1
|
Yang Y, Zhao B, Wang Y, Lan H, Liu X, Hu Y, Cao P. Diabetic neuropathy: cutting-edge research and future directions. Signal Transduct Target Ther 2025; 10:132. [PMID: 40274830 PMCID: PMC12022100 DOI: 10.1038/s41392-025-02175-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 12/12/2024] [Accepted: 02/08/2025] [Indexed: 04/26/2025] Open
Abstract
Diabetic neuropathy (DN) is a prevalent and debilitating complication of diabetes mellitus, significantly impacting patient quality of life and contributing to morbidity and mortality. Affecting approximately 50% of patients with diabetes, DN is predominantly characterized by distal symmetric polyneuropathy, leading to sensory loss, pain, and motor dysfunction, often resulting in diabetic foot ulcers and lower-limb amputations. The pathogenesis of DN is multifaceted, involving hyperglycemia, dyslipidemia, oxidative stress, mitochondrial dysfunction, and inflammation, which collectively damage peripheral nerves. Despite extensive research, disease-modifying treatments remain elusive, with current management primarily focusing on symptom control. This review explores the complex mechanisms underlying DN and highlights recent advances in diagnostic and therapeutic strategies. Emerging insights into the molecular and cellular pathways have unveiled potential targets for intervention, including neuroprotective agents, gene and stem cell therapies, and innovative pharmacological approaches. Additionally, novel diagnostic tools, such as corneal confocal microscopy and biomarker-based tests, have improved early detection and intervention. Lifestyle modifications and multidisciplinary care strategies can enhance patient outcomes. While significant progress has been made, further research is required to develop therapies that can effectively halt or reverse disease progression, ultimately improving the lives of individuals with DN. This review provides a comprehensive overview of current understanding and future directions in DN research and management.
Collapse
Affiliation(s)
- Yang Yang
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing, China.
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Bing Zhao
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuanzhe Wang
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hongli Lan
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xinyu Liu
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yue Hu
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Peng Cao
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing, China.
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
2
|
Savelieff MG, Elafros MA, Viswanathan V, Jensen TS, Bennett DL, Feldman EL. The global and regional burden of diabetic peripheral neuropathy. Nat Rev Neurol 2025; 21:17-31. [PMID: 39639140 DOI: 10.1038/s41582-024-01041-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/29/2024] [Indexed: 12/07/2024]
Abstract
Diabetic peripheral neuropathy (DPN) is length-dependent peripheral nerve damage arising as a complication of type 1 or type 2 diabetes in up to 50% of patients. DPN poses a substantial burden on patients, who can experience impaired gait and loss of balance, predisposing them to falls and fractures, and neuropathic pain, which is frequently difficult to treat and reduces quality of life. Advanced DPN can lead to diabetic foot ulcers and non-healing wounds that often necessitate lower-limb amputation. From a socioeconomic perspective, DPN increases both direct health-care costs and indirect costs from loss of productivity owing to neuropathy-related disability. In this Review, we highlight the importance of understanding country-specific and region-specific variations in DPN prevalence to inform public health policy and allocate resources appropriately. We also explore how identification of DPN risk factors can guide treatment and prevention strategies and aid the development of health-care infrastructure for populations at risk. We review evidence that metabolic factors beyond hyperglycaemia contribute to DPN development, necessitating a shift from pure glycaemic control to multi-targeted metabolic control, including weight loss and improvements in lipid profiles.
Collapse
Affiliation(s)
- Masha G Savelieff
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND, USA
| | - Melissa A Elafros
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, USA
| | - Vijay Viswanathan
- MV Hospital for Diabetes and Prof. M. Viswanathan Diabetes Research Centre, Royapuram, Chennai, India
| | - Troels S Jensen
- Department of Neurology, Aarhus University Hospital, Aarhus, Denmark
- Danish Pain Research Center, Aarhus University, Aarhus, Denmark
| | - David L Bennett
- Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, UK
| | - Eva L Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA.
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
3
|
Elafros MA, Reynolds EL, Callaghan BC. Obesity-related neuropathy: the new epidemic. Curr Opin Neurol 2024; 37:467-477. [PMID: 38864534 PMCID: PMC11371529 DOI: 10.1097/wco.0000000000001292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
PURPOSE OF REVIEW To examine the evidence evaluating the association between obesity and neuropathy as well as potential interventions. RECENT FINDINGS Although diabetes has long been associated with neuropathy, additional metabolic syndrome components, including obesity, are increasingly linked to neuropathy development, regardless of glycemic status. Preclinical rodent models as well as clinical studies are shedding light on the mechanisms of obesity-related neuropathy as well as challenges associated with slowing progression. Dietary and surgical weight loss and exercise interventions are promising, but more data is needed. SUMMARY High-fat-diet rodent models have shown that obesity-related neuropathy is a product of excess glucose and lipid accumulation leading to inflammation and cell death. Clinical studies consistently demonstrate obesity is independently associated with neuropathy; therefore, likely a causal risk factor. Dietary weight loss improves neuropathy symptoms but not examination scores. Bariatric surgery and exercise are promising interventions, but larger, more rigorous studies are needed. Further research is also needed to determine the utility of weight loss medications and ideal timing for obesity interventions to prevent neuropathy.
Collapse
Affiliation(s)
| | - Evan Lee Reynolds
- Department of Epidemiology and Biostatistics, Michigan State University College of Human Medicine, East Lansing, Michigan, USA
| | | |
Collapse
|
4
|
Trimarco A, Audano M, Marca RL, Cariello M, Falco M, Pedretti S, Imperato G, Cestaro A, Podini P, Dina G, Quattrini A, Massimino L, Caruso D, Mitro N, Taveggia C. Prostaglandin D2 synthase controls Schwann cells metabolism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.29.582775. [PMID: 38496560 PMCID: PMC10942270 DOI: 10.1101/2024.02.29.582775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
We previously reported that in the absence of Prostaglandin D2 synthase (L-PGDS) peripheral nerves are hypomyelinated in development and that with aging they present aberrant myelin sheaths. We now demonstrate that L-PGDS expressed in Schwann cells is part of a coordinated program aiming at preserving myelin integrity. In vivo and in vitro lipidomic, metabolomic and transcriptomic analyses confirmed that myelin lipids composition, Schwann cells energetic metabolism and key enzymes controlling these processes are altered in the absence of L-PGDS. Moreover, Schwann cells undergo a metabolic rewiring and turn to acetate as the main energetic source. Further, they produce ketone bodies to ensure glial cell and neuronal survival. Importantly, we demonstrate that all these changes correlate with morphological myelin alterations and describe the first physiological pathway implicated in preserving PNS myelin. Collectively, we posit that myelin lipids serve as a reservoir to provide ketone bodies, which together with acetate represent the adaptive substrates Schwann cells can rely on to sustain the axo-glial unit and preserve the integrity of the PNS.
Collapse
|
5
|
Oliveira TPD, Morais ALB, dos Reis PLB, Palotás A, Vieira LB. A Potential Role for the Ketogenic Diet in Alzheimer's Disease Treatment: Exploring Pre-Clinical and Clinical Evidence. Metabolites 2023; 14:25. [PMID: 38248828 PMCID: PMC10818526 DOI: 10.3390/metabo14010025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 01/23/2024] Open
Abstract
Given the remarkable progress in global health and overall quality of life, the significant rise in life expectancy has become intertwined with the surging occurrence of neurodegenerative disorders (NDs). This emerging trend is poised to pose a substantial challenge to the fields of medicine and public health in the years ahead. In this context, Alzheimer's disease (AD) is regarded as an ND that causes recent memory loss, motor impairment and cognitive deficits. AD is the most common cause of dementia in the elderly and its development is linked to multifactorial interactions between the environment, genetics, aging and lifestyle. The pathological hallmarks in AD are the accumulation of β-amyloid peptide (Aβ), the hyperphosphorylation of tau protein, neurotoxic events and impaired glucose metabolism. Due to pharmacological limitations and in view of the prevailing glycemic hypometabolism, the ketogenic diet (KD) emerges as a promising non-pharmacological possibility for managing AD, an approach that has already demonstrated efficacy in addressing other disorders, notably epilepsy. The KD consists of a food regimen in which carbohydrate intake is discouraged at the expense of increased lipid consumption, inducing metabolic ketosis whereby the main source of energy becomes ketone bodies instead of glucose. Thus, under these dietary conditions, neuronal death via lack of energy would be decreased, inasmuch as the metabolism of lipids is not impaired in AD. In this way, the clinical picture of patients with AD would potentially improve via the slowing down of symptoms and delaying of the progression of the disease. Hence, this review aims to explore the rationale behind utilizing the KD in AD treatment while emphasizing the metabolic interplay between the KD and the improvement of AD indicators, drawing insights from both preclinical and clinical investigations. Via a comprehensive examination of the studies detailed in this review, it is evident that the KD emerges as a promising alternative for managing AD. Moreover, its efficacy is notably enhanced when dietary composition is modified, thereby opening up innovative avenues for decreasing the progression of AD.
Collapse
Affiliation(s)
- Tadeu P. D. Oliveira
- Departamento de Fisiologia e Centro de Investigação em Medicina Molecular (CIMUS), Universidad De Santiago de Compostela, 15782 Santiago de Compostela, Spain;
| | - Ana L. B. Morais
- Departamento de Farmacologia, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (A.L.B.M.); (P.L.B.d.R.)
| | - Pedro L. B. dos Reis
- Departamento de Farmacologia, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (A.L.B.M.); (P.L.B.d.R.)
| | - András Palotás
- Asklepios-Med (Private Medical Practice and Research Center), H-6722 Szeged, Hungary;
- Kazan Federal University, Kazan R-420012, Russia
- Tokaj-Hegyalja University, H-3910 Tokaj, Hungary
| | - Luciene B. Vieira
- Departamento de Farmacologia, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (A.L.B.M.); (P.L.B.d.R.)
| |
Collapse
|
6
|
Di Renzo L, Gualtieri P, Zomparelli S, De Santis GL, Seraceno S, Zuena C, Frank G, Cianci R, Centofanti D, De Lorenzo A. Modified Mediterranean-Ketogenic Diet and Carboxytherapy as Personalized Therapeutic Strategies in Lipedema: A Pilot Study. Nutrients 2023; 15:3654. [PMID: 37630844 PMCID: PMC10457774 DOI: 10.3390/nu15163654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/08/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
In recent years, the use of the ketogenic diet as a proper nutritional treatment for lipedema has been hypothesized in the literature. This is the first clinical study evaluating the ketogenic diet and carboxytherapy in lipedema patients. In the present study, it was decided to use a modified Mediterranean ketogenic diet (MMKD) in combination with carboxytherapy. Since lipedema is characterized by microangiopathy, local hypoxia, and increased subcutaneous adipose tissue (SAT) deposition, carboxytherapy could improve painful symptoms and skin tone. A total of 22 subjects were included in the data analysis, divided into three groups; 8 patients underwent MMKD combined with carboxytherapy sessions (KDCB group), 8 underwent MMKD nutritional treatment alone (KD group), and 6 patients underwent only carboxytherapy sessions (CB group), for a total of 10 weeks of treatment for all three groups. It was observed that the ketogenic diet effectively induced weight and fat mass loss, including in the limbs, areas considered unresponsive to diet therapy in lipedema patients. However, the best results were obtained from the combination of the ketogenic diet and carboxytherapy, which showed improvements in both body composition and skin texture and a reduction in pain, along with an improvement in sleep quality. It would be helpful to conduct a clinical trial on a larger scale and over a more extended period to observe the results in the long term as well.
Collapse
Affiliation(s)
- Laura Di Renzo
- Section of Clinical Nutrition and Nutrigenomics, Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Paola Gualtieri
- Section of Clinical Nutrition and Nutrigenomics, Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Samanta Zomparelli
- School of Specialization in Food Science, University of Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Gemma Lou De Santis
- PhD School of Applied Medical-Surgical Sciences, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Silvia Seraceno
- School of Specialization in Food Science, University of Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Claudia Zuena
- School of Specialization in Food Science, University of Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Giulia Frank
- School of Specialization in Food Science, University of Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
- PhD School of Applied Medical-Surgical Sciences, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Rossella Cianci
- Department of Translational Medicine and Surgery, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | | | - Antonino De Lorenzo
- Section of Clinical Nutrition and Nutrigenomics, Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| |
Collapse
|
7
|
Enders JD, Thomas S, Lynch P, Jack J, Ryals JM, Puchalska P, Crawford P, Wright DE. ATP-gated potassium channels contribute to ketogenic diet-mediated analgesia in mice. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2023; 14:100138. [PMID: 38099277 PMCID: PMC10719532 DOI: 10.1016/j.ynpai.2023.100138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/01/2023] [Accepted: 07/02/2023] [Indexed: 12/17/2023]
Abstract
Chronic pain is a substantial health burden and options for treating chronic pain remain minimally effective. Ketogenic diets are emerging as well-tolerated, effective therapeutic strategies in preclinical models of chronic pain, especially diabetic neuropathy. We tested whether a ketogenic diet is antinociceptive through ketone oxidation and related activation of ATP-gated potassium (KATP) channels in mice. We demonstrate that consumption of a ketogenic diet for one week reduced evoked nocifensive behaviors (licking, biting, lifting) following intraplantar injection of different noxious stimuli (methylglyoxal, cinnamaldehyde, capsaicin, or Yoda1) in mice. A ketogenic diet also decreased the expression of p-ERK, an indicator of neuronal activation in the spinal cord, following peripheral administration of these stimuli. Using a genetic mouse model with deficient ketone oxidation in peripheral sensory neurons, we demonstrate that protection against methylglyoxal-induced nociception by a ketogenic diet partially depends on ketone oxidation by peripheral neurons. Injection of tolbutamide, a KATP channel antagonist, prevented ketogenic diet-mediated antinociception following intraplantar capsaicin injection. Tolbutamide also restored the expression of spinal activation markers in ketogenic diet-fed, capsaicin-injected mice. Moreover, activation of KATP channels with the KATP channel agonist diazoxide reduced pain-like behaviors in capsaicin-injected, chow-fed mice, similar to the effects observed with a ketogenic diet. Diazoxide also reduced the number of p-ERK+ cells in capsaicin-injected mice. These data support a mechanism that includes neuronal ketone oxidation and activation of KATP channels to provide ketogenic diet-related analgesia. This study also identifies KATP channels as a new target to mimic the antinociceptive effects of a ketogenic diet.
Collapse
Affiliation(s)
- Jonathan D. Enders
- Departments of Anesthesiology, University of Kansas Medical Center, Kansas City, KS 66160, United States
| | - Sarah Thomas
- Departments of Anesthesiology, University of Kansas Medical Center, Kansas City, KS 66160, United States
| | - Paige Lynch
- Departments of Anesthesiology, University of Kansas Medical Center, Kansas City, KS 66160, United States
| | - Jarrid Jack
- Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS 66160, United States
| | - Janelle M. Ryals
- Departments of Anesthesiology, University of Kansas Medical Center, Kansas City, KS 66160, United States
| | - Patrycja Puchalska
- Department of Medicine, Division of Molecular Medicine, University of Minnesota, Minneapolis, MN 55455, United States
| | - Peter Crawford
- Department of Medicine, Division of Molecular Medicine, University of Minnesota, Minneapolis, MN 55455, United States
- Department of Molecular Biology, Biochemistry, and Biophysics, University of Minnesota, Minneapolis, MN 55455, United States
| | - Douglas E. Wright
- Departments of Anesthesiology, University of Kansas Medical Center, Kansas City, KS 66160, United States
- KU Diabetes Institute, University of Kansas Medical Center, Kansas City, KS 66160, United States
| |
Collapse
|
8
|
Enders J, Jack J, Thomas S, Lynch P, Lasnier S, Cao X, Swanson MT, Ryals JM, Thyfault JP, Puchalska P, Crawford PA, Wright DE. Ketolysis is required for the proper development and function of the somatosensory nervous system. Exp Neurol 2023; 365:114428. [PMID: 37100111 PMCID: PMC10765955 DOI: 10.1016/j.expneurol.2023.114428] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/28/2023] [Accepted: 04/21/2023] [Indexed: 04/28/2023]
Abstract
Ketogenic diets are emerging as protective interventions in preclinical and clinical models of somatosensory nervous system disorders. Additionally, dysregulation of succinyl-CoA 3-oxoacid CoA-transferase 1 (SCOT, encoded by Oxct1), the fate-committing enzyme in mitochondrial ketolysis, has recently been described in Friedreich's ataxia and amyotrophic lateral sclerosis. However, the contribution of ketone metabolism in the normal development and function of the somatosensory nervous system remains poorly characterized. We generated sensory neuron-specific, Advillin-Cre knockout of SCOT (Adv-KO-SCOT) mice and characterized the structure and function of their somatosensory system. We used histological techniques to assess sensory neuronal populations, myelination, and skin and spinal dorsal horn innervation. We also examined cutaneous and proprioceptive sensory behaviors with the von Frey test, radiant heat assay, rotarod, and grid-walk tests. Adv-KO-SCOT mice exhibited myelination deficits, altered morphology of putative Aδ soma from the dorsal root ganglion, reduced cutaneous innervation, and abnormal innervation of the spinal dorsal horn compared to wildtype mice. Synapsin 1-Cre-driven knockout of Oxct1 confirmed deficits in epidermal innervation following a loss of ketone oxidation. Loss of peripheral axonal ketolysis was further associated with proprioceptive deficits, yet Adv-KO-SCOT mice did not exhibit drastically altered cutaneous mechanical and thermal thresholds. Knockout of Oxct1 in peripheral sensory neurons resulted in histological abnormalities and severe proprioceptive deficits in mice. We conclude that ketone metabolism is essential for the development of the somatosensory nervous system. These findings also suggest that decreased ketone oxidation in the somatosensory nervous system may explain the neurological symptoms of Friedreich's ataxia.
Collapse
Affiliation(s)
- Jonathan Enders
- Departments of Anesthesiology, University of Kansas Medical Center, Kansas City, KS 66160, United States of America
| | - Jarrid Jack
- Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS 66160, United States of America
| | - Sarah Thomas
- Departments of Anesthesiology, University of Kansas Medical Center, Kansas City, KS 66160, United States of America
| | - Paige Lynch
- Departments of Anesthesiology, University of Kansas Medical Center, Kansas City, KS 66160, United States of America
| | - Sarah Lasnier
- Departments of Anesthesiology, University of Kansas Medical Center, Kansas City, KS 66160, United States of America
| | - Xin Cao
- Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS 66160, United States of America
| | - M Taylor Swanson
- Departments of Anesthesiology, University of Kansas Medical Center, Kansas City, KS 66160, United States of America
| | - Janelle M Ryals
- Departments of Anesthesiology, University of Kansas Medical Center, Kansas City, KS 66160, United States of America
| | - John P Thyfault
- Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS 66160, United States of America; Internal Medicine - Division of Endocrinology, University of Kansas Medical Center, Kansas City, KS 66160, United States of America; KU Diabetes Institute, University of Kansas Medical Center, Kansas City, KS 66160, United States of America
| | - Patrycja Puchalska
- Department of Medicine, Division of Molecular Medicine, University of Minnesota, Minneapolis, MN, 55455, United States of America
| | - Peter A Crawford
- Department of Medicine, Division of Molecular Medicine, University of Minnesota, Minneapolis, MN, 55455, United States of America; Department of Molecular Biology, Biochemistry, and Biophysics, University of Minnesota, Minneapolis, MN 55455, United States of America
| | - Douglas E Wright
- Departments of Anesthesiology, University of Kansas Medical Center, Kansas City, KS 66160, United States of America; KU Diabetes Institute, University of Kansas Medical Center, Kansas City, KS 66160, United States of America.
| |
Collapse
|
9
|
Liu J, Wong SSC. Molecular Mechanisms and Pathophysiological Pathways of High-Fat Diets and Caloric Restriction Dietary Patterns on Pain. Anesth Analg 2023; 137:137-152. [PMID: 36729981 DOI: 10.1213/ane.0000000000006289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Pain perception provides evolutionary advantages by enhancing the probability of survival, but chronic pain continues to be a significant global health concern in modern society. Various factors are associated with pain alteration. Accumulating evidence has revealed that obesity correlates with enhanced pain perception, especially in chronic pain individuals. Existing dietary patterns related to obesity are primarily high-fat diets (HFD) and calorie restriction (CR) diets, which induce or alleviate obesity separately. HFD has been shown to enhance nociception while CR tends to alleviate pain when measuring pain outcomes. Herein, this review mainly summarizes the current knowledge of the effects of HFD and CR on pain responses and underlying molecular mechanisms of the immunological factors, metabolic regulation, inflammatory processes, Schwann cell (SC) autophagy, gut microbiome, and other pathophysiological signaling pathways involved. This review would help to provide insights on potential nonpharmacological strategies of dietary patterns in relieving pain.
Collapse
Affiliation(s)
- Jingjing Liu
- From the Department of Anesthesiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine
- Laboratory and Clinical Research Institute for Pain, Department of Anesthesiology, The University of Hong Kong, Hong Kong SAR, P.R.C
| | - Stanley Sau Ching Wong
- From the Department of Anesthesiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine
- Laboratory and Clinical Research Institute for Pain, Department of Anesthesiology, The University of Hong Kong, Hong Kong SAR, P.R.C
| |
Collapse
|
10
|
Enders JD, Thomas S, Lynch P, Jack J, Ryals JM, Puchalska P, Crawford P, Wright DE. ATP-Gated Potassium Channels Contribute to Ketogenic Diet-Mediated Analgesia in Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.22.541799. [PMID: 37292762 PMCID: PMC10245818 DOI: 10.1101/2023.05.22.541799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Chronic pain is a substantial health burden and options for treating chronic pain remain minimally effective. Ketogenic diets are emerging as well-tolerated, effective therapeutic strategies in preclinical models of chronic pain, especially diabetic neuropathy. We tested whether a ketogenic diet is antinociceptive through ketone oxidation and related activation of ATP-gated potassium (KATP) channels in mice. We demonstrate that consumption of a ketogenic diet for one week reduced evoked nocifensive behaviors (licking, biting, lifting) following intraplantar injection of different noxious stimuli (methylglyoxal, cinnamaldehyde, capsaicin, or Yoda1) in mice. A ketogenic diet also decreased the expression of p-ERK, an indicator of neuronal activation in the spinal cord, following peripheral administration of these stimuli. Using a genetic mouse model with deficient ketone oxidation in peripheral sensory neurons, we demonstrate that protection against methylglyoxal-induced nociception by a ketogenic diet partially depends on ketone oxidation by peripheral neurons. Injection of tolbutamide, a KATP channel antagonist, prevented ketogenic diet-mediated antinociception following intraplantar capsaicin injection. Tolbutamide also restored the expression of spinal activation markers in ketogenic diet-fed, capsaicin-injected mice. Moreover, activation of KATP channels with the KATP channel agonist diazoxide reduced pain-like behaviors in capsaicin-injected, chow-fed mice, similar to the effects observed with a ketogenic diet. Diazoxide also reduced the number of p-ERK+ cells in capsaicin-injected mice. These data support a mechanism that includes neuronal ketone oxidation and activation of KATP channels to provide ketogenic diet-related analgesia. This study also identifies KATP channels as a new target to mimic the antinociceptive effects of a ketogenic diet.
Collapse
Affiliation(s)
- Jonathan D Enders
- Department of Anesthesiology, University of Kansas Medical Center, Kansas City, KS, 66160
| | - Sarah Thomas
- Department of Anesthesiology, University of Kansas Medical Center, Kansas City, KS, 66160
| | - Paige Lynch
- Department of Anesthesiology, University of Kansas Medical Center, Kansas City, KS, 66160
| | - Jarrid Jack
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS, 66160
| | - Janelle M Ryals
- Department of Anesthesiology, University of Kansas Medical Center, Kansas City, KS, 66160
| | - Patrycja Puchalska
- Department of Medicine, Division of Molecular Medicine, University of Minnesota, Minneapolis, MN, 55455
| | - Peter Crawford
- Department of Medicine, Division of Molecular Medicine, University of Minnesota, Minneapolis, MN, 55455
- Department of Molecular Biology, Biochemistry, and Biophysics, University of Minnesota, Minneapolis, MN, 55455
| | - Douglas E Wright
- Department of Anesthesiology, University of Kansas Medical Center, Kansas City, KS, 66160
- KU Diabetes Institute, University of Kansas Medical Center, Kansas City, KS, 66160
| |
Collapse
|
11
|
Enders J, Elliott D, Wright DE. Emerging Nonpharmacologic Interventions to Treat Diabetic Peripheral Neuropathy. Antioxid Redox Signal 2023; 38:989-1000. [PMID: 36503268 PMCID: PMC10402707 DOI: 10.1089/ars.2022.0158] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/17/2022] [Accepted: 11/19/2022] [Indexed: 12/14/2022]
Abstract
Significance: Diabetic peripheral neuropathy (DPN), a complication of metabolic syndrome, type I and type II diabetes, leads to sensory changes that include slow nerve conduction, nerve degeneration, loss of sensation, pain, and gate disturbances. These complications remain largely untreatable, although tight glycemic control can prevent neuropathy progression. Nonpharmacologic approaches remain the most impactful to date, but additional advances in treatment approaches are needed. Recent Advances: This review highlights several emerging interventions, including a focus on dietary interventions and physical activity, that continue to show promise for treating DPN. We provide an overview of our current understanding of how exercise can improve aspects of DPN. We also highlight new studies in which a ketogenic diet has been used as an intervention to prevent and reverse DPN. Critical Issues: Both exercise and consuming a ketogenic diet induce systemic and cellular changes that collectively improve complications associated with DPN. Both interventions may involve similar signaling pathways and benefits but also impact DPN through unique mechanisms. Future Directions: These lifestyle interventions are critically important as personalized medicine approaches will likely be needed to identify specific subsets of neuropathy symptoms and deficits in patients, and determine the most impactful treatment. Overall, these two interventions have the potential to provide meaningful relief for patients with DPN and provide new avenues to identify new therapeutic targets.
Collapse
Affiliation(s)
- Jonathan Enders
- Department of Anesthesiology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Daniel Elliott
- Department of Anesthesiology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Douglas E. Wright
- Department of Anesthesiology, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
12
|
Thomas S, Enders J, Kaiser A, Rovenstine L, Heslop L, Hauser W, Chadwick A, Wright D. Abnormal intraepidermal nerve fiber density in disease: A scoping review. Front Neurol 2023; 14:1161077. [PMID: 37153658 PMCID: PMC10157176 DOI: 10.3389/fneur.2023.1161077] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/30/2023] [Indexed: 05/10/2023] Open
Abstract
Background Intraepidermal nerve fiber density (IENFD) has become an important biomarker for neuropathy diagnosis and research. The consequences of reduced IENFD can include sensory dysfunction, pain, and a significant decrease in quality of life. We examined the extent to which IENFD is being used as a tool in human and mouse models and compared the degree of fiber loss between diseases to gain a broader understanding of the existing data collected using this common technique. Methods We conducted a scoping review of publications that used IENFD as a biomarker in human and non-human research. PubMed was used to identify 1,004 initial articles that were then screened to select articles that met the criteria for inclusion. Criteria were chosen to standardize publications so they could be compared rigorously and included having a control group, measuring IENFD in a distal limb, and using protein gene product 9.5 (PGP9.5). Results We analyzed 397 articles and collected information related to publication year, the condition studied, and the percent IENFD loss. The analysis revealed that the use of IENFD as a tool has been increasing in both human and non-human research. We found that IENFD loss is prevalent in many diseases, and metabolic or diabetes-related diseases were the most studied conditions in humans and rodents. Our analysis identified 73 human diseases in which IENFD was affected, with 71 reporting IENFD loss and an overall average IENFD change of -47%. We identified 28 mouse and 21 rat conditions, with average IENFD changes of -31.6% and -34.7%, respectively. Additionally, we present data describing sub-analyses of IENFD loss according to disease characteristics in diabetes and chemotherapy treatments in humans and rodents. Interpretation Reduced IENFD occurs in a surprising number of human disease conditions. Abnormal IENFD contributes to important complications, including poor cutaneous vascularization, sensory dysfunction, and pain. Our analysis informs future rodent studies so they may better mirror human diseases impacted by reduced IENFD, highlights the breadth of diseases impacted by IENFD loss, and urges exploration of common mechanisms that lead to substantial IENFD loss as a complication in disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Douglas Wright
- Sensory Nerve Disorder Lab, Department of Anesthesiology, University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
13
|
Enders J, Jack J, Thomas S, Lynch P, Lasnier S, Cao X, Swanson MT, Ryals JM, Thyfault JP, Puchalska P, Crawford PA, Wright DE. Ketolysis is Required for the Proper Development and Function of the Somatosensory Nervous System. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.11.523492. [PMID: 36711538 PMCID: PMC9882096 DOI: 10.1101/2023.01.11.523492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Ketogenic diets are emerging as protective interventions in preclinical and clinical models of somatosensory nervous system disorders. Additionally, dysregulation of succinyl-CoA 3-oxoacid CoA-transferase 1 (SCOT, encoded by Oxct1 ), the fate-committing enzyme in mitochondrial ketolysis, has recently been described in Friedreich's ataxia and amyotrophic lateral sclerosis. However, the contribution of ketone metabolism in the normal development and function of the somatosensory nervous system remains poorly characterized. We generated sensory neuron-specific, Advillin-Cre knockout of SCOT (Adv-KO-SCOT) mice and characterized the structure and function of their somatosensory system. We used histological techniques to assess sensory neuronal populations, myelination, and skin and spinal dorsal horn innervation. We also examined cutaneous and proprioceptive sensory behaviors with the von Frey test, radiant heat assay, rotarod, and grid-walk tests. Adv-KO-SCOT mice exhibited myelination deficits, altered morphology of putative Aδ soma from the dorsal root ganglion, reduced cutaneous innervation, and abnormal innervation of the spinal dorsal horn compared to wildtype mice. Synapsin 1-Cre-driven knockout of Oxct1 confirmed deficits in epidermal innervation following a loss of ketone oxidation. Loss of peripheral axonal ketolysis was further associated with proprioceptive deficits, yet Adv-KO-SCOT mice did not exhibit drastically altered cutaneous mechanical and thermal thresholds. Knockout of Oxct1 in peripheral sensory neurons resulted in histological abnormalities and severe proprioceptive deficits in mice. We conclude that ketone metabolism is essential for the development of the somatosensory nervous system. These findings also suggest that decreased ketone oxidation in the somatosensory nervous system may explain the neurological symptoms of Friedreich's ataxia.
Collapse
Affiliation(s)
- Jonathan Enders
- Departments of Anesthesiology, University of Kansas Medical Center, Kansas City, KS, 66160
| | - Jarrid Jack
- Departments of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS, 66160
| | - Sarah Thomas
- Departments of Anesthesiology, University of Kansas Medical Center, Kansas City, KS, 66160
| | - Paige Lynch
- Departments of Anesthesiology, University of Kansas Medical Center, Kansas City, KS, 66160
| | - Sarah Lasnier
- Departments of Anesthesiology, University of Kansas Medical Center, Kansas City, KS, 66160
| | - Xin Cao
- Departments of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS, 66160
| | - M Taylor Swanson
- Departments of Anesthesiology, University of Kansas Medical Center, Kansas City, KS, 66160
| | - Janelle M Ryals
- Departments of Anesthesiology, University of Kansas Medical Center, Kansas City, KS, 66160
| | - John P Thyfault
- Departments of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS, 66160
- Internal Medicine - Division of Endocrinology, University of Kansas Medical Center, Kansas City, KS, 66160
- KU Diabetes Institute, University of Kansas Medical Center, Kansas City, KS, 66160
| | - Patrycja Puchalska
- Department of Medicine, Division of Molecular Medicine, University of Minnesota, Minneapolis, MN, 55455
| | - Peter A Crawford
- Department of Medicine, Division of Molecular Medicine, University of Minnesota, Minneapolis, MN, 55455
- Department of Molecular Biology, Biochemistry, Biophysics, University of Minnesota, Minneapolis, MN, 55455
| | - Douglas E Wright
- Departments of Anesthesiology, University of Kansas Medical Center, Kansas City, KS, 66160
- KU Diabetes Institute, University of Kansas Medical Center, Kansas City, KS, 66160
| |
Collapse
|
14
|
Thomas SJ, Enders J, Kaiser A, Rovenstine L, Heslop L, Hauser W, Chadwick A, Wright DE. Abnormal Intraepidermal Nerve Fiber Density in Disease: A Scoping Review. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.02.08.23285644. [PMID: 36798392 PMCID: PMC9934806 DOI: 10.1101/2023.02.08.23285644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Background Intraepidermal nerve fiber density (IENFD) has become an important biomarker for neuropathy diagnosis and research. The consequences of reduced IENFD can include sensory dysfunction, pain, and a significant decrease in quality of life. We examined the extent to which IENFD is being used as a tool in human and mouse models and compared the degree of fiber loss between diseases to gain a broader understanding of the existing data collected using this common technique. Methods We conducted a scoping review of publications that used IENFD as a biomarker in human and non-human research. PubMed was used to identify 1,004 initial articles that were then screened to select articles that met the criteria for inclusion. Criteria were chosen to standardize publications so they could be compared rigorously and included having a control group, measuring IENFD in a distal limb, and using protein gene product 9.5 (PGP9.5). Results We analyzed 397 articles and collected information related to publication year, the condition studied, and the percent IENFD loss. The analysis revealed that the use of IENFD as a tool has been increasing in both human and non-human research. We found that IENFD loss is prevalent in many diseases, and metabolic or diabetes-related diseases were the most studied conditions in humans and rodents. Our analysis identified 74 human diseases in which IENFD was affected, with 71 reporting IENFD loss and an overall average IENFD change of -47%. We identified 28 mouse and 21 rat conditions, with average IENFD changes of -31.6 % and - 34.7% respectively. Additionally, we present data describing sub-analyses of IENFD loss according to disease characteristics in diabetes and chemotherapy treatments in humans and rodents. Interpretation Reduced IENFD occurs in a surprising number of human disease conditions. Abnormal IENFD contributes to important complications, including poor cutaneous vascularization, sensory dysfunction, and pain. Our analysis informs future rodent studies so they may better mirror human diseases impacted by reduced IENFD, highlights the breadth of diseases impacted by IENFD loss, and urges exploration of common mechanisms that lead to substantial IENFD loss as a complication in disease.
Collapse
Affiliation(s)
- SJ Thomas
- Sensory Nerve Disorder Lab, University of Kansas Medical Center, Anesthesiology Department, Kansas City, KS, USA
| | - J Enders
- Sensory Nerve Disorder Lab, University of Kansas Medical Center, Anesthesiology Department, Kansas City, KS, USA
| | - A Kaiser
- Sensory Nerve Disorder Lab, University of Kansas Medical Center, Anesthesiology Department, Kansas City, KS, USA
| | - L Rovenstine
- Sensory Nerve Disorder Lab, University of Kansas Medical Center, Anesthesiology Department, Kansas City, KS, USA
| | - L Heslop
- Sensory Nerve Disorder Lab, University of Kansas Medical Center, Anesthesiology Department, Kansas City, KS, USA
| | - W Hauser
- Sensory Nerve Disorder Lab, University of Kansas Medical Center, Anesthesiology Department, Kansas City, KS, USA
| | - A Chadwick
- Sensory Nerve Disorder Lab, University of Kansas Medical Center, Anesthesiology Department, Kansas City, KS, USA
| | - DE Wright
- Sensory Nerve Disorder Lab, University of Kansas Medical Center, Anesthesiology Department, Kansas City, KS, USA
| |
Collapse
|
15
|
Enders JD, Thomas S, Swanson MT, Ryals JM, Wright DE. Ketogenic diet prevents methylglyoxal-evoked nociception by scavenging methylglyoxal. Pain 2022; 163:e1207-e1216. [PMID: 35500286 PMCID: PMC9727824 DOI: 10.1097/j.pain.0000000000002667] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 04/25/2022] [Indexed: 11/25/2022]
Abstract
ABSTRACT Methylglyoxal (MGO) is a reactive dicarbonyl byproduct of glycolysis implicated in a growing number of neuropathic pain conditions, including chemotherapy-induced peripheral neuropathy, diabetic peripheral neuropathy, and radiculopathy with lumbar disk herniation. Recent studies show success in preclinical models treating these disorders with an interventional ketogenic diet. Here, we tested the hypothesis that a ketogenic diet modifies pathological MGO signaling as a mechanism underlying neuropathy improvement. We found that mice injected with MGO displayed nocifensive behaviors, whereas mice prefed a ketogenic diet were resistant to mechanical allodynia elicited by MGO. In addition, levels of circulating MGO were reduced in ketogenic diet-fed mice and negatively correlated with levels of the ketone body β-hydroxybutyrate (β-HB). Methylglyoxal is normally scavenged by the glyoxalase system, and ketogenic diet-fed mice displayed increased glyoxalase 1 activity compared with chow-fed control mice. Recent studies also suggest that ketone bodies contribute to MGO detoxification, consistent with a negative correlation between β-HB and MGO. To assess whether ketone bodies modified MGO-evoked nociception through direct MGO detoxification, we coincubated either acetoacetate or β-HB with MGO before injection. Mice receiving intraplantar MGO injection exhibit increased nociceptive behavior (lifting, licking, biting, and scratching), which was significantly reduced by coincubation with either acetoacetate or β-HB. Methylglyoxal increased phospho-extracellular signal-regulated kinase-positive cells in the spinal dorsal horn, and this evoked spinal activation was ameliorated by preincubation with acetoacetate or β-HB. These results suggest that a ketogenic diet and ketone bodies ameliorate MGO-evoked nociception, partially through detoxification of MGO, and provide rationale for therapeutic intervention with a ketogenic diet in MGO-driven pathologies.
Collapse
Affiliation(s)
| | | | | | | | - Douglas E Wright
- Departments of Anatomy and Cell Biology
- Anesthesiology, University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
16
|
Field R, Field T, Pourkazemi F, Rooney K. Ketogenic diets and the nervous system: a scoping review of neurological outcomes from nutritional ketosis in animal studies. Nutr Res Rev 2022; 35:268-281. [PMID: 34180385 DOI: 10.1017/s0954422421000214] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVES Ketogenic diets have reported efficacy for neurological dysfunctions; however, there are limited published human clinical trials elucidating the mechanisms by which nutritional ketosis produces therapeutic effects. The purpose of this present study was to investigate animal models that report variations in nervous system function by changing from a standard animal diet to a ketogenic diet, synthesise these into broad themes, and compare these with mechanisms reported as targets in pain neuroscience to inform human chronic pain trials. METHODS An electronic search of seven databases was conducted in July 2020. Two independent reviewers screened studies for eligibility, and descriptive outcomes relating to nervous system function were extracted for a thematic analysis, then synthesised into broad themes. RESULTS In total, 170 studies from eighteen different disease models were identified and grouped into fourteen broad themes: alterations in cellular energetics and metabolism, biochemical, cortical excitability, epigenetic regulation, mitochondrial function, neuroinflammation, neuroplasticity, neuroprotection, neurotransmitter function, nociception, redox balance, signalling pathways, synaptic transmission and vascular supply. DISCUSSION The mechanisms presented centred around the reduction of inflammation and oxidative stress as well as a reduction in nervous system excitability. Given the multiple potential mechanisms presented, it is likely that many of these are involved synergistically and undergo adaptive processes within the human body, and controlled animal models that limit the investigation to a particular pathway in isolation may reach differing conclusions. Attention is required when translating this information to human chronic pain populations owing to the limitations outlined from the animal research.
Collapse
Affiliation(s)
- Rowena Field
- The University of Sydney, Faculty of Medicine and Health, Sydney, Australia
| | - Tara Field
- The New South Wales Ministry of Health (NSW Health), Sydney, Australia
| | | | - Kieron Rooney
- The University of Sydney, Faculty of Medicine and Health, Sydney, Australia
| |
Collapse
|
17
|
Nuwaylati D, Eldakhakhny B, Bima A, Sakr H, Elsamanoudy A. Low-Carbohydrate High-Fat Diet: A SWOC Analysis. Metabolites 2022; 12:1126. [PMID: 36422267 PMCID: PMC9695571 DOI: 10.3390/metabo12111126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 08/27/2023] Open
Abstract
Insulin resistance (IR) plays a role in the pathogenesis of many diseases, such as type 2 diabetes mellitus, cardiovascular disease, non-alcoholic fatty liver disease, obesity, and neurodegenerative diseases, including Alzheimer's disease. The ketogenic diet (KD) is a low-carbohydrate/high-fat diet that arose in the 1920s as an effective treatment for seizure control. Since then, the KD has been studied as a therapeutic approach for various IR-related disorders with successful results. To date, the use of the KD is still debatable regarding its safety. Some studies have acknowledged its usefulness, while others do not recommend its long-term implementation. In this review, we applied a SWOC (Strengths, Weaknesses, Opportunities, and Challenges) analysis that revealed the positive, constructive strengths of the KD, its potential complications, different conditions that can make used for it, and the challenges faced by both physicians and subjects throughout a KD. This SWOC analysis showed that the KD works on the pathophysiological mechanism of IR-related disorders such as chronic inflammation, oxidative stress and mitochondrial stress. Furthermore, the implementation of the KD as a potential adjuvant therapy for many diseases, including cancer, neurodegenerative disorders, polycystic ovary syndrome, and pain management was proven. On the other hand, the short and long-term possible undesirable KD-related effects, including nutritional deficiencies, growth retardation and nephrolithiasis, should be considered and strictly monitored. Conclusively, this review provides a context for decision-makers, physicians, researchers, and the general population to focus on this dietary intervention in preventing and treating diseases. Moreover, it draws the attention of scientists and physicians towards the opportunities and challenges associated with the KD that requires attention before KD initiation.
Collapse
Affiliation(s)
- Dena Nuwaylati
- Clinical Biochemistry Department, Faculty of Medicine, University of Jeddah, Jeddah 21959, Saudi Arabia
| | - Basmah Eldakhakhny
- Clinical Biochemistry Department, Faculty of Medicine, King Abdulaziz University, Jeddah 21465, Saudi Arabia
| | - Abdulhadi Bima
- Clinical Biochemistry Department, Faculty of Medicine, King Abdulaziz University, Jeddah 21465, Saudi Arabia
| | - Hussein Sakr
- Physiology Department, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman
- Medical Physiology Department, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Ayman Elsamanoudy
- Clinical Biochemistry Department, Faculty of Medicine, King Abdulaziz University, Jeddah 21465, Saudi Arabia
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
18
|
Bonomo R, Kramer S, Aubert VM. Obesity-Associated Neuropathy: Recent Preclinical Studies and Proposed Mechanisms. Antioxid Redox Signal 2022; 37:597-612. [PMID: 35152780 PMCID: PMC9527047 DOI: 10.1089/ars.2021.0278] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 01/25/2022] [Indexed: 11/13/2022]
Abstract
Significance: The prevalence of metabolic syndrome (MetS) and associated obesity has increased in recent years, affecting millions worldwide. One of the most common complications of obesity is damage to the peripheral nerve system, referred to as neuropathy. The lack of disease-modifying therapy for this complication is largely due to a poor understanding of the complex neurobiology underlying neuropathy. Recent preclinical studies suggest that in addition to glucotoxic events, other mechanisms, including lipid signaling, microbiome, or inflammation, may be viable targets to prevent nerve damage and neuropathic pain in obesity. Recent Advances: Clinical and preclinical studies using diet-induced obesity rodent models have identified novel interventions that improve neuropathy. Notably, mechanistic studies suggest that lipid, calcium signaling, and inflammation are converging pathways. Critical Issues: In this review, we focus on interventions and their mechanisms that are shown to ameliorate neuropathy in MetS obese models, including: (i) inhibition of a sensory neuron population, (ii), modification of dietary components, (iii) activation of nuclear and mitochondrial lipid pathways, (iv) exercise, and (v) modulation of gut microbiome composition and their metabolites. Future Directions: These past years, novel research increased our knowledge about neuropathy in obesity and discovered the involvement of nonglucose signaling. More studies are necessary to uncover the interplay between complex metabolic pathways in the peripheral nerve system of obese individuals. Further mechanistic studies in preclinical models and humans are crucial to create single- or multitarget interventions for this complex disease implying complex metabolic phenotyping. Antioxid. Redox Signal. 37, 597-612.
Collapse
Affiliation(s)
- Raiza Bonomo
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, Illinois, USA
| | - Sarah Kramer
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, Illinois, USA
- Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois, USA
| | - Virginie M. Aubert
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, Illinois, USA
| |
Collapse
|
19
|
Eller OC, Willits AB, Young EE, Baumbauer KM. Pharmacological and non-pharmacological therapeutic interventions for the treatment of spinal cord injury-induced pain. FRONTIERS IN PAIN RESEARCH 2022; 3:991736. [PMID: 36093389 PMCID: PMC9448954 DOI: 10.3389/fpain.2022.991736] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/05/2022] [Indexed: 11/29/2022] Open
Abstract
Spinal cord injury (SCI) is a complex neurophysiological disorder, which can result in many long-term complications including changes in mobility, bowel and bladder function, cardiovascular function, and metabolism. In addition, most individuals with SCI experience some form of chronic pain, with one-third of these individuals rating their pain as severe and unrelenting. SCI-induced chronic pain is considered to be "high impact" and broadly affects a number of outcome measures, including daily activity, physical and cognitive function, mood, sleep, and overall quality of life. The majority of SCI pain patients suffer from pain that emanates from regions located below the level of injury. This pain is often rated as the most severe and the underlying mechanisms involve injury-induced plasticity along the entire neuraxis and within the peripheral nervous system. Unfortunately, current therapies for SCI-induced chronic pain lack universal efficacy. Pharmacological treatments, such as opioids, anticonvulsants, and antidepressants, have been shown to have limited success in promoting pain relief. In addition, these treatments are accompanied by many adverse events and safety issues that compound existing functional deficits in the spinally injured, such as gastrointestinal motility and respiration. Non-pharmacological treatments are safer alternatives that can be specifically tailored to the individual and used in tandem with pharmacological therapies if needed. This review describes existing non-pharmacological therapies that have been used to treat SCI-induced pain in both preclinical models and clinical populations. These include physical (i.e., exercise, acupuncture, and hyper- or hypothermia treatments), psychological (i.e., meditation and cognitive behavioral therapy), and dietary interventions (i.e., ketogenic and anti-inflammatory diet). Findings on the effectiveness of these interventions in reducing SCI-induced pain and improving quality of life are discussed. Overall, although studies suggest non-pharmacological treatments could be beneficial in reducing SCI-induced chronic pain, further research is needed. Additionally, because chronic pain, including SCI pain, is complex and has both emotional and physiological components, treatment should be multidisciplinary in nature and ideally tailored specifically to the patient.
Collapse
Affiliation(s)
- Olivia C. Eller
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Adam B. Willits
- Department of Anesthesiology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Erin E. Young
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS, United States
- Department of Anesthesiology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Kyle M. Baumbauer
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS, United States
- Department of Anesthesiology, University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
20
|
Umbaugh DS, Maciejewski JC, Wooten JS, Guilford BL. Neuronal Inflammation is Associated with Changes in Epidermal Innervation in High Fat Fed Mice. Front Physiol 2022; 13:891550. [PMID: 36082224 PMCID: PMC9445198 DOI: 10.3389/fphys.2022.891550] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Peripheral neuropathy (PN), a debilitating complication of diabetes, is associated with obesity and the metabolic syndrome in nondiabetic individuals. Evidence indicates that a high fat diet can induce signs of diabetic peripheral PN in mice but the pathogenesis of high fat diet-induced PN remains unknown. PURPOSE: Determine if neuronal inflammation is associated with the development of mechanical hypersensitivity and nerve fiber changes in high fat fed mice. METHODS: Male C57Bl/6 mice were randomized to a standard (Std, 15% kcal from fat) or high fat diet (HF, 54% kcal from fat) for 2, 4, or 8 weeks (n = 11-12 per group). Lumbar dorsal root ganglia were harvested and inflammatory mediators (IL-1α, IL-1β, IL-2, IL-3, IL-4, IL-5, IL-6, IL-10, IL-12p70, IL-17, MCP-1, IFN-γ, TNF-α, MIP-1α, GMCSF, RANTES) were quantified. Hindpaw mechanical sensitivity was assessed using the von Frey test. Intraepidermal nerve fiber density (IENFD) and TrkA nerve fiber density were quantified via immunohistochemistry. RESULTS: After 8 weeks, HF had greater body mass (33.3 ± 1.0 vs 26.7 ± 0.5 g, p < 0.001), fasting blood glucose (160.3 ± 9.4 vs 138.5 ± 3.4 mg/dl, p < 0.05) and insulin (3.58 ± 0.46 vs 0.82 ± 0.14 ng/ml, p < 0.001) compared to Std. IL-1α, RANTES and IL-5 were higher in HF compared to Std after 2 and 4 weeks, respectively (IL-1α: 4.8 ± 1.3 vs 2.9 ± 0.6 pg/mg, p < 0.05; RANTES: 19.6 ± 2.2 vs 13.3 ± 1.2 pg/mg p < 0.05; IL-5: 5.8 ± 0.7 vs 3.1 ± 0.5 pg/mg, p < 0.05). IENFD and TrkA fiber density were also higher in HF vs Std after 4 weeks (IENFD: 39.4 ± 1.2 vs 32.2 ± 1.3 fibers/mm, p < 0.001; TrkA: 30.4 ± 1.8 vs 22.4 ± 1.3 fibers/mm). There were no significant differences in hindpaw sensitivity for Std vs HF. CONCLUSION: Increased inflammatory mediators preceded and accompanied an increase in cutaneous pain sensing nerve fibers in high fat fed mice but was not accompanied by significant mechanical allodynia. Diets high in fat may increase neuronal inflammation and lead to increased nociceptive nerve fiber density.
Collapse
Affiliation(s)
| | | | | | - Brianne L. Guilford
- Department of Applied Health, Southern Illinois University Edwardsville, Edwardsville, IL, United States
| |
Collapse
|
21
|
Huda MN, Salvador AC, Barrington WT, Gacasan CA, D'Souza EM, Deus Ramirez L, Threadgill DW, Bennett BJ. Gut microbiota and host genetics modulate the effect of diverse diet patterns on metabolic health. Front Nutr 2022; 9:896348. [PMID: 36061898 PMCID: PMC9434023 DOI: 10.3389/fnut.2022.896348] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 07/11/2022] [Indexed: 01/05/2023] Open
Abstract
Metabolic diseases are major public health issues worldwide and are responsible for disproportionately higher healthcare costs and increased complications of many diseases including SARS-CoV-2 infection. The Western Diet (WD) specifically is believed to be a major contributor to the global metabolic disease epidemic. In contrast, the Mediterranean diet (MeD), Ketogenic diet (KD), and Japanese diet (JD) are often considered beneficial for metabolic health. Yet, there is a growing appreciation that the effect of diet on metabolic health varies depending on several factors including host genetics. Additionally, poor metabolic health has also been attributed to altered gut microbial composition and/or function. To understand the complex relationship between host genetics, gut microbiota, and dietary patterns, we treated four widely used metabolically diverse inbred mouse strains (A/J, C57BL/6J, FVB/NJ, and NOD/ShiLtJ) with four human-relevant diets (MeD, JD, KD, WD), and a control mouse chow from 6 weeks to 30 weeks of age. We found that diet-induced alteration of gut microbiota (α-diversity, β-diversity, and abundance of several bacteria including Bifidobacterium, Ruminococcus, Turicibacter, Faecalibaculum, and Akkermansia) is significantly modified by host genetics. In addition, depending on the gut microbiota, the same diet could have different metabolic health effects. Our study also revealed that C57BL/6J mice are more susceptible to altered gut microbiota compared to other strains in this study indicating that host genetics is an important modulator of the diet-microbiota-metabolic health axis. Overall, our study demonstrated complex interactions between host genetics, gut microbiota, and diet on metabolic health; indicating the need to consider both host genetics and the gut microbiota in the development of new and more effective precision nutrition strategies to improve metabolic health.
Collapse
Affiliation(s)
- M. Nazmul Huda
- Department of Nutrition, University of California, Davis, Davis, CA, United States
- Obesity and Metabolism Research Unit, USDA, ARS, Western Human Nutrition Research Center, Davis, CA, United States
| | - Anna C. Salvador
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, Texas A&M University, College Station, TX, United States
- Department of Nutrition, Texas A&M University, College Station, TX, United States
| | - William T. Barrington
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, Texas A&M University, College Station, TX, United States
| | - C. Anthony Gacasan
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, Texas A&M University, College Station, TX, United States
- Department of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
| | - Edeline M. D'Souza
- Leverhulme Quantum Biology Doctoral Training Centre, University of Surrey, Guildford, United Kingdom
- School of Bioscience and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Laura Deus Ramirez
- School of Bioscience and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - David W. Threadgill
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, Texas A&M University, College Station, TX, United States
- Department of Nutrition, Texas A&M University, College Station, TX, United States
- Texas A&M Institute for Genome Sciences and Society, Texas A&M University, College Station, TX, United States
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, United States
| | - Brian J. Bennett
- Department of Nutrition, University of California, Davis, Davis, CA, United States
- Obesity and Metabolism Research Unit, USDA, ARS, Western Human Nutrition Research Center, Davis, CA, United States
| |
Collapse
|
22
|
Nutrition and Gut–Brain Pathways Impacting the Onset of Parkinson’s Disease. Nutrients 2022; 14:nu14142781. [PMID: 35889738 PMCID: PMC9323908 DOI: 10.3390/nu14142781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/30/2022] [Accepted: 07/04/2022] [Indexed: 02/07/2023] Open
Abstract
An emerging body of literature suggests that long-term gut inflammation may be a silent driver of Parkinson’s disease (PD) pathogenesis. Importantly, specific nutritive patterns might improve gut health for PD risk reduction. Here, we review the current literature on the nutritive patterns and inflammatory markers as a predictor for early detection of PD. This knowledge might be used to foster the detection of early nutritive patterns and preclinical biomarkers to potentially alter PD development and progression.
Collapse
|
23
|
Enders J, Swanson T, Ryals J, Wright D. A ketogenic diet reduces mechanical allodynia and improves epidermal innervation in diabetic mice. Pain 2022; 163:682-689. [PMID: 34252910 PMCID: PMC10067134 DOI: 10.1097/j.pain.0000000000002401] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/28/2021] [Indexed: 01/21/2023]
Abstract
ABSTRACT Dietary interventions are promising approaches to treat pain associated with metabolic changes because they impact both metabolic and neural components contributing to painful neuropathy. Here, we tested whether consumption of a ketogenic diet could affect sensation, pain, and epidermal innervation loss in type 1 diabetic mice. C57Bl/6 mice were rendered diabetic using streptozotocin and administered a ketogenic diet at either 3 weeks (prevention) or 9 weeks (reversal) of uncontrolled diabetes. We quantified changes in metabolic biomarkers, sensory thresholds, and epidermal innervation to assess impact on neuropathy parameters. Diabetic mice consuming a ketogenic diet had normalized weight gain, reduced blood glucose, elevated blood ketones, and reduced hemoglobin-A1C levels. These metabolic biomarkers were also improved after 9 weeks of diabetes followed by 4 weeks of a ketogenic diet. Diabetic mice fed a control chow diet developed rapid mechanical allodynia of the hind paw that was reversed within a week of consumption of a ketogenic diet in both prevention and reversal studies. Loss of thermal sensation was also improved by consumption of a ketogenic diet through normalized thermal thresholds. Finally, diabetic mice consuming a ketogenic diet had normalized epidermal innervation, including after 9 weeks of uncontrolled diabetes and 4 weeks of consumption of the ketogenic diet. These results suggest that, in mice, a ketogenic diet can prevent and reverse changes in key metabolic biomarkers, altered sensation, pain, and axon innervation of the skin. These results identify a ketogenic diet as a potential therapeutic intervention for patients with painful diabetic neuropathy and/or epidermal axon loss.
Collapse
Affiliation(s)
- Jonathan Enders
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160
| | - Taylor Swanson
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160
| | - Janelle Ryals
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160
| | - Douglas Wright
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160
- Department of Anesthesiology, University of Kansas Medical Center, Kansas City, KS 66160
| |
Collapse
|
24
|
Effect of a Ketogenic Diet on Oxidative Posttranslational Protein Modifications and Brain Homogenate Denaturation in the Kindling Model of Epilepsy in Mice. Neurochem Res 2022; 47:1943-1955. [PMID: 35316463 DOI: 10.1007/s11064-022-03579-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/10/2022] [Accepted: 03/12/2022] [Indexed: 10/18/2022]
Abstract
This study focused on the ketogenic diet (KD) effects on oxidative posttranslational protein modification (PPM) as presumptive factors implicated in epileptogenesis. A 28-day of KD treatment was performed. The corneal kindling model of epileptogenesis was used. Four groups of adult male ICR mice (25-30 g) were randomized in standard rodent chow (SRC) group, KD-treatment group; SRC + kindling group; KD + kindling group (n = 10 each). Advanced oxidation protein products (AOPP) and protein carbonyl contents of brain homogenates together with differential scanning calorimetry (DSC) were evaluated. Two exothermic transitions (Exo1 and Exo2) were explored after deconvolution of the thermograms. Factor analysis was applied. The protective effect of KD in the kindling model was demonstrated with both decreased seizure score and increased seizure latency. KD significantly decreased glucose and increased ketone bodies (KB) in blood. Despite its antiseizure effect, the KD increased the AOPP level and the brain proteome's exothermic transitions, suggestive for qualitative modifications. The ratio of the two exothermic peaks (Exo2/Exo1) of the thermograms from the KD vs. SRC treated group differed more than twice (3.7 vs. 1.6). Kindling introduced the opposite effect, changing this ratio to 2.7 for the KD + kindling group. Kindling significantly increased glucose and KB in the blood whereas decreased the BW under the SRC treatment. Kindling decreased carbonyl proteins in the brain irrespectively of the diet. Further evaluations are needed to assess the nature of correspondence of calorimetric images of the brain homogenates with PPM.
Collapse
|
25
|
Singleton JR, Foster-Palmer S, Marcus RL. Exercise as Treatment for Neuropathy in the Setting of Diabetes and Prediabetic Metabolic Syndrome: A Review of Animal Models and Human Trials. Curr Diabetes Rev 2022; 18:e230921196752. [PMID: 34561989 DOI: 10.2174/1573399817666210923125832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/21/2021] [Accepted: 05/17/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Peripheral neuropathy is among the most common complications of diabetes, but a phenotypically identical distal sensory predominant, painful axonopathy afflicts patients with prediabetic metabolic syndrome, exemplifying a spectrum of risk and continuity of pathogenesis. No pharmacological treatment convincingly improves neuropathy in the setting of metabolic syndrome, but evolving data suggest that exercise may be a promising alternative. OBJECTIVE The aim of the study was to review in depth the current literature regarding exercise treatment of metabolic syndrome neuropathy in humans and animal models, highlight the diverse mechanisms by which exercise exerts beneficial effects, and examine adherence limitations, safety aspects, modes and dose of exercise. RESULTS Rodent models that recapitulate the organismal milieu of prediabetic metabolic syndrome and the phenotype of its neuropathy provide a strong platform to dissect exercise effects on neuropathy pathogenesis. In these models, exercise reverses hyperglycemia and consequent oxidative and nitrosative stress, improves microvascular vasoreactivity, enhances axonal transport, ameliorates the lipotoxicity and inflammatory effects of hyperlipidemia and obesity, supports neuronal survival and regeneration following injury, and enhances mitochondrial bioenergetics at the distal axon. Prospective human studies are limited in scale but suggest exercise to improve cutaneous nerve regenerative capacity, neuropathic pain, and task-specific functional performance measures of gait and balance. Like other heath behavioral interventions, the benefits of exercise are limited by patient adherence. CONCLUSION Exercise is an integrative therapy that potently reduces cellular inflammatory state and improves distal axonal oxidative metabolism to ameliorate features of neuropathy in metabolic syndrome. The intensity of exercise need not improve cardinal features of metabolic syndrome, including weight, glucose control, to exert beneficial effects.
Collapse
Affiliation(s)
| | | | - Robin L Marcus
- Department Physical Therapy and Athletic Training, University of Utah, UT, United States
| |
Collapse
|
26
|
Eid SA, Feldman EL. Advances in diet-induced rodent models of metabolically acquired peripheral neuropathy. Dis Model Mech 2021; 14:273425. [PMID: 34762126 PMCID: PMC8592018 DOI: 10.1242/dmm.049337] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Peripheral neuropathy (PN) is a severe complication that affects over 30% of prediabetic and 60% of type 2 diabetic (T2D) patients. The metabolic syndrome is increasingly recognized as a major driver of PN. However, basic and translational research is needed to understand the mechanisms that contribute to nerve damage. Rodent models of diet-induced obesity, prediabetes, T2D and PN closely resemble the human disease and have proven to be instrumental for the study of PN mechanisms. In this Perspective article, we focus on the development, neurological characterization and dietary fat considerations of diet-induced rodent models of PN. We highlight the importance of investigating sex differences and discuss some of the challenges in translation from bench to bedside, including recapitulating the progressive nature of human PN and modeling neuropathic pain. We emphasize that future research should overcome these challenges in the quest to better mimic human PN in animal models.
Collapse
Affiliation(s)
- Stéphanie A Eid
- Department of Neurology, School of Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Eva L Feldman
- Department of Neurology, School of Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
27
|
The Aneugenicity of Ketone Bodies in Colon Epithelial Cells Is Mediated by Microtubule Hyperacetylation and Is Blocked by Resveratrol. Int J Mol Sci 2021; 22:ijms22179397. [PMID: 34502304 PMCID: PMC8430621 DOI: 10.3390/ijms22179397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/25/2021] [Accepted: 08/25/2021] [Indexed: 01/23/2023] Open
Abstract
Diabetes mellitus (DM) is considered to be associated with an increased risk of colorectal cancer. Recent studies have also revealed that tubulin hyperacetylation is caused by a diabetic status and we have reported previously that, under microtubule hyperacetylation, a microtubule severing protein, katanin-like (KL) 1, is upregulated and contributes to tumorigenesis. To further explore this phenomenon, we tested the effects of the ketone bodies, acetoacetate and β-hydroxybutyrate, in colon and fibroblast cells. Both induced microtubule hyperacetylation that responded differently to a histone deacetylase 3 knockdown. These two ketone bodies also generated intracellular reactive oxygen species (ROS) and hyperacetylation was commonly inhibited by ROS inhibitors. In a human fibroblast-based microtubule sensitivity test, only the KL1 human katanin family member showed activation by both ketone bodies. In primary cultured colon epithelial cells, these ketone bodies reduced the tau protein level and induced KL1- and α-tubulin acetyltransferase 1 (ATAT1)-dependent micronucleation. Resveratrol, known for its tumor preventive and tubulin deacetylation effects, inhibited this micronucleation. Our current data thus suggest that the microtubule hyperacetylation induced by ketone bodies may be a causal factor linking DM to colorectal carcinogenesis and may also represent an adverse effect of them that needs to be controlled if they are used as therapeutics.
Collapse
|
28
|
Ruskin DN, Sturdevant IC, Wyss LS, Masino SA. Ketogenic diet effects on inflammatory allodynia and ongoing pain in rodents. Sci Rep 2021; 11:725. [PMID: 33436956 PMCID: PMC7804255 DOI: 10.1038/s41598-020-80727-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 12/22/2020] [Indexed: 12/31/2022] Open
Abstract
Ketogenic diets are very low carbohydrate, high fat, moderate protein diets used to treat medication-resistant epilepsy. Growing evidence suggests that one of the ketogenic diet’s main mechanisms of action is reducing inflammation. Here, we examined the diet’s effects on experimental inflammatory pain in rodent models. Young adult rats and mice were placed on the ketogenic diet or maintained on control diet. After 3–4 weeks on their respective diets, complete Freund’s adjuvant (CFA) was injected in one hindpaw to induce inflammation; the contralateral paw was used as the control. Tactile sensitivity (von Frey) and indicators of spontaneous pain were quantified before and after CFA injection. Ketogenic diet treatment significantly reduced tactile allodynia in both rats and mice, though with a species-specific time course. There was a strong trend to reduced spontaneous pain in rats but not mice. These data suggest that ketogenic diets or other ketogenic treatments might be useful treatments for conditions involving inflammatory pain.
Collapse
Affiliation(s)
- David N Ruskin
- Neuroscience Program and Department of Psychology, Trinity College, 300 Summit St., Hartford, CT, 06106, USA.
| | - Isabella C Sturdevant
- Neuroscience Program and Department of Psychology, Trinity College, 300 Summit St., Hartford, CT, 06106, USA
| | - Livia S Wyss
- Neuroscience Program and Department of Psychology, Trinity College, 300 Summit St., Hartford, CT, 06106, USA
| | - Susan A Masino
- Neuroscience Program and Department of Psychology, Trinity College, 300 Summit St., Hartford, CT, 06106, USA
| |
Collapse
|
29
|
Keith L, Seo CA, Rowsemitt C, Pfeffer M, Wahi M, Staggs M, Dudek J, Gower B, Carmody M. Ketogenic diet as a potential intervention for lipedema. Med Hypotheses 2020; 146:110435. [PMID: 33303304 DOI: 10.1016/j.mehy.2020.110435] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 11/06/2020] [Accepted: 11/24/2020] [Indexed: 02/06/2023]
Abstract
Lipedema (LI) is a common yet misdiagnosed condition, often misconstrued with obesity. LI affects women almost exclusively, and its painful and life-changing symptoms have long been thought to be resistant to the lifestyle interventions such as diet and exercise. In this paper, we discuss possible mechanisms by which patients adopting a ketogenic diet (KD) can alleviate many of the unwanted clinical features of LI. This paper is also an effort to provide evidence for the hypothesis of the potency of this dietary intervention for addressing the symptoms of LI. Specifically, we examine the scientific evidence of effectiveness of adopting a KD by patients to alleviate clinical features associated with LI, including excessive and disproportionate lower body adipose tissue (AT) deposition, pain, and reduction in quality of life (QoL). We also explore several clinical features of LI currently under debate, including the potential existence and nature of edema, metabolic and hormonal dysfunction, inflammation, and fibrosis. The effectiveness of a KD on addressing clinical features of LI has been demonstrated in human studies, and shows promise as an intervention for LI. We hope this paper leads to an improved understanding of optimal nutritional management for patients with LI and stimulates future research in this area of study.
Collapse
Affiliation(s)
- L Keith
- The Lipedema Project, Boston, MA, USA; Lipedema Simplified, Boston, MA, USA.
| | - C A Seo
- The Lipedema Project, Boston, MA, USA; Lipedema Simplified, Boston, MA, USA
| | - C Rowsemitt
- Lipedema Simplified, Boston, MA, USA; Comprehensive Weight Management, Templeton, CA and Providence, RI, USA; The Lipedema Project: Medical Advisory Board, Boston, MA, USA
| | - M Pfeffer
- Lipedema Simplified, Boston, MA, USA; The Lipedema Project: Medical Advisory Board, Boston, MA, USA; I Choose Health, Metung, Australia
| | - M Wahi
- DethWench Professional Services, Boston, MA, USA
| | - M Staggs
- Lipedema Simplified, Boston, MA, USA
| | - J Dudek
- The Lipedema Project: Medical Advisory Board, Boston, MA, USA; SWPS University of Social Sciences and Humanities, Warsaw, Poland
| | - B Gower
- University of Alabama at Birmingham, Department of Nutrition Sciences, Birmingham, AL, USA
| | - M Carmody
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
30
|
The Effects of a Ketogenic Diet on Sensorimotor Function in a Thoracolumbar Mouse Spinal Cord Injury Model. eNeuro 2020; 7:ENEURO.0178-20.2020. [PMID: 32680835 PMCID: PMC7433893 DOI: 10.1523/eneuro.0178-20.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/14/2020] [Accepted: 07/10/2020] [Indexed: 01/26/2023] Open
Abstract
Spinal cord injury and peripheral nerve injuries are traumatic events that greatly impact quality of life. One factor that is being explored throughout patient care is the idea of diet and the role it has on patient outcomes. But the effects of diet following neurotrauma need to be carefully explored in animal models to ensure that they have beneficial effects. The ketogenic diet provides sufficient daily caloric requirements while being potentially neuroprotective and analgesic. In this study, animals were fed a high-fat, low-carbohydrate diet that led to a high concentration of blood ketone that was sustained for as long as the animals were on the diet. Mice fed a ketogenic diet had significantly lower levels of tyrosine and tryptophan, but the levels of other monoamines within the spinal cord remained similar to those of control mice. Mice were fed a standard or ketogenic diet for 7 d before and 28 d following the injury. Our results show that mice hemisected over the T10–T11 vertebrae showed no beneficial effects of being on a ketogenic diet over a 28 d recovery period. Similarly, ligation of the common peroneal and tibial nerve showed no differences between mice fed normal or ketogenic diets. Tests included von Frey, open field, and ladder-rung crossing. We add to existing literature showing protective effects of the ketogenic diet in forelimb injuries by focusing on neurotrauma in the hindlimbs. The results suggest that ketogenic diets need to be assessed based on the type and location of neurotrauma.
Collapse
|
31
|
Bouçanova F, Chrast R. Metabolic Interaction Between Schwann Cells and Axons Under Physiological and Disease Conditions. Front Cell Neurosci 2020; 14:148. [PMID: 32547370 PMCID: PMC7274022 DOI: 10.3389/fncel.2020.00148] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 05/04/2020] [Indexed: 12/24/2022] Open
Abstract
Recent research into axon-glial interactions in the nervous system has made a compelling case that glial cells have a relevant role in the metabolic support of axons, and that, in the case of myelinating cells, this role is independent of myelination itself. In this mini-review article, we summarize some of those observations and focus on Schwann cells (SC), drawing parallels between glia of the central and peripheral nervous systems (PNS), pointing out limitations in current knowledge, and discussing its potential clinical relevance. First, we introduce SC, their development and main roles, and follow with an evolutionary perspective of glial metabolic function. Then we provide evidence of the myelin-independent aspects of axonal support and their coupling to neuronal metabolism. Finally, we address the opportunity to use SC-axon metabolic interactions as therapeutic targets to treat peripheral neuropathies.
Collapse
Affiliation(s)
- Filipa Bouçanova
- Department of Neuroscience, KarolinskaInstitutet, Stockholm, Sweden.,Department of Clinical Neuroscience, KarolinskaInstitutet, Stockholm, Sweden
| | - Roman Chrast
- Department of Neuroscience, KarolinskaInstitutet, Stockholm, Sweden.,Department of Clinical Neuroscience, KarolinskaInstitutet, Stockholm, Sweden
| |
Collapse
|
32
|
Merrill JD, Soliman D, Kumar N, Lim S, Shariff AI, Yancy WS. Low-Carbohydrate and Very-Low-Carbohydrate Diets in Patients With Diabetes. Diabetes Spectr 2020; 33:133-142. [PMID: 32425450 PMCID: PMC7228825 DOI: 10.2337/ds19-0070] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Low-carbohydrate diets have been advocated as an effective method for promoting weight loss in overweight and obese individuals and preventing and treating type 2 diabetes. This article reviews the differences between various low-carbohydrate eating plans and discusses the benefits and drawbacks of such a diet based on available evidence. It also offers practical pointers for clinicians.
Collapse
Affiliation(s)
- Jennifer D. Merrill
- Division of Endocrinology, Diabetes and Metabolism, Duke University School of Medicine, Durham, NC
| | - Diana Soliman
- Division of Endocrinology, Diabetes and Metabolism, Duke University School of Medicine, Durham, NC
| | - Nitya Kumar
- Division of Endocrinology, Diabetes and Metabolism, Duke University School of Medicine, Durham, NC
| | - Sooyoung Lim
- Department of Internal Medicine, Duke University School of Medicine, Durham, NC
| | - Afreen I. Shariff
- Division of Endocrinology, Diabetes and Metabolism, Duke University School of Medicine, Durham, NC
| | - William S. Yancy
- Duke Diet and Fitness Center, Department of Medicine, Duke University Health System, Durham, NC
- Durham Veterans Affairs Medical Center, Durham, NC
| |
Collapse
|
33
|
O'Brien PD, Guo K, Eid SA, Rumora AE, Hinder LM, Hayes JM, Mendelson FE, Hur J, Feldman EL. Integrated lipidomic and transcriptomic analyses identify altered nerve triglycerides in mouse models of prediabetes and type 2 diabetes. Dis Model Mech 2020; 13:dmm.042101. [PMID: 31822493 PMCID: PMC6994925 DOI: 10.1242/dmm.042101] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 11/29/2019] [Indexed: 12/16/2022] Open
Abstract
Peripheral neuropathy (PN) is a complication of prediabetes and type 2 diabetes (T2D). Increasing evidence suggests that factors besides hyperglycaemia contribute to PN development, including dyslipidaemia. The objective of this study was to determine differential lipid classes and altered gene expression profiles in prediabetes and T2D mouse models in order to identify the dysregulated pathways in PN. Here, we used high-fat diet (HFD)-induced prediabetes and HFD/streptozotocin (STZ)-induced T2D mouse models that develop PN. These models were compared to HFD and HFD-STZ mice that were subjected to dietary reversal. Both untargeted and targeted lipidomic profiling, and gene expression profiling were performed on sciatic nerves. Lipidomic and transcriptomic profiles were then integrated using complex correlation analyses, and biological meaning was inferred from known lipid-gene interactions in the literature. We found an increase in triglycerides (TGs) containing saturated fatty acids. In parallel, transcriptomic analysis confirmed the dysregulation of lipid pathways. Integration of lipidomic and transcriptomic analyses identified an increase in diacylglycerol acyltransferase 2 (DGAT2), the enzyme required for the last and committed step in TG synthesis. Increased DGAT2 expression was present not only in the murine models but also in sural nerve biopsies from hyperlipidaemic diabetic patients with PN. Collectively, these findings support the hypothesis that abnormal nerve-lipid signalling is an important factor in peripheral nerve dysfunction in both prediabetes and T2D. This article has an associated First Person interview with the joint first authors of the paper. Summary: Mouse models of prediabetes and type 2 diabetes that develop peripheral neuropathy display increased levels of nerve triglycerides, which return to normal upon dietary reversal, suggesting that altered lipids are involved in disease.
Collapse
Affiliation(s)
- Phillipe D O'Brien
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109-2200, USA
| | - Kai Guo
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND 58202-9037, USA
| | - Stephanie A Eid
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109-2200, USA
| | - Amy E Rumora
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109-2200, USA
| | - Lucy M Hinder
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109-2200, USA
| | - John M Hayes
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109-2200, USA
| | - Faye E Mendelson
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109-2200, USA
| | - Junguk Hur
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND 58202-9037, USA
| | - Eva L Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109-2200, USA
| |
Collapse
|
34
|
Brandão AF, Bonet IJM, Pagliusi M, Zanetti GG, Pho N, Tambeli CH, Parada CA, Vieira AS, Sartori CR. Physical Activity Induces Nucleus Accumbens Genes Expression Changes Preventing Chronic Pain Susceptibility Promoted by High-Fat Diet and Sedentary Behavior in Mice. Front Neurosci 2020; 13:1453. [PMID: 32038148 PMCID: PMC6987254 DOI: 10.3389/fnins.2019.01453] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 12/30/2019] [Indexed: 12/14/2022] Open
Abstract
Recent findings from rodent studies suggest that high-fat diet (HFD) increases hyperalgesia independent of obesity status. Furthermore, weight loss interventions such as voluntary physical activity (PA) for adults with obesity or overweight was reported to promote pain reduction in humans with chronic pain. However, regardless of obesity status, it is not known whether HFD intake and sedentary (SED) behavior is underlies chronic pain susceptibility. Moreover, differential gene expression in the nucleus accumbens (NAc) plays a crucial role in chronic pain susceptibility. Thus, the present study used an adapted model of the inflammatory prostaglandin E2 (PGE2)-induced persistent hyperalgesia short-term (PH-ST) protocol for mice, an HFD, and a voluntary PA paradigm to test these hypotheses. Therefore, we performed an analysis of differential gene expression using a transcriptome approach of the NAc. We also applied a gene ontology enrichment tools to identify biological processes associated with chronic pain susceptibility and to investigate the interaction between the factors studied: diet (standard diet vs. HFD), physical activity behavior (SED vs. PA) and PH-ST (PGE vs. saline). Our results demonstrated that HFD intake and sedentary behavior promoted chronic pain susceptibility, which in turn was prevented by voluntary physical activity, even when the animals were fed an HFD. The transcriptome of the NAc found 2,204 differential expression genes and gene ontology enrichment analysis revealed 41 biologic processes implicated in chronic pain susceptibility. Taking these biological processes together, our results suggest that genes related to metabolic and mitochondria stress were up-regulated in the chronic pain susceptibility group (SED-HFD-PGE), whereas genes related to neuroplasticity were up-regulated in the non-chronic pain susceptibility group (PA-HFD-PGE). These findings provide pieces of evidence that HFD intake and sedentary behavior provoked gene expression changes in the NAc related to promotion of chronic pain susceptibility, whereas voluntary physical activity provoked gene expression changes in the NAc related to prevention of chronic pain susceptibility. Finally, our findings confirmed previous literature supporting the crucial role of voluntary physical activity to prevent chronic pain and suggest that low levels of voluntary physical activity would be helpful and highly recommended as a complementary treatment for those with chronic pain.
Collapse
Affiliation(s)
- Arthur Freitas Brandão
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Ivan José Magayewski Bonet
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Marco Pagliusi
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Gabriel Gerardini Zanetti
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Nam Pho
- eScience Institute, University of Washington, Seattle, WA, United States
| | - Cláudia Herrera Tambeli
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Carlos Amilcar Parada
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - André Schwambach Vieira
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Cesar Renato Sartori
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| |
Collapse
|
35
|
Zilliox LA, Russell JW. Physical activity and dietary interventions in diabetic neuropathy: a systematic review. Clin Auton Res 2019; 29:443-455. [PMID: 31076938 PMCID: PMC6697618 DOI: 10.1007/s10286-019-00607-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 04/09/2019] [Indexed: 12/27/2022]
Abstract
PURPOSE Diabetic neuropathy is a common and disabling disorder, and there are currently no proven effective disease-modifying treatments. Physical activity and dietary interventions in patients with diabetes and diabetic neuropathy have multiple beneficial effects and are generally low risk, which makes lifestyle interventions an attractive treatment option. We reviewed the literature on the effects of physical activity and dietary interventions on length-dependent peripheral neuropathy and cardiac autonomic neuropathy in diabetes. METHODS The electronic database PubMed was systematically searched for original human and mouse model studies examining the effect of either dietary or physical activity interventions in subjects with diabetes, prediabetes, or metabolic syndrome. RESULTS Twenty studies are included in this review. Fourteen studies were human studies and six were in mice. Studies were generally small with few controlled trials, and there are no widely agreed upon outcome measures. CONCLUSIONS Recent research indicates that dietary interventions are effective in modifying diabetic neuropathy in animal models, and there are promising data that they may also ameliorate diabetic neuropathy in humans. It has been known for some time that lifestyle interventions can prevent the development of diabetic neuropathy in type 2 diabetes mellitus subjects. However, there is emerging evidence that lifestyle interventions are effective in individuals with established diabetic neuropathy. In addition to the observed clinical value of lifestyle interventions, there is emerging evidence of effects on biochemical pathways that improve muscle function and affect other organ systems, including the peripheral nerve. However, data from randomized controlled trials are needed.
Collapse
Affiliation(s)
- Lindsay A Zilliox
- Department of Neurology, School of Medicine, University of Maryland, 3S-129, 110 South Paca Street, Baltimore, MD, 21201-1595, USA
- Maryland VA Healthcare System, Baltimore, MD, USA
| | - James W Russell
- Department of Neurology, School of Medicine, University of Maryland, 3S-129, 110 South Paca Street, Baltimore, MD, 21201-1595, USA.
- Maryland VA Healthcare System, Baltimore, MD, USA.
| |
Collapse
|
36
|
Chandrasekaran K, Anjaneyulu M, Choi J, Kumar P, Salimian M, Ho CY, Russell JW. Role of mitochondria in diabetic peripheral neuropathy: Influencing the NAD +-dependent SIRT1-PGC-1α-TFAM pathway. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2019; 145:177-209. [PMID: 31208524 DOI: 10.1016/bs.irn.2019.04.002] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Survival of human peripheral nervous system neurons and associated distal axons is highly dependent on energy. Diabetes invokes a maladaptation in glucose and lipid energy metabolism in adult sensory neurons, axons and Schwann cells. Mitochondrial (Mt) dysfunction has been implicated as an etiological factor in failure of energy homeostasis that results in a low intrinsic aerobic capacity within the neuron. Over time, this energy failure can lead to neuronal and axonal degeneration and results in increased oxidative injury in the neuron and axon. One of the key pathways that is impaired in diabetic peripheral neuropathy (DPN) is the energy sensing pathway comprising the nicotinamide-adenine dinucleotide (NAD+)-dependent Sirtuin 1 (SIRT1)/peroxisome proliferator-activated receptor-γ coactivator α (PGC-1α)/Mt transcription factor A (TFAM or mtTFA) signaling pathway. Knockout of PGC-1α exacerbates DPN, whereas overexpression of human TFAM is protective. LY379268, a selective metabolomic glutamate receptor 2/3 (mGluR2/3) receptor agonist, also upregulates the SIRT1/PGC-1α/TFAM signaling pathway and prevents DPN through glutamate recycling in Schwann/satellite glial (SG) cells and by improving dorsal root ganglion (DRG) neuronal Mt function. Furthermore, administration of nicotinamide riboside (NR), a precursor of NAD+, prevents and reverses DPN, in part by increasing NAD+ levels and SIRT1 activity. In summary, we review the role of NAD+, mitochondria and the SIRT1-PGC-1α-TFAM pathway both from the perspective of pathogenesis and therapy in DPN.
Collapse
Affiliation(s)
- Krish Chandrasekaran
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Muragundla Anjaneyulu
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, United States; Preclinical Division, Syngene International Ltd., Bangalore, India
| | - Joungil Choi
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, United States; Veterans Affairs Maryland Health Care System, Baltimore, MD, United States
| | - Pranith Kumar
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Mohammad Salimian
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Cheng-Ying Ho
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - James W Russell
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, United States; Veterans Affairs Maryland Health Care System, Baltimore, MD, United States; Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
37
|
Cooper MA, McCoin C, Pei D, Thyfault JP, Koestler D, Wright DE. Reduced mitochondrial reactive oxygen species production in peripheral nerves of mice fed a ketogenic diet. Exp Physiol 2018; 103:1206-1212. [PMID: 30088302 DOI: 10.1113/ep087083] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 07/20/2018] [Indexed: 12/13/2022]
Abstract
NEW FINDINGS What is the central question of this study? Do peripheral sensory neurons metabolize fat-based fuel sources, and does a ketogenic diet modify these processes? What is the main finding and its importance We show that peripheral axons from mice fed a ketogenic diet respond to fat-based fuel sources with reduced respiration and H2 O2 emission compared with mice fed a control diet. These results add to our understanding of the responses of sensory neurons to neuropathy associated with poor diet, obesity and metabolic syndrome. These findings should be incorporated into current ideas of axonal protection and might identify how dietary interventions may change mitochondrial function in settings of sensory dysfunction. ABSTRACT Metabolic syndrome and obesity are increasing epidemics that significantly impact the peripheral nervous system and lead to negative changes in sensation and peripheral nerve function. Research to understand the consequences of diet, obesity and fuel usage in sensory neurons has commonly focused on glucose metabolism. Here, we tested whether mouse sensory neurons and nerves have the capacity to metabolize fat-based fuels (palmitoyl-CoA) and whether these effects are altered by feeding of a ketogenic (90% kcal fat) diet compared with a control diet (14% kcal fat). Male C57Bl/6 mice were placed on the diets for 10 weeks, and after the mice were killed, the dorsal root ganglion (DRG) and sciatic nerve (SN) were placed in an Oroboros oxygraph-2K to examine diet-induced alterations in metabolism (respiration) of palmitoyl-CoA and H2 O2 emission (fluorescence). In addition, RNAseq was performed on the DRG of mice fed a control or a ketogenic diet for 12 weeks, and genes associated with mitochondrial respiratory function were analysed. Our results suggest that the sciatic nerves from mice fed a ketogenic diet display reduced O2 respiration and H2 O2 emission when metabolizing palmitoyl-CoA compared with mice fed a control diet. Assessments of changes in mRNA gene expression reveal alterations in genes encoding the NADH dehydrogenase complex and complex IV, which could alter production of reactive oxygen species. These new findings highlight the ability of sensory neurons and axons to oxidize fat-based fuel sources and show that these mechanisms are adaptable to dietary changes.
Collapse
Affiliation(s)
- Michael A Cooper
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Colin McCoin
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Dong Pei
- Department of Biostatistics, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - John P Thyfault
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Devin Koestler
- Department of Biostatistics, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Douglas E Wright
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| |
Collapse
|