity and improving functional outcomes after SCI.
Collapse
Affiliation(s)
- Margo Randelman
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, United States.,Marion Murray Spinal Cord Research Center, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Lyandysha V Zholudeva
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, United States.,Marion Murray Spinal Cord Research Center, Drexel University College of Medicine, Philadelphia, PA, United States.,Gladstone Institutes, San Francisco, CA, United States
| | - Stéphane Vinit
- INSERM, END-ICAP, Université Paris-Saclay, UVSQ, Versailles, France
| | - Michael A Lane
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, United States.,Marion Murray Spinal Cord Research Center, Drexel University College of Medicine, Philadelphia, PA, United States
| |
Collapse
|
3
|
Corticospinal Motor Circuit Plasticity After Spinal Cord Injury: Harnessing Neuroplasticity to Improve Functional Outcomes. Mol Neurobiol 2021; 58:5494-5516. [PMID: 34341881 DOI: 10.1007/s12035-021-02484-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 07/07/2021] [Indexed: 10/20/2022]
Abstract
Spinal cord injury (SCI) is a devastating condition that affects approximately 294,000 people in the USA and several millions worldwide. The corticospinal motor circuitry plays a major role in controlling skilled movements and in planning and coordinating movements in mammals and can be damaged by SCI. While axonal regeneration of injured fibers over long distances is scarce in the adult CNS, substantial spontaneous neural reorganization and plasticity in the spared corticospinal motor circuitry has been shown in experimental SCI models, associated with functional recovery. Beneficially harnessing this neuroplasticity of the corticospinal motor circuitry represents a highly promising therapeutic approach for improving locomotor outcomes after SCI. Several different strategies have been used to date for this purpose including neuromodulation (spinal cord/brain stimulation strategies and brain-machine interfaces), rehabilitative training (targeting activity-dependent plasticity), stem cells and biological scaffolds, neuroregenerative/neuroprotective pharmacotherapies, and light-based therapies like photodynamic therapy (PDT) and photobiomodulation (PMBT). This review provides an overview of the spontaneous reorganization and neuroplasticity in the corticospinal motor circuitry after SCI and summarizes the various therapeutic approaches used to beneficially harness this neuroplasticity for functional recovery after SCI in preclinical animal model and clinical human patients' studies.
Collapse
|
4
|
Nandakumar B, Blumenthal GH, Pauzin FP, Moxon KA. Hindlimb Somatosensory Information Influences Trunk Sensory and Motor Cortices to Support Trunk Stabilization. Cereb Cortex 2021; 31:5165-5187. [PMID: 34165153 DOI: 10.1093/cercor/bhab150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/10/2021] [Accepted: 04/27/2021] [Indexed: 11/14/2022] Open
Abstract
Sensorimotor integration in the trunk system is poorly understood despite its importance for functional recovery after neurological injury. To address this, a series of mapping studies were performed in the rat. First, the receptive fields (RFs) of cells recorded from thoracic dorsal root ganglia were identified. Second, the RFs of cells recorded from trunk primary sensory cortex (S1) were used to assess the extent and internal organization of trunk S1. Finally, the trunk motor cortex (M1) was mapped using intracortical microstimulation to assess coactivation of trunk muscles with hindlimb and forelimb muscles, and integration with S1. Projections from trunk S1 to trunk M1 were not anatomically organized, with relatively weak sensorimotor integration between trunk S1 and M1 compared to extensive integration between hindlimb S1/M1 and trunk M1. Assessment of response latency and anatomical tracing suggest that trunk M1 is abundantly guided by hindlimb somatosensory information that is derived primarily from the thalamus. Finally, neural recordings from awake animals during unexpected postural perturbations support sensorimotor integration between hindlimb S1 and trunk M1, providing insight into the role of the trunk system in postural control that is useful when studying recovery after injury.
Collapse
Affiliation(s)
- Bharadwaj Nandakumar
- Department of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, 19104 PA, USA.,Department of Biomedical Engineering, University of California, Davis, 95616 CA, USA
| | - Gary H Blumenthal
- Department of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, 19104 PA, USA.,Department of Biomedical Engineering, University of California, Davis, 95616 CA, USA
| | | | - Karen A Moxon
- Department of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, 19104 PA, USA.,Department of Biomedical Engineering, University of California, Davis, 95616 CA, USA.,Center for Neuroscience, Davis, 95618 CA, USA
| |
Collapse
|
5
|
Brown AR, Martinez M. Chronic inactivation of the contralesional hindlimb motor cortex after thoracic spinal cord hemisection impedes locomotor recovery in the rat. Exp Neurol 2021; 343:113775. [PMID: 34081986 DOI: 10.1016/j.expneurol.2021.113775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/13/2021] [Accepted: 05/27/2021] [Indexed: 10/21/2022]
Abstract
After incomplete spinal cord injury (SCI), cortical plasticity is involved in hindlimb locomotor recovery. Nevertheless, whether cortical activity is required for motor map plasticity and recovery remains unresolved. Here, we combined a unilateral thoracic spinal cord injury (SCI) with a cortical inactivation protocol that uncovered a functional role of contralesional cortical activity in hindlimb recovery and ipsilesional map plasticity. In adult rats, left hindlimb paralysis was induced by sectioning half of the spinal cord at the thoracic level (hemisection) and we used a continuous infusion of muscimol (GABAA agonist, 10 mM, 0.11 µl/h) delivered via implanted osmotic pump (n = 9) to chronically inactivate the contralesional hindlimb motor cortex. Hemisected rats with saline infusion served as a SCI control group (n = 8), and intact rats with muscimol infusion served as an inactivation control group (n = 6). Locomotion was assessed in an open field, on a horizontal ladder, and on a treadmill prior to and for three weeks after hemisection. Cortical inactivation after hemisection significantly impeded hindlimb locomotor recovery in all tasks and specifically disrupted the ability of rats to generate proper flexion of the affected hindlimb during stepping compared to SCI controls, with no significant effect of inactivation in intact rats. Chronic and acute (n = 4) cortical inactivation after hemisection also significantly reduced the representation of the affected hindlimb in the ipsilesional motor cortex derived with intracortical microsimulation (ICMS). Our results provide evidence that residual activity in the contralesional hindlimb motor cortex after thoracic hemisection contributes to spontaneous locomotor recovery and map plasticity.
Collapse
Affiliation(s)
- Andrew R Brown
- Département de Neurosciences Groupe de recherche sur le système nerveux central (GRSNC) and Centre Interdisciplinaire de Recherche sur le Cerveau au service de l'Apprentissage (CIRCA), Université de Montréal, Québec, Canada; CIUSSS du Nord-de-l'Île-de-Montréal, Québec, Canada
| | - Marina Martinez
- Département de Neurosciences Groupe de recherche sur le système nerveux central (GRSNC) and Centre Interdisciplinaire de Recherche sur le Cerveau au service de l'Apprentissage (CIRCA), Université de Montréal, Québec, Canada; CIUSSS du Nord-de-l'Île-de-Montréal, Québec, Canada.
| |
Collapse
|
6
|
Torres-Espín A, Beaudry E, Fenrich K, Fouad K. Rehabilitative Training in Animal Models of Spinal Cord Injury. J Neurotrauma 2019; 35:1970-1985. [PMID: 30074874 DOI: 10.1089/neu.2018.5906] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Rehabilitative motor training is currently one of the most widely used approaches to promote moderate recovery following injuries of the central nervous system. Such training is generally applied in the clinical setting, whereas it is not standard in preclinical research. This is a concern as it is becoming increasingly apparent that neuroplasticity enhancing treatments require training or some form of activity as a co-therapy to promote functional recovery. Despite the importance of training and the many open questions regarding its mechanistic consequences, its use in preclinical animal models is rather limited. Here we review approaches, findings and challenges when training is applied in animal models of spinal cord injury, and we suggest recommendations to facilitate the integration of training using an appropriate study design, into pre-clinical studies.
Collapse
Affiliation(s)
- Abel Torres-Espín
- Faculty of Rehabilitation Medicine and Institute for Neuroscience and Mental Health, University of Alberta , Edmonton, Alberta, Canada
| | - Eric Beaudry
- Faculty of Rehabilitation Medicine and Institute for Neuroscience and Mental Health, University of Alberta , Edmonton, Alberta, Canada
| | | | - Karim Fouad
- Faculty of Rehabilitation Medicine and Institute for Neuroscience and Mental Health, University of Alberta , Edmonton, Alberta, Canada
| |
Collapse
|
7
|
Motor primitives are determined in early development and are then robustly conserved into adulthood. Proc Natl Acad Sci U S A 2019; 116:12025-12034. [PMID: 31138689 DOI: 10.1073/pnas.1821455116] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Motor patterns in legged vertebrates show modularity in both young and adult animals, comprising motor synergies or primitives. Are such spinal modules observed in young mammals conserved into adulthood or altered? Conceivably, early circuit modules alter radically through experience and descending pathways' activity. We analyze lumbar motor patterns of intact adult rats and the same rats after spinal transection and compare these with adult rats spinal transected 5 days postnatally, before most motor experience, using only rats that never developed hind limb weight bearing. We use independent component analysis (ICA) to extract synergies from electromyography (EMG). ICA information-based methods identify both weakly active and strongly active synergies. We compare all spatial synergies and their activation/drive strengths as proxies of spinal modules and their underlying circuits. Remarkably, we find that spatial primitives/synergies of adult injured and neonatal injured rats differed insignificantly, despite different developmental histories. However, intact rats possess some synergies that differ significantly, although modestly, in spatial structure. Rats injured as adults were more similar in modularity to rats that had neonatal spinal transection than to themselves before injury. We surmise that spinal circuit modules for spatial synergy patterns may be determined early, before postnatal day 5 (P5), and remain largely unaltered by subsequent development or weight-bearing experience. An alternative explanation but equally important is that, after complete spinal transection, both neonatal and mature adult spinal cords rapidly converge to common synergy sets. This fundamental or convergent synergy circuitry, fully determined by P5, is revealed after spinal cord transection.
Collapse
|
8
|
Frison VB, Lanferdini FJ, Geremia JM, de Oliveira CB, Radaelli R, Netto CA, Franco AR, Vaz MA. Effect of corporal suspension and pendulum exercises on neuromuscular properties and functionality in patients with medullar thoracic injury. Clin Biomech (Bristol, Avon) 2019; 63:214-220. [PMID: 30952032 DOI: 10.1016/j.clinbiomech.2019.02.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 11/03/2018] [Accepted: 02/22/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Traumatic spinal cord injury (TSCI) is one of the most devastating injuries that has a physical impact on patients. The CHORDATA® method involves suspension and pendulous exercises and has been clinically used to treat patients with TSCI. Although empirically used to treat neurological patients, there is no scientific evidence of the efficacy of this method. PURPOSE To evaluate the chronic effects of CHORDATA® method on torque, muscle activation, muscle thickness, and functionality in patients with traumatic spinal cord injury. METHODS Twenty-six male patients with medullar thoracic injury were randomly categorised into two groups: intervention group (n = 14) and control group (n = 12). Rehabilitation program comprised of 16 sessions of body suspension and pendulum exercises (twice/week). The maximal voluntary isometric trunk flexion and extension torques, muscle activation and thickness (external and internal oblique, rectus and transversus abdominis, longissimus, and multifidus muscles), and functionality (adapted reach test) were evaluated before and after of rehabilitation program. FINDINGS A significant increase was observed in maximal voluntary isometric torque (flexion, 58%; extension, 76%), muscle activation of the rectus abdominis muscle, and muscle thickness of all intervention group muscles, without changes in the control group. Compared to the pre-intervention period, the intervention group also showed improvement in functionality at post-intervention, but no such differences were noted in the control group. INTERPRETATION The corporal suspension and pendulum exercises training improved rectus abdominis muscle activation, trunk muscles structure and strength, and reaching capacity in medullar thoracic injury patients.
Collapse
Affiliation(s)
- Verônica B Frison
- Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil.
| | | | | | | | - Régis Radaelli
- Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | | | - Alexandre R Franco
- Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Marco Aurélio Vaz
- Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| |
Collapse
|
9
|
What is the functional relevance of reorganization in primary motor cortex after spinal cord injury? Neurobiol Dis 2019; 121:286-295. [DOI: 10.1016/j.nbd.2018.09.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 09/10/2018] [Indexed: 01/15/2023] Open
|
10
|
Abstract
Spinal cord injury is associated with chronic sensorimotor deficits due to the interruption of ascending and descending tracts between the brain and spinal cord. Functional recovery after anatomically complete spinal cord injury is limited due to the lack of long-distance axonal regeneration of severed fibers in the adult central nervous system. Most spinal cord injuries in humans, however, are anatomically incomplete. Although restorative treatment options for spinal cord injury remain currently limited, research from experimental models of spinal cord injury have revealed a tremendous capability for both spontaneous and treatment-induced plasticity of the corticospinal system that supports functional recovery. We review recent advances in the understanding of corticospinal circuit plasticity after spinal cord injury and concentrate mainly on the hindlimb motor cortex, its corticospinal projections, and the role of spinal mechanisms that support locomotor recovery. First, we discuss plasticity that occurs at the level of motor cortex and the reorganization of cortical movement representations. Next, we explore downstream plasticity in corticospinal projections. We then review the role of spinal mechanisms in locomotor recovery. We conclude with a perspective on harnessing neuroplasticity with therapeutic interventions to promote functional recovery.
Collapse
Affiliation(s)
- Andrew R Brown
- Département de Neurosciences, Faculté de Médecine, Université de Montréal; Hôpital du Sacré-Coeur de Montréal (CIUSS-NIM), Montréal, Québec, Canada
| | - Marina Martinez
- Département de Neurosciences, Faculté de Médecine, Université de Montréal; Hôpital du Sacré-Coeur de Montréal (CIUSS-NIM), Montréal; Groupe de Recherche sur le Système Nerveux Central, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
11
|
Filipp ME, Travis BJ, Henry SS, Idzikowski EC, Magnuson SA, Loh MY, Hellenbrand DJ, Hanna AS. Differences in neuroplasticity after spinal cord injury in varying animal models and humans. Neural Regen Res 2019; 14:7-19. [PMID: 30531063 PMCID: PMC6263009 DOI: 10.4103/1673-5374.243694] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Rats have been the primary model to study the process and underlying mechanisms of recovery after spinal cord injury. Two weeks after a severe spinal cord contusion, rats can regain weight-bearing abilities without therapeutic interventions, as assessed by the Basso, Beattie and Bresnahan locomotor scale. However, many human patients suffer from permanent loss of motor function following spinal cord injury. While rats are the most understood animal model, major differences in sensorimotor pathways between quadrupeds and bipeds need to be considered. Understanding the major differences between the sensorimotor pathways of rats, non-human primates, and humans is a start to improving targets for treatments of human spinal cord injury. This review will discuss the neuroplasticity of the brain and spinal cord after spinal cord injury in rats, non-human primates, and humans. A brief overview of emerging interventions to induce plasticity in humans with spinal cord injury will also be discussed.
Collapse
Affiliation(s)
- Mallory E Filipp
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Benjamin J Travis
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Stefanie S Henry
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Emma C Idzikowski
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Sarah A Magnuson
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Megan Yf Loh
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | | | - Amgad S Hanna
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
12
|
Ipsilesional Motor Cortex Plasticity Participates in Spontaneous Hindlimb Recovery after Lateral Hemisection of the Thoracic Spinal Cord in the Rat. J Neurosci 2018; 38:9977-9988. [PMID: 30301755 DOI: 10.1523/jneurosci.1062-18.2018] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 08/20/2018] [Accepted: 09/29/2018] [Indexed: 01/08/2023] Open
Abstract
After an incomplete spinal cord injury (SCI) spontaneous motor recovery can occur in mammals, but the underlying neural substrates remain poorly understood. The motor cortex is crucial for skilled motor learning and the voluntary control of movement and is known to reorganize after cortical injury to promote recovery. Motor cortex plasticity has also been shown to parallel the recovery of forelimb function after cervical SCI, but whether cortical plasticity participates in hindlimb recovery after SCI remains unresolved. Using intracortical microstimulation (ICMS) mapping, behavioral and cortical inactivation techniques in the female Long-Evans rat, we evaluated the spontaneous cortical mechanisms of hindlimb motor recovery 1-5 weeks after lateral hemisection of the thoracic (T8) spinal cord that ablated the crossed corticospinal tract (CST) from the contralesional motor cortex while sparing the majority of the CST from the ipsilesional motor cortex. Hemisection initially impaired hindlimb motor function bilaterally but significant recovery occurred during the first 3 weeks. ICMS revealed time-dependent changes in motor cortex organization, characterized by a chronic abolishment of hindlimb motor representation in the contralesional motor cortex and the development of transient bilateral hindlimb representation in the ipsilesional motor cortex 3 weeks after hemisection, when significant behavioral recovery occurred. Consistently, reversible inactivation of the ipsilesional, but not the contralesional motor cortex, during skilled ladder walking 3 weeks after hemisection reinstated deficits in both hindlimbs. These findings indicate that the ipsilesional motor cortex transiently reorganizes after lateral hemisection of the thoracic spinal cord to support recovery of hindlimb motor function.SIGNIFICANCE STATEMENT Partial motor recovery can occur after an incomplete spinal cord injury and is hypothesized to result from the reorganization of spared descending motor pathways. The motor cortex is crucial for the control of voluntary movement and contains topographical movement representations (motor maps) that are highly plastic. We examined the organization of hindlimb motor maps bilaterally after a lateral hemisection of the spinal cord to show that while motor maps are abolished in the deefferented cortex, the spared ipsilesional cortex transiently reorganizes to gain a representation of the affected hindlimb after injury that relates to recovery. This finding demonstrates that plasticity in the ipsilesional motor cortex at early time points after spinal cord hemisection is initially important to support motor recovery.
Collapse
|
13
|
Mohammed H, Hollis ER. Cortical Reorganization of Sensorimotor Systems and the Role of Intracortical Circuits After Spinal Cord Injury. Neurotherapeutics 2018; 15:588-603. [PMID: 29882081 PMCID: PMC6095783 DOI: 10.1007/s13311-018-0638-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
Abstract
The plasticity of sensorimotor systems in mammals underlies the capacity for motor learning as well as the ability to relearn following injury. Spinal cord injury, which both deprives afferent input and interrupts efferent output, results in a disruption of cortical somatotopy. While changes in corticospinal axons proximal to the lesion are proposed to support the reorganization of cortical motor maps after spinal cord injury, intracortical horizontal connections are also likely to be critical substrates for rehabilitation-mediated recovery. Intrinsic connections have been shown to dictate the reorganization of cortical maps that occurs in response to skilled motor learning as well as after peripheral injury. Cortical networks incorporate changes in motor and sensory circuits at subcortical or spinal levels to induce map remodeling in the neocortex. This review focuses on the reorganization of cortical networks observed after injury and posits a role of intracortical circuits in recovery.
Collapse
Affiliation(s)
- Hisham Mohammed
- Burke Neurological Institute, 785 Mamaroneck Avenue, White Plains, NY, 10605, USA
| | - Edmund R Hollis
- Burke Neurological Institute, 785 Mamaroneck Avenue, White Plains, NY, 10605, USA.
- Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
14
|
Bridges NR, Meyers M, Garcia J, Shewokis PA, Moxon KA. A rodent brain-machine interface paradigm to study the impact of paraplegia on BMI performance. J Neurosci Methods 2018; 306:103-114. [PMID: 29859878 DOI: 10.1016/j.jneumeth.2018.05.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 05/17/2018] [Accepted: 05/20/2018] [Indexed: 01/07/2023]
Abstract
BACKGROUND Most brain machine interfaces (BMI) focus on upper body function in non-injured animals, not addressing the lower limb functional needs of those with paraplegia. A need exists for a novel BMI task that engages the lower body and takes advantage of well-established rodent spinal cord injury (SCI) models to study methods to improve BMI performance. NEW METHOD A tilt BMI task was designed that randomly applies different types of tilts to a platform, decodes the tilt type applied and rights the platform if the decoder correctly classifies the tilt type. The task was tested on female rats and is relatively natural such that it does not require the animal to learn a new skill. It is self-rewarding such that there is no need for additional rewards, eliminating food or water restriction, which can be especially hard on spinalized rats. Finally, task difficulty can be adjusted by making the tilt parameters. RESULTS This novel BMI task bilaterally engages the cortex without visual feedback regarding limb position in space and animals learn to improve their performance both pre and post-SCI.Comparison with Existing Methods: Most BMI tasks primarily engage one hemisphere, are upper-body, rely heavily on visual feedback, do not perform investigations in animal models of SCI, and require nonnaturalistic extrinsic motivation such as water rewarding for performance improvement. Our task addresses these gaps. CONCLUSIONS The BMI paradigm presented here will enable researchers to investigate the interaction of plasticity after SCI and plasticity during BMI training on performance.
Collapse
Affiliation(s)
- Nathaniel R Bridges
- Drexel University, School of Biomedical Engineering, Science and Health Systems, 3141 Chestnut Street, Philadelphia, PA, 19104, USA
| | - Michael Meyers
- Drexel University, School of Biomedical Engineering, Science and Health Systems, 3141 Chestnut Street, Philadelphia, PA, 19104, USA
| | - Jonathan Garcia
- Drexel University, School of Biomedical Engineering, Science and Health Systems, 3141 Chestnut Street, Philadelphia, PA, 19104, USA
| | - Patricia A Shewokis
- Drexel University, School of Biomedical Engineering, Science and Health Systems, 3141 Chestnut Street, Philadelphia, PA, 19104, USA; Drexel University, Nutrition Sciences Department, College of Nursing and Health Professions, 1601 Cherry St., 382 Parkway Building, Philadelphia, PA, 19102, USA
| | - Karen A Moxon
- Drexel University, School of Biomedical Engineering, Science and Health Systems, 3141 Chestnut Street, Philadelphia, PA, 19104, USA; University of California Davis, Department of Biomedical Engineering, 451 E. Health Sciences Drive, GBSF 2303, Davis, CA, 95616, USA.
| |
Collapse
|
15
|
de Freitas GR, Santo CCDE, de Machado-Pereira NAMM, Bobinski F, Dos Santos ARS, Ilha J. Early Cyclical Neuromuscular Electrical Stimulation Improves Strength and Trophism by Akt Pathway Signaling in Partially Paralyzed Biceps Muscle After Spinal Cord Injury in Rats. Phys Ther 2018; 98:172-181. [PMID: 29240948 DOI: 10.1093/ptj/pzx116] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 11/30/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND Electrical stimulation is often used to treat weakness in people with spinal cord injury (SCI); however its efficacy for increasing strength and trophism is weak, and the mechanisms underlying the therapeutic benefits are unknown. OBJECTIVE The purpose of this study was to analyze the effects of neuromuscular electrical stimulation (NMES) on muscle function, trophism, and the Akt pathway signaling involved in muscular plasticity after incomplete SCI in rats. DESIGN This was an experimental study. METHODS Twenty-one adult female Wistar rats were divided into sham, SCI, and SCI plus NMES groups. In injured animals, SCI hemisection was induced by a surgical procedure at the C5-C7 level. The 5-week NMES protocol consisted of biceps brachii muscle stimulation 5 times per week, initiated 48 h after injury. Forepaw function and strength, biceps muscle trophism, and the expression of phosphorylated Akt, p70S6K, and GSK-3ß cellular anabolic pathway markers in stimulated muscle tissue were assessed. RESULTS There was an increase in bicep muscle strength in the NMES group compared with the untreated SCI group, from postoperative day 21 until the end of the evaluation period. Also, there was an increase in muscle trophism in the NMES group compared with the SCI group. Forelimb function gradually recovered in both the SCI group and the NMES group, with no differences between them. Regarding muscle protein expression, the NMES group had higher values for phospho-Akt, phospho-p70S6K, and phospho-GSK-3ß than did the SCI group. LIMITATIONS The experimental findings were limited to an animal model of incomplete SCI and may not be fully generalizable to humans. CONCLUSIONS Early cyclical NMES therapy was shown to increase muscle strength and induce hypertrophy after incomplete SCI in a rat model, probably by increasing phospho-Akt, phospho-p70S6K, and phospho-GSK-3ß signaling protein synthesis.
Collapse
Affiliation(s)
- Gabriel R de Freitas
- Núcleo de Pesquisa em Lesão Medular (Core of Spinal Cord Injury Research) (NULEME), Programa de Pós-Graduação em Fisioterapia (PPGFt), Departamento de Fisioterapia, Centro de Ciências da Saúde e do Esporte (CEFID), Universidade do Estado de Santa Catarina (UDESC), Florianópolis, Santa Catarina, Brazil
| | - Caroline C do Espírito Santo
- Núcleo de Pesquisa em Lesão Medular (NULEME), Laboratório Neurobiologia da Dor e Inflamação (Neurobiology Laboratory of Pain and Inflammation) (LANDI), Departamento de Ciências Fisiológicas, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil
| | - Nicolas A M M de Machado-Pereira
- Núcleo de Pesquisa em Lesão Medular (NULEME), Departamento de Fisioterapia, Centro de Ciências da Saúde e do Esporte (CEFID), Universidade do Estado de Santa Catarina (UDESC)
| | - Franciane Bobinski
- Núcleo de Pesquisa em Lesão Medular (NULEME), Programa de Pós-Graduação em Fisioterapia (PPGFt), Departamento de Fisioterapia, Centro de Ciências da Saúde e do Esporte (CEFID), Universidade do Estado de Santa Catarina (UDESC), and Programa de Pós-Graduação em Ciências da Saúde, Universidade do Sul de Santa Catarina (UNISUL), Palhoça, Santa Catarina, Brazil
| | - Adair R S Dos Santos
- Laboratório Neurobiologia da Dor e Inflamação (LANDI), Departamento de Ciências Fisiológicas, Universidade Federal de Santa Catarina (UFSC)
| | - Jocemar Ilha
- Núcleo de Pesquisa em Lesão Medular (NULEME), Programa de Pós-Graduação em Fisioterapia (PPGFt), Departamento de Fisioterapia, Centro de Ciências da Saúde e do Esporte (CEFID), Universidade do Estado de Santa Catarina (UDESC), Rua Pascoal Simone, 358-Coqueiros, Florianópolis, Santa Catarina, CEP 88080-350, Brazil
| |
Collapse
|
16
|
Humanes-Valera D, Foffani G, Alonso-Calviño E, Fernández-López E, Aguilar J. Dual Cortical Plasticity After Spinal Cord Injury. Cereb Cortex 2018; 27:2926-2940. [PMID: 27226441 DOI: 10.1093/cercor/bhw142] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
During cortical development, plasticity reflects the dynamic equilibrium between increasing and decreasing functional connectivity subserved by synaptic sprouting and pruning. After adult cortical deafferentation, plasticity seems to be dominated by increased functional connectivity, leading to the classical expansive reorganization from the intact to the deafferented cortex. In contrast, here we show a striking "decrease" in the fast cortical responses to high-intensity forepaw stimulation 1-3 months after complete thoracic spinal cord transection, as evident in both local field potentials and intracellular in vivo recordings. Importantly, this decrease in fast cortical responses co-exists with an "increase" in cortical activation over slower post-stimulus timescales, as measured by an increased forepaw-to-hindpaw propagation of stimulus-triggered cortical up-states, as well as by the enhanced slow sustained depolarization evoked by high-frequency forepaw stimuli in the deafferented hindpaw cortex. This coincidence of diminished fast cortical responses and enhanced slow cortical activation offers a dual perspective of adult cortical plasticity after spinal cord injury.
Collapse
Affiliation(s)
- Desire Humanes-Valera
- Hospital Nacional de Parapléjicos, Servicio de Salud de Castilla-La Mancha, 45071 Toledo, Spain.,Department of Systems Neuroscience, Institute of Physiology, Faculty of Medicine, Ruhr-University Bochum, D-44801 Bochum, Germany
| | - Guglielmo Foffani
- Hospital Nacional de Parapléjicos, Servicio de Salud de Castilla-La Mancha, 45071 Toledo, Spain.,CINAC, HM Puerta del Sur, Hospitales de Madrid, Móstoles, and CEU-San Pablo University, Madrid, Spain
| | - Elena Alonso-Calviño
- Hospital Nacional de Parapléjicos, Servicio de Salud de Castilla-La Mancha, 45071 Toledo, Spain
| | - Elena Fernández-López
- Hospital Nacional de Parapléjicos, Servicio de Salud de Castilla-La Mancha, 45071 Toledo, Spain
| | - Juan Aguilar
- Hospital Nacional de Parapléjicos, Servicio de Salud de Castilla-La Mancha, 45071 Toledo, Spain
| |
Collapse
|
17
|
Teaching Adult Rats Spinalized as Neonates to Walk Using Trunk Robotic Rehabilitation: Elements of Success, Failure, and Dependence. J Neurosci 2017; 36:8341-55. [PMID: 27511008 DOI: 10.1523/jneurosci.2435-14.2016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 06/10/2016] [Indexed: 01/22/2023] Open
Abstract
UNLABELLED Robot therapy promotes functional recovery after spinal cord injury (SCI) in animal and clinical studies. Trunk actions are important in adult rats spinalized as neonates (NTX rats) that walk autonomously. Quadrupedal robot rehabilitation was tested using an implanted orthosis at the pelvis. Trunk cortical reorganization follows such rehabilitation. Here, we test the functional outcomes of such training. Robot impedance control at the pelvis allowed hindlimb, trunk, and forelimb mechanical interactions. Rats gradually increased weight support. Rats showed significant improvement in hindlimb stepping ability, quadrupedal weight support, and all measures examined. Function in NTX rats both before and after training showed bimodal distributions, with "poor" and "high weight support" groupings. A total of 35% of rats initially classified as "poor" were able to increase their weight-supported step measures to a level considered "high weight support" after robot training, thus moving between weight support groups. Recovered function in these rats persisted on treadmill with the robot both actuated and nonactuated, but returned to pretraining levels if they were completely disconnected from the robot. Locomotor recovery in robot rehabilitation of NTX rats thus likely included context dependence and/or incorporation of models of robot mechanics that became essential parts of their learned strategy. Such learned dependence is likely a hurdle to autonomy to be overcome for many robot locomotor therapies. Notwithstanding these limitations, trunk-based quadrupedal robot rehabilitation helped the rats to visit mechanical states they would never have achieved alone, to learn novel coordinations, and to achieve major improvements in locomotor function. SIGNIFICANCE STATEMENT Neonatal spinal transected rats without any weight support can be taught weight support as adults by using robot rehabilitation at trunk. No adult control rats with neonatal spinal transections spontaneously achieve similar changes. The robot rehabilitation system can be inactivated and the skills that were learned persist. Responding rats cannot be detached from the robot altogether, a dependence develops in the skill learned. From data and analysis here, the likelihood of such rats to respond to the robot therapy can also now be predicted. These results are all novel. Understanding trunk roles in voluntary and spinal reflex integration after spinal cord injury and in recovery of function are broadly significant for basic and clinical understanding of motor function.
Collapse
|
18
|
Manohar A, Foffani G, Ganzer PD, Bethea JR, Moxon KA. Cortex-dependent recovery of unassisted hindlimb locomotion after complete spinal cord injury in adult rats. eLife 2017; 6. [PMID: 28661400 PMCID: PMC5499944 DOI: 10.7554/elife.23532] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Accepted: 06/22/2017] [Indexed: 12/29/2022] Open
Abstract
After paralyzing spinal cord injury the adult nervous system has little ability to ‘heal’ spinal connections, and it is assumed to be unable to develop extra-spinal recovery strategies to bypass the lesion. We challenge this assumption, showing that completely spinalized adult rats can recover unassisted hindlimb weight support and locomotion without explicit spinal transmission of motor commands through the lesion. This is achieved with combinations of pharmacological and physical therapies that maximize cortical reorganization, inducing an expansion of trunk motor cortex and forepaw sensory cortex into the deafferented hindlimb cortex, associated with sprouting of corticospinal axons. Lesioning the reorganized cortex reverses the recovery. Adult rats can thus develop a novel cortical sensorimotor circuit that bypasses the lesion, probably through biomechanical coupling, to partly recover unassisted hindlimb locomotion after complete spinal cord injury. DOI:http://dx.doi.org/10.7554/eLife.23532.001
Collapse
Affiliation(s)
- Anitha Manohar
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, United States
| | - Guglielmo Foffani
- CINAC, Hospital Universitario HM Puerta del Sur, Universidad CEU-San Pablo, Madrid, Spain.,Hospital Nacional de Parapléjicos, Servicio de Salud de Castilla-La Mancha, Toledo, Spain
| | - Patrick D Ganzer
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, United States
| | - John R Bethea
- Department of Biology, Drexel University, Philadelphia, United States
| | - Karen A Moxon
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, United States.,Department of Biomedical Engineering, University of California, Davis, United States
| |
Collapse
|
19
|
Hormigo KM, Zholudeva LV, Spruance VM, Marchenko V, Cote MP, Vinit S, Giszter S, Bezdudnaya T, Lane MA. Enhancing neural activity to drive respiratory plasticity following cervical spinal cord injury. Exp Neurol 2017; 287:276-287. [PMID: 27582085 PMCID: PMC5121051 DOI: 10.1016/j.expneurol.2016.08.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 07/20/2016] [Accepted: 08/26/2016] [Indexed: 02/07/2023]
Abstract
Cervical spinal cord injury (SCI) results in permanent life-altering sensorimotor deficits, among which impaired breathing is one of the most devastating and life-threatening. While clinical and experimental research has revealed that some spontaneous respiratory improvement (functional plasticity) can occur post-SCI, the extent of the recovery is limited and significant deficits persist. Thus, increasing effort is being made to develop therapies that harness and enhance this neuroplastic potential to optimize long-term recovery of breathing in injured individuals. One strategy with demonstrated therapeutic potential is the use of treatments that increase neural and muscular activity (e.g. locomotor training, neural and muscular stimulation) and promote plasticity. With a focus on respiratory function post-SCI, this review will discuss advances in the use of neural interfacing strategies and activity-based treatments, and highlights some recent results from our own research.
Collapse
Affiliation(s)
- Kristiina M Hormigo
- Spinal Cord Research Center, Department of Neurobiology and Anatomy, College of Medicine, Drexel University, 2900 W Queen Lane, Philadelphia, PA, USA
| | - Lyandysha V Zholudeva
- Spinal Cord Research Center, Department of Neurobiology and Anatomy, College of Medicine, Drexel University, 2900 W Queen Lane, Philadelphia, PA, USA
| | - Victoria M Spruance
- Spinal Cord Research Center, Department of Neurobiology and Anatomy, College of Medicine, Drexel University, 2900 W Queen Lane, Philadelphia, PA, USA
| | - Vitaliy Marchenko
- Spinal Cord Research Center, Department of Neurobiology and Anatomy, College of Medicine, Drexel University, 2900 W Queen Lane, Philadelphia, PA, USA
| | - Marie-Pascale Cote
- Spinal Cord Research Center, Department of Neurobiology and Anatomy, College of Medicine, Drexel University, 2900 W Queen Lane, Philadelphia, PA, USA
| | - Stephane Vinit
- Université de Versailles Saint-Quentin-en-Yvelines, INSERM U1179 End:icap, UFR des Sciences de la Santé - Simone Veil, Montigny-le-Bretonneux, France
| | - Simon Giszter
- Spinal Cord Research Center, Department of Neurobiology and Anatomy, College of Medicine, Drexel University, 2900 W Queen Lane, Philadelphia, PA, USA
| | - Tatiana Bezdudnaya
- Spinal Cord Research Center, Department of Neurobiology and Anatomy, College of Medicine, Drexel University, 2900 W Queen Lane, Philadelphia, PA, USA
| | - Michael A Lane
- Spinal Cord Research Center, Department of Neurobiology and Anatomy, College of Medicine, Drexel University, 2900 W Queen Lane, Philadelphia, PA, USA.
| |
Collapse
|
20
|
Song R, Oldach M, Basso D, da Costa R, Fisher L, Mo X, Moore S. A simplified method of walking track analysis to assess short-term locomotor recovery after acute spinal cord injury caused by thoracolumbar intervertebral disc extrusion in dogs. Vet J 2016; 210:61-67. [PMID: 26900008 PMCID: PMC4811708 DOI: 10.1016/j.tvjl.2016.01.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 12/03/2015] [Accepted: 01/13/2016] [Indexed: 12/12/2022]
Abstract
The purpose of this study was to evaluate a simplified method of walking track analysis to assess treatment outcome in canine spinal cord injury. Measurements of stride length (SL) and base of support (BS) were made using a 'finger painting' technique for footprint analysis in all limbs of 20 normal dogs and 27 dogs with 28 episodes of acute thoracolumbar spinal cord injury (SCI) caused by spontaneous intervertebral disc extrusion. Measurements were determined at three separate time points in normal dogs and on days 3, 10 and 30 following decompressive surgery in dogs with SCI. Values for SL, BS and coefficient of variance (COV) for each parameter were compared between groups at each time point. Mean SL was significantly shorter in all four limbs of SCI-affected dogs at days 3, 10, and 30 compared to normal dogs. SL gradually increased toward normal in the 30 days following surgery. As measured by this technique, the COV-SL was significantly higher in SCI-affected dogs than normal dogs in both thoracic limbs (TL) and pelvic limbs (PL) only at day 3 after surgery. BS-TL was significantly wider in SCI-affected dogs at days 3, 10 and 30 following surgery compared to normal dogs. These findings support the use of footprint parameters to compare locomotor differences between normal and SCI-affected dogs, and to assess recovery from SCI. Additionally, our results underscore important changes in TL locomotion in thoracolumbar SCI-affected dogs.
Collapse
Affiliation(s)
- R.B. Song
- Department of Veterinary Clinical Sciences, College of
Veterinary Medicine, The Ohio State University, 601 Vernon Tharp St., Columbus, OH 43210
USA
| | - M.S. Oldach
- Department of Veterinary Clinical Sciences, College of
Veterinary Medicine, The Ohio State University, 601 Vernon Tharp St., Columbus, OH 43210
USA
| | - D.M. Basso
- School of Health and Rehabilitation Sciences, The Ohio State
Unversity, 453 West Tenth Ave, Columbus, OH 43210 USA
| | - R.C. da Costa
- Department of Veterinary Clinical Sciences, College of
Veterinary Medicine, The Ohio State University, 601 Vernon Tharp St., Columbus, OH 43210
USA
| | - L.C. Fisher
- School of Health and Rehabilitation Sciences, The Ohio State
Unversity, 453 West Tenth Ave, Columbus, OH 43210 USA
| | - X. Mo
- Center for Biostatistics, The Ohio State University, 601 Vernon
Tharp St., Columbus, OH 43210 USA
| | - S.A. Moore
- Department of Veterinary Clinical Sciences, College of
Veterinary Medicine, The Ohio State University, 601 Vernon Tharp St., Columbus, OH 43210
USA
| |
Collapse
|
21
|
von Zitzewitz J, Asboth L, Fumeaux N, Hasse A, Baud L, Vallery H, Courtine G. A neurorobotic platform for locomotor prosthetic development in rats and mice. J Neural Eng 2016; 13:026007. [DOI: 10.1088/1741-2560/13/2/026007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
22
|
Trunk robot rehabilitation training with active stepping reorganizes and enriches trunk motor cortex representations in spinal transected rats. J Neurosci 2015; 35:7174-89. [PMID: 25948267 DOI: 10.1523/jneurosci.4366-14.2015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Trunk motor control is crucial for postural stability and propulsion after low thoracic spinal cord injury (SCI) in animals and humans. Robotic rehabilitation aimed at trunk shows promise in SCI animal models and patients. However, little is known about the effect of SCI and robot rehabilitation of trunk on cortical motor representations. We previously showed reorganization of trunk motor cortex after adult SCI. Non-stepping training also exacerbated some SCI-driven plastic changes. Here we examine effects of robot rehabilitation that promotes recovery of hindlimb weight support functions on trunk motor cortex representations. Adult rats spinal transected as neonates (NTX rats) at the T9/10 level significantly improve function with our robot rehabilitation paradigm, whereas treadmill-only trained do not. We used intracortical microstimulation to map motor cortex in two NTX groups: (1) treadmill trained (control group); and (2) robot-assisted treadmill trained (improved function group). We found significant robot rehabilitation-driven changes in motor cortex: (1) caudal trunk motor areas expanded; (2) trunk coactivation at cortex sites increased; (3) richness of trunk cortex motor representations, as examined by cumulative entropy and mutual information for different trunk representations, increased; (4) trunk motor representations in the cortex moved toward more normal topography; and (5) trunk and forelimb motor representations that SCI-driven plasticity and compensations had caused to overlap were segregated. We conclude that effective robot rehabilitation training induces significant reorganization of trunk motor cortex and partially reverses some plastic changes that may be adaptive in non-stepping paraplegia after SCI.
Collapse
|
23
|
Bocci T, Barloscio D, Vergari M, Di Rollo A, Rossi S, Priori A, Sartucci F. Spinal Direct Current Stimulation Modulates Short Intracortical Inhibition. Neuromodulation 2015; 18:686-93. [DOI: 10.1111/ner.12298] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 02/09/2015] [Accepted: 02/25/2015] [Indexed: 11/28/2022]
Affiliation(s)
- Tommaso Bocci
- Department of Clinical and Experimental Medicine, Unit of Neurology; Pisa University Medical School; Pisa Italy
- Department of Neurological and Neurosensorial Sciences, Neurology and Clinical Neurophysiology Section, Brain Investigation and Neuromodulation Lab.; Azienda Ospedaliera Universitaria Senese; Siena Italy
| | - Davide Barloscio
- Department of Clinical and Experimental Medicine, Unit of Neurology; Pisa University Medical School; Pisa Italy
| | - Maurizio Vergari
- Department of Neurological Sciences; University of Milan, Fondazione IRCCS Ospedale Maggiore Policlinico; Milan Italy
| | - Andrea Di Rollo
- Department of Clinical and Experimental Medicine, Cisanello Neurology Unit; Azienda Ospedaliera Universitaria Pisana; Pisa Italy
| | - Simone Rossi
- Department of Neurological and Neurosensorial Sciences, Neurology and Clinical Neurophysiology Section, Brain Investigation and Neuromodulation Lab.; Azienda Ospedaliera Universitaria Senese; Siena Italy
| | - Alberto Priori
- Department of Neurological Sciences; University of Milan, Fondazione IRCCS Ospedale Maggiore Policlinico; Milan Italy
| | - Ferdinando Sartucci
- Department of Clinical and Experimental Medicine, Unit of Neurology; Pisa University Medical School; Pisa Italy
- Department of Clinical and Experimental Medicine, Cisanello Neurology Unit; Azienda Ospedaliera Universitaria Pisana; Pisa Italy
- CNR Neuroscience Institute; Pisa Italy
| |
Collapse
|
24
|
Nardone R, Höller Y, Brigo F, Orioli A, Tezzon F, Schwenker K, Christova M, Golaszewski S, Trinka E. Descending motor pathways and cortical physiology after spinal cord injury assessed by transcranial magnetic stimulation: a systematic review. Brain Res 2014; 1619:139-54. [PMID: 25251591 DOI: 10.1016/j.brainres.2014.09.036] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 08/06/2014] [Accepted: 09/15/2014] [Indexed: 02/02/2023]
Abstract
We performed here a systematic review of the studies using transcranial magnetic stimulation (TMS) as a research and clinical tool in patients with spinal cord injury (SCI). Motor evoked potentials (MEPs) elicited by TMS represent a highly accurate diagnostic test that can supplement clinical examination and neuroimaging findings in the assessment of SCI functional level. MEPs allows to monitor the changes in motor function and evaluate the effects of the different therapeutic approaches. Moreover, TMS represents a useful non-invasive approach for studying cortical physiology, and may be helpful in elucidating the pathophysiological mechanisms of brain reorganization after SCI. Measures of motor cortex reactivity, e.g., the short interval intracortical inhibition and the cortical silent period, seem to point to an increased cortical excitability. However, the results of TMS studies are sometimes contradictory or divergent, and should be replicated in a larger sample of subjects. Understanding the functional changes at brain level and defining their effects on clinical outcome is of crucial importance for development of evidence-based rehabilitation therapy. TMS techniques may help in identifying neurophysiological biomarkers that can reliably assess the extent of neural damage, elucidate the mechanisms of neural repair, predict clinical outcome, and identify therapeutic targets. Some researchers have begun to therapeutically use repetitive TMS (rTMS) in patients with SCI. Initial studies revealed that rTMS can induce acute and short duration beneficial effects especially on spasticity and neuropathic pain, but the evidence is to date still very preliminary and well-designed clinical trials are warranted. This article is part of a Special Issue entitled SI: Spinal cord injury.
Collapse
Affiliation(s)
- Raffaele Nardone
- Department of Neurology, Christian Doppler Klinik, Paracelsus Medical University and Center for Cognitive Neuroscience, Salzburg, Austria; Department of Neurology, Franz Tappeiner Hospital, Merano, Via Rossini 5, 39012 Meran/o (BZ), Italy; Spinal Cord Injury and Tissue Regeneration Center, Paracelsus Medical University, Salzburg, Austria.
| | - Yvonne Höller
- Department of Neurology, Christian Doppler Klinik, Paracelsus Medical University and Center for Cognitive Neuroscience, Salzburg, Austria; Spinal Cord Injury and Tissue Regeneration Center, Paracelsus Medical University, Salzburg, Austria
| | - Francesco Brigo
- Department of Neurology, Franz Tappeiner Hospital, Merano, Via Rossini 5, 39012 Meran/o (BZ), Italy; Department of Neurological, Neuropsychological, Morphological and Movement Sciences, Section of Clinical Neurology, University of Verona, Italy
| | - Andrea Orioli
- Department of Neurology, Franz Tappeiner Hospital, Merano, Via Rossini 5, 39012 Meran/o (BZ), Italy
| | - Frediano Tezzon
- Department of Neurology, Franz Tappeiner Hospital, Merano, Via Rossini 5, 39012 Meran/o (BZ), Italy
| | - Kerstin Schwenker
- Department of Neurology, Christian Doppler Klinik, Paracelsus Medical University and Center for Cognitive Neuroscience, Salzburg, Austria; Spinal Cord Injury and Tissue Regeneration Center, Paracelsus Medical University, Salzburg, Austria
| | - Monica Christova
- Department of Physiology, Medical University of Graz, Graz, Austria
| | - Stefan Golaszewski
- Department of Neurology, Christian Doppler Klinik, Paracelsus Medical University and Center for Cognitive Neuroscience, Salzburg, Austria
| | - Eugen Trinka
- Department of Neurology, Christian Doppler Klinik, Paracelsus Medical University and Center for Cognitive Neuroscience, Salzburg, Austria; Spinal Cord Injury and Tissue Regeneration Center, Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
25
|
Moxon KA, Oliviero A, Aguilar J, Foffani G. Cortical reorganization after spinal cord injury: always for good? Neuroscience 2014; 283:78-94. [PMID: 24997269 DOI: 10.1016/j.neuroscience.2014.06.056] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 06/09/2014] [Accepted: 06/25/2014] [Indexed: 12/29/2022]
Abstract
Plasticity constitutes the basis of behavioral changes as a result of experience. It refers to neural network shaping and re-shaping at the global level and to synaptic contacts remodeling at the local level, either during learning or memory encoding, or as a result of acute or chronic pathological conditions. 'Plastic' brain reorganization after central nervous system lesions has a pivotal role in the recovery and rehabilitation of sensory and motor dysfunction, but can also be "maladaptive". Moreover, it is clear that brain reorganization is not a "static" phenomenon but rather a very dynamic process. Spinal cord injury immediately initiates a change in brain state and starts cortical reorganization. In the long term, the impact of injury - with or without accompanying therapy - on the brain is a complex balance between supraspinal reorganization and spinal recovery. The degree of cortical reorganization after spinal cord injury is highly variable, and can range from no reorganization (i.e. "silencing") to massive cortical remapping. This variability critically depends on the species, the age of the animal when the injury occurs, the time after the injury has occurred, and the behavioral activity and possible therapy regimes after the injury. We will briefly discuss these dependencies, trying to highlight their translational value. Overall, it is not only necessary to better understand how the brain can reorganize after injury with or without therapy, it is also necessary to clarify when and why brain reorganization can be either "good" or "bad" in terms of its clinical consequences. This information is critical in order to develop and optimize cost-effective therapies to maximize functional recovery while minimizing maladaptive states after spinal cord injury.
Collapse
Affiliation(s)
- K A Moxon
- School of Biomedical Engineering, Science and Health Systems, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104, USA.
| | - A Oliviero
- Hospital Nacional de Parapléjicos, SESCAM, Finca la Peraleda s/n, 45071 Toledo, Spain
| | - J Aguilar
- Hospital Nacional de Parapléjicos, SESCAM, Finca la Peraleda s/n, 45071 Toledo, Spain
| | - G Foffani
- Hospital Nacional de Parapléjicos, SESCAM, Finca la Peraleda s/n, 45071 Toledo, Spain.
| |
Collapse
|