1
|
Soto I, Nejtek VA, Siderovski DP, Salvatore MF. PINK1 knockout rats show premotor cognitive deficits measured through a complex maze. Front Neurosci 2024; 18:1390215. [PMID: 38817910 PMCID: PMC11137248 DOI: 10.3389/fnins.2024.1390215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/26/2024] [Indexed: 06/01/2024] Open
Abstract
Cognitive decline in Parkinson's disease (PD) is a critical premotor sign that may occur in approximately 40% of PD patients up to 10 years prior to clinical recognition and diagnosis. Delineating the mechanisms and specific behavioral signs of cognitive decline associated with PD prior to motor impairment is a critical unmet need. Rodent PD models that have an impairment in a cognitive phenotype for a time period sufficiently long enough prior to motor decline can be useful to establish viable candidate mechanisms. Arguably, the methods used to evaluate cognitive decline in rodent models should emulate methods used in the assessment of humans to optimize translation. Premotor cognitive decline in human PD can potentially be examined in the genetically altered PINK1-/- rat model, which exhibits a protracted onset of motor decline in most studies. To increase translation to cognitive assessment in human PD, we used a modified non-water multiple T-maze, which assesses attention, cognitive flexibility, and working memory similarly to the Trail Making Test (TMT) in humans. Similar to the deficiencies revealed in TMT test outcomes in human PD, 4-month-old PINK1-/- rats made more errors and took longer to complete the maze, despite a hyperkinetic phenotype, compared to wild-type rats. Thus, we have identified a potential methodological tool with cross-species translation to evaluate executive functioning in an established PD rat model.
Collapse
Affiliation(s)
- Isabel Soto
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, United States
| | | | | | | |
Collapse
|
2
|
Soto I, McManus R, Navarrete-Barahona W, Kasanga EA, Doshier K, Nejtek VA, Salvatore MF. Aging hastens locomotor decline in PINK1 knockout rats in association with decreased nigral, but not striatal, dopamine and tyrosine hydroxylase expression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.01.578317. [PMID: 38352365 PMCID: PMC10862808 DOI: 10.1101/2024.02.01.578317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Parkinson's disease (PD) rodent models provide insight into the relationship between nigrostriatal dopamine (DA) signaling and locomotor function. Although toxin-based rat models produce frank nigrostriatal neuron loss and eventual motor decline characteristic of PD, the rapid nature of neuronal loss may not adequately translate premotor traits, such as cognitive decline. Unfortunately, rodent genetic PD models, like the Pink1 knockout (KO) rat, often fail to replicate the differential severity of striatal DA and tyrosine hydroxylase (TH) loss, and a bradykinetic phenotype, reminiscent of human PD. To elucidate this inconsistency, we evaluated aging as a progression factor in the timing of motor and non-motor cognitive impairments. Male PINK1 KO and age-matched wild type (WT) rats were evaluated in a longitudinal study from 3 to 16 months old in one cohort, and in a cross-sectional study of young adult (6-7 months) and aged (18-19 months) in another cohort. Young adult PINK1 KO rats exhibited hyperkinetic behavior associated with elevated DA and TH in the substantia nigra (SN), which decreased therein, but not striatum, in the aged KO rats. Additionally, norepinephrine levels decreased in aged KO rats in the prefrontal cortex (PFC), paired with a higher DA content in young and aged KO. Although a younger age of onset characterizes familial forms of PD, our results underscore the critical need to consider age-related factors. Moreover, the results indicate that compensatory mechanisms may exist to preserve locomotor function, evidenced by increased DA in the SN early in the lifespan, in response to deficient PINK1 function, which declines with aging and the onset of motor impairment.
Collapse
|
3
|
Soto I, Nejtek VA, Siderovski DP, Salvatore MF. PINK1 knockout rats show premotor cognitive deficits measured through a complex maze. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.18.576285. [PMID: 38293068 PMCID: PMC10827158 DOI: 10.1101/2024.01.18.576285] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Cognitive decline in Parkinson's disease (PD) emerges up to 10 years before clinical recognition. Neurobiological mechanisms underlying premotor cognitive impairment in PD can potentially be examined in the PINK1 -/- rat, which exhibits a protracted motor onset. To enhance translation to human PD cognitive assessments, we tested a modified multiple T-maze, which measures cognitive flexibility similarly to the Trail-Making Test in humans. Like human PD outcomes, PINK1 -/- rats made more errors and took longer to complete the maze than wild types. Thus, we have identified a potential tool for assessing cross-species translation of cognitive functioning in an established PD animal model.
Collapse
|
4
|
Iravani MM, Shoaib M. Executive dysfunction and cognitive decline, a non-motor symptom of Parkinson's disease captured in animal models. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 174:231-255. [PMID: 38341231 DOI: 10.1016/bs.irn.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
The non-motor symptoms of Parkinson's disease (PD) have gained increasing attention in recent years due to their significant impact on patients' quality of life. Among these non-motor symptoms, cognitive dysfunction has emerged as an area of particular interest where the clinical aspects are covered in Chapter 2 of this volume. This chapter explores the rationale for investigating the underlying neurobiology of cognitive dysfunction by utilising translational animal models of PD, from rodents to non-human primates. The objective of this chapter is to review the various animal models of cognition that have explored the dysfunction in animal models of Parkinson's disease. Some of the more advanced pharmacological studies aimed at restoring these cognitive deficits are reviewed, although this chapter highlights the lack of systematic approaches in dealing with this non-motor symptom at the pre-clinical stages.
Collapse
|
5
|
Underwood EL, Redell JB, Hood KN, Maynard ME, Hylin M, Waxham MN, Zhao J, Moore AN, Dash PK. Enhanced presynaptic mitochondrial energy production is required for memory formation. Sci Rep 2023; 13:14431. [PMID: 37660191 PMCID: PMC10475119 DOI: 10.1038/s41598-023-40877-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 08/17/2023] [Indexed: 09/04/2023] Open
Abstract
Some of the prominent features of long-term memory formation include protein synthesis, gene expression, enhanced neurotransmitter release, increased excitability, and formation of new synapses. As these processes are critically dependent on mitochondrial function, we hypothesized that increased mitochondrial respiration and dynamics would play a prominent role in memory formation. To address this possibility, we measured mitochondrial oxygen consumption (OCR) in hippocampal tissue punches from trained and untrained animals. Our results show that context fear training significantly increased basal, ATP synthesis-linked, and maximal OCR in the Shaffer collateral-CA1 synaptic region, but not in the CA1 cell body layer. These changes were recapitulated in synaptosomes isolated from the hippocampi of fear-trained animals. As dynamin-related protein 1 (Drp1) plays an important role in mitochondrial fission, we examined its role in the increased mitochondrial respiration observed after fear training. Drp1 inhibitors decreased the training-associated enhancement of OCR and impaired contextual fear memory, but did not alter the number of synaptosomes containing mitochondria. Taken together, our results show context fear training increases presynaptic mitochondria respiration, and that Drp-1 mediated enhanced energy production in CA1 pre-synaptic terminals is necessary for context fear memory that does not result from an increase in the number of synaptosomes containing mitochondria or an increase in mitochondrial mass within the synaptic layer.
Collapse
Affiliation(s)
- Erica L Underwood
- Department of Neurobiology and Anatomy, The University of Texas McGovern Medical School, P.O. Box 20708, Houston, TX, 77225, USA
| | - John B Redell
- Department of Neurobiology and Anatomy, The University of Texas McGovern Medical School, P.O. Box 20708, Houston, TX, 77225, USA.
| | - Kimberly N Hood
- Department of Neurobiology and Anatomy, The University of Texas McGovern Medical School, P.O. Box 20708, Houston, TX, 77225, USA
| | - Mark E Maynard
- Department of Neurobiology and Anatomy, The University of Texas McGovern Medical School, P.O. Box 20708, Houston, TX, 77225, USA
- Department of Electrical and Computer Engineering, University of Houston, Houston, TX, USA
| | - Michael Hylin
- Department of Neurobiology and Anatomy, The University of Texas McGovern Medical School, P.O. Box 20708, Houston, TX, 77225, USA
- Department of Psychology, Southern Illinois University, Carbondale, IL, USA
| | - M Neal Waxham
- Department of Neurobiology and Anatomy, The University of Texas McGovern Medical School, P.O. Box 20708, Houston, TX, 77225, USA
| | - Jing Zhao
- Department of Neurobiology and Anatomy, The University of Texas McGovern Medical School, P.O. Box 20708, Houston, TX, 77225, USA
| | - Anthony N Moore
- Department of Neurobiology and Anatomy, The University of Texas McGovern Medical School, P.O. Box 20708, Houston, TX, 77225, USA
| | - Pramod K Dash
- Department of Neurobiology and Anatomy, The University of Texas McGovern Medical School, P.O. Box 20708, Houston, TX, 77225, USA
| |
Collapse
|
6
|
How Well Do Rodent Models of Parkinson's Disease Recapitulate Early Non-Motor Phenotypes? A Systematic Review. Biomedicines 2022; 10:biomedicines10123026. [PMID: 36551782 PMCID: PMC9775565 DOI: 10.3390/biomedicines10123026] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
The prodromal phase of Parkinson's disease (PD) is characterised by many non-motor symptoms, and these have recently been posited to be predictive of later diagnosis. Genetic rodent models can develop non-motor phenotypes, providing tools to identify mechanisms underlying the early development of PD. However, it is not yet clear how reproducible non-motor phenotypes are amongst genetic PD rodent models, whether phenotypes are age-dependent, and the translatability of these phenotypes has yet to be explored. A systematic literature search was conducted on studies using genetic PD rodent models to investigate non-motor phenotypes; cognition, anxiety/depressive-like behaviour, gastrointestinal (GI) function, olfaction, circadian rhythm, cardiovascular and urinary function. In total, 51 genetic models of PD across 150 studies were identified. We found outcomes of most phenotypes were inconclusive due to inadequate studies, assessment at different ages, or variation in experimental and environmental factors. GI dysfunction was the most reproducible phenotype across all genetic rodent models. The mouse model harbouring mutant A53T, and the wild-type hα-syn overexpression (OE) model recapitulated the majority of phenotypes, albeit did not reliably produce concurrent motor deficits and nigral cell loss. Furthermore, animal models displayed different phenotypic profiles, reflecting the distinct genetic risk factors and heterogeneity of disease mechanisms. Currently, the inconsistent phenotypes within rodent models pose a challenge in the translatability and usefulness for further biomechanistic investigations. This review highlights opportunities to improve phenotype reproducibility with an emphasis on phenotypic assay choice and robust experimental design.
Collapse
|
7
|
Otero PA, Fricklas G, Nigam A, Lizama BN, Wills ZP, Johnson JW, Chu CT. Endogenous PTEN-Induced Kinase 1 Regulates Dendritic Architecture and Spinogenesis. J Neurosci 2022; 42:7848-7860. [PMID: 36414008 PMCID: PMC9581559 DOI: 10.1523/jneurosci.0785-22.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 08/12/2022] [Accepted: 08/21/2022] [Indexed: 01/12/2023] Open
Abstract
Mutations in PTEN-induced kinase 1 (PINK1) contribute to autosomal recessive Parkinson's disease with cognitive and neuropsychiatric comorbidities. Disturbances in dendritic and spine architecture are hallmarks of neurodegenerative and neuropsychiatric conditions, but little is known of the impact of PINK1 on these structures. We used Pink1 -/- mice to study the role of endogenous PINK1 in regulating dendritic architecture, spine density, and spine maturation. Pink1 -/- cortical neurons of unknown sex showed decreased dendritic arborization, affecting both apical and basal arbors. Dendritic simplification in Pink1 -/- neurons was primarily driven by diminished branching with smaller effects on branch lengths. Pink1 -/- neurons showed reduced spine density with a shift in morphology to favor filopodia at the expense of mushroom spines. Electrophysiology revealed significant reductions in miniature EPSC (mEPSC) frequency in Pink1 -/- neurons, consistent with the observation of decreased spine numbers. Transfecting with human PINK1 rescued changes in dendritic architecture, in thin, stubby, and mushroom spine densities, and in mEPSC frequency. Diminished spine density was also observed in Golgi-Cox stained adult male Pink1 -/- brains. Western blot study of Pink1 -/- brains of either sex revealed reduced phosphorylation of NSFL1 cofactor p47, an indirect target of PINK1. Transfection of Pink1 -/- neurons with a phosphomimetic p47 plasmid rescued dendritic branching and thin/stubby spine density with a partial rescue of mushroom spines, implicating a role for PINK1-regulated p47 phosphorylation in dendrite and spine development. These findings suggest that PINK1-dependent synaptodendritic alterations may contribute to the risk of cognitive and/or neuropsychiatric pathologies observed in PINK1-mutated families.SIGNIFICANCE STATEMENT Loss of PINK1 function has been implicated in both familial and sporadic neurodegenerative diseases. Yet surprisingly little is known of the impact of PINK1 loss on the fine structure of neurons. Neurons receive excitatory synaptic signals along a complex network of projections that form the dendritic tree, largely at tiny protrusions called dendritic spines. We studied cortical neurons and brain tissues from mice lacking PINK1. We discovered that PINK1 deficiency causes striking simplification of dendritic architecture associated with reduced synaptic input and decreased spine density and maturation. These changes are reversed by reintroducing human PINK1 or one of its downstream mediators into PINK1-deficient mouse neurons, indicating a conserved function, whose loss may contribute to neurodegenerative processes.
Collapse
Affiliation(s)
- P Anthony Otero
- Department of Pathology, Division of Neuropathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| | - Gabriella Fricklas
- Department of Pathology, Division of Neuropathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| | - Aparna Nigam
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Britney N Lizama
- Department of Pathology, Division of Neuropathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| | - Zachary P Wills
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| | - Jon W Johnson
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Charleen T Chu
- Department of Pathology, Division of Neuropathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| |
Collapse
|
8
|
Hu Y, Zhou Y, Yang Y, Tang H, Si Y, Chen Z, Shi Y, Fang H. Metformin Protects Against Diabetes-Induced Cognitive Dysfunction by Inhibiting Mitochondrial Fission Protein DRP1. Front Pharmacol 2022; 13:832707. [PMID: 35392573 PMCID: PMC8981993 DOI: 10.3389/fphar.2022.832707] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/14/2022] [Indexed: 01/17/2023] Open
Abstract
Objectives: Diabetes is an independent risk factor for dementia. Mitochondrial dysfunction is a critical player in diabetes and diabetic complications. The present study aimed to investigate the role of mitochondrial dynamic changes in diabetes-associated cognitive impairment. Methods: Cognitive functions were examined by novel object recognition and T-maze tests. Mice hippocampi were collected for electron microscopy and immunofluorescence examination. Neuron cell line HT22 and primary hippocampal neurons were challenged with high glucose in vitro. Mitotracker-Red CM-H2X ROS was used to detect mitochondrial-derived free radicals. Results: Diabetic mice exhibited memory loss and spatial disorientation. Electron microscopy revealed that diabetic mice had larger synaptic gaps, attenuated postsynaptic density and fewer dendritic spines in the hippocampus. More round-shape mitochondria were observed in hippocampal neurons in diabetic mice than those in control mice. In cultured neurons, high glucose induced a high phosphorylated level of dynamin-related protein 1 (DRP1) and increased oxidative stress, resulting in cell apoptosis. Inhibition of mitochondrial fission by Mdivi-1 and metformin significantly decreased oxidative stress and prevented cell apoptosis in cultured cells. Treatment of Mdivi-1 and metformin restored cognitive function in diabetic mice. Conclusion: Metformin restores cognitive function by inhibiting mitochondrial fission, reducing mitochondrial-derived oxidative stress, and mitigating neuron loss in hippocampi of diabetic mice. The protective effects of metformin shed light on the therapeutic strategy of cognitive impairment.
Collapse
Affiliation(s)
- Yan Hu
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China.,Department of Anesthesiology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Yile Zhou
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yajie Yang
- Department of Anesthesiology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Haihong Tang
- Department of Anesthesiology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Yuan Si
- Department of Anesthesiology, Minhang Branch, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhouyi Chen
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yi Shi
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hao Fang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
9
|
Li XJ, Yu JH, Wu X, Zhu XM, Lv P, Du Z, Lu Y, Wu X, Yao J. Ketamine enhances dopamine D1 receptor expression by modulating microRNAs in a ketamine-induced schizophrenia-like mouse model. Neurotoxicol Teratol 2022; 91:107079. [PMID: 35202796 DOI: 10.1016/j.ntt.2022.107079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/04/2022] [Accepted: 02/18/2022] [Indexed: 10/19/2022]
Abstract
The abnormal expression of the dopamine D1 receptor (DRD1) may be associated with schizophrenia. MicroRNAs (miRNAs) can post-transcriptionally regulate DRD1 expression. Here, we established a ketamine-induced schizophrenia-like behavior mouse model and investigated the changes in miR-15a-3p, miR-15b-3p, miR-16-1-3p, and DRD1 in response to ketamine. Administration of high-dose ketamine for seven consecutive days to mice simulated the main symptoms of schizophrenia. The mice exhibited increasing excitability and autonomous activity and reduced learning and memory, including spatial memory. Moreover, ketamine decreased miR-15a-3p, miR-15b-3p, and miR-16-1-3p expression levels in the prefrontal cortex (PFC) and miR-16-1-3p expression in the hippocampus, whereas DRD1 expression increased in these brain regions. In HT22 mouse hippocampal neuronal cells, ketamine induced a dose-dependent increase of endogenous DRD1, which was partially attenuated by a combination of miR-15b-3p and miR-16-1-3p mimics. Indeed, the miR-15b-3p and miR-16-1-3p mimics could significantly inhibit endogenous DRD1expression. We identified +72 to +78 bp (TGCTGCT) of the DRD1 3'UTR as the core regulatory region recognized by the target miRNAs. In summary, we developed a ketamine-induced schizophrenia-like behavior mouse model and found that ketamine inhibited the levels of miR-15a-3p, miR-15b-3p, miR-16-1-3p and increased DRD1 expression in mice.
Collapse
Affiliation(s)
- Xiao-Jin Li
- School of Forensic Medicine, China Medical University, China; Key Laboratory of Forensic Bio-evidence Sciences, Liaoning Province, China; China Medical University Center of Forensic Investigation, China
| | - Juan-Han Yu
- Department of Pathology, Basic Medicine Science and First Hospital of China Medical University, China
| | - Xue Wu
- School of Forensic Medicine, China Medical University, China; Key Laboratory of Forensic Bio-evidence Sciences, Liaoning Province, China; China Medical University Center of Forensic Investigation, China
| | - Xiu-Mei Zhu
- School of Forensic Medicine, China Medical University, China; Key Laboratory of Forensic Bio-evidence Sciences, Liaoning Province, China; China Medical University Center of Forensic Investigation, China
| | - Peng Lv
- School of Forensic Medicine, China Medical University, China; Key Laboratory of Forensic Bio-evidence Sciences, Liaoning Province, China; China Medical University Center of Forensic Investigation, China
| | - Zhe Du
- School of Forensic Medicine, China Medical University, China; Key Laboratory of Forensic Bio-evidence Sciences, Liaoning Province, China; China Medical University Center of Forensic Investigation, China
| | - Yan Lu
- Key Laboratory of Health Ministry in Congenital Malformation, the Affiliated Sheng Jing Hospital of China Medical University, China.
| | - Xu Wu
- School of Forensic Medicine, China Medical University, China; Key Laboratory of Forensic Bio-evidence Sciences, Liaoning Province, China; China Medical University Center of Forensic Investigation, China.
| | - Jun Yao
- School of Forensic Medicine, China Medical University, China; Key Laboratory of Forensic Bio-evidence Sciences, Liaoning Province, China; China Medical University Center of Forensic Investigation, China.
| |
Collapse
|
10
|
Salvatore MF, Soto I, Kasanga EA, James R, Shifflet MK, Doshier K, Little JT, John J, Alphonso HM, Cunningham JT, Nejtek VA. Establishing Equivalent Aerobic Exercise Parameters Between Early-Stage Parkinson's Disease and Pink1 Knockout Rats. JOURNAL OF PARKINSON'S DISEASE 2022; 12:1897-1915. [PMID: 35754287 PMCID: PMC9535586 DOI: 10.3233/jpd-223157] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 06/07/2022] [Indexed: 11/15/2022]
Abstract
BACKGROUND Rodent Parkinson's disease (PD) models are valuable to interrogate neurobiological mechanisms of exercise that mitigate motor impairment. Translating these mechanisms to human PD must account for physical capabilities of the patient. OBJECTIVE To establish cardiovascular parameters as a common metric for cross-species translation of aerobic exercise impact. METHOD We evaluated aerobic exercise impact on heart rate (HR) in 21 early-stage PD subjects (Hoehn Yahr ≤1.5) exercising in non-contact boxing training for ≥3 months, ≥3x/week. In 4-month-old Pink1 knockout (KO) rats exercising in a progressively-increased treadmill speed regimen, we determined a specific treadmill speed that increased HR to an extent similar in human subjects. RESULTS After completing aerobic exercise for ∼30 min, PD subjects had increased HR∼35% above baseline (∼63% maximum HR). Motor and cognitive test results indicated the exercising subjects completed the timed up and go (TUG) and trail-making test (TMT-A) in significantly less time versus exercise-naïve PD subjects. In KO and age-matched wild-type (WT) rats, treadmill speeds of 8-10 m/min increased HR up to 25% above baseline (∼67% maximum HR), with no further increases up to 16 m/min. Exercised KO, but not WT, rats showed increased locomotor activity compared to an age-matched exercise-naïve cohort at 5 months old. CONCLUSION These proof-of-concept results indicate HR is a cross-species translation parameter to evaluate aerobic exercise impact on specific motor or cognitive functions in human subjects and rat PD models. Moreover, a moderate intensity exercise regimen is within the physical abilities of early-stage PD patients and is therefore applicable for interrogating neurobiological mechanisms in rat PD models.
Collapse
Affiliation(s)
- Michael F. Salvatore
- Department of Pharmacology & Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Isabel Soto
- Department of Pharmacology & Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Ella A. Kasanga
- Department of Pharmacology & Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Rachael James
- Department of Pharmacology & Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Marla K. Shifflet
- Department of Pharmacology & Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Kirby Doshier
- Department of Pharmacology & Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Joel T. Little
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Joshia John
- Texas College of Osteopathic Medicine, University of North Texas Health Science Center, Fort Worth, TX, USA
| | | | - J. Thomas Cunningham
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Vicki A. Nejtek
- Department of Pharmacology & Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, USA
| |
Collapse
|
11
|
Wang J, Cao H. Zebrafish and Medaka: Important Animal Models for Human Neurodegenerative Diseases. Int J Mol Sci 2021; 22:10766. [PMID: 34639106 PMCID: PMC8509648 DOI: 10.3390/ijms221910766] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/30/2021] [Accepted: 09/30/2021] [Indexed: 02/06/2023] Open
Abstract
Animal models of human neurodegenerative disease have been investigated for several decades. In recent years, zebrafish (Danio rerio) and medaka (Oryzias latipes) have become popular in pathogenic and therapeutic studies about human neurodegenerative diseases due to their small size, the optical clarity of embryos, their fast development, and their suitability to large-scale therapeutic screening. Following the emergence of a new generation of molecular biological technologies such as reverse and forward genetics, morpholino, transgenesis, and gene knockout, many human neurodegenerative disease models, such as Parkinson's, Huntington's, and Alzheimer's, were constructed in zebrafish and medaka. These studies proved that zebrafish and medaka genes are functionally conserved in relation to their human homologues, so they exhibit similar neurodegenerative phenotypes to human beings. Therefore, fish are a suitable model for the investigation of pathologic mechanisms of neurodegenerative diseases and for the large-scale screening of drugs for potential therapy. In this review, we summarize the studies in modelling human neurodegenerative diseases in zebrafish and medaka in recent years.
Collapse
Affiliation(s)
- Jing Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Donghu South Road 7#, Wuhan 430072, China;
- College of Advanced Agriculture Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong Cao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Donghu South Road 7#, Wuhan 430072, China;
- College of Advanced Agriculture Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
12
|
Hsu YL, Hung HS, Tsai CW, Liu SP, Chiang YT, Kuo YH, Shyu WC, Lin SZ, Fu RH. Peiminine Reduces ARTS-Mediated Degradation of XIAP by Modulating the PINK1/Parkin Pathway to Ameliorate 6-Hydroxydopamine Toxicity and α-Synuclein Accumulation in Parkinson's Disease Models In Vivo and In Vitro. Int J Mol Sci 2021; 22:ijms221910240. [PMID: 34638579 PMCID: PMC8549710 DOI: 10.3390/ijms221910240] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 02/06/2023] Open
Abstract
Parkinson’s disease (PD) is a degenerative disease that can cause motor, cognitive, and behavioral disorders. The treatment strategies being developed are based on the typical pathologic features of PD, including the death of dopaminergic (DA) neurons in the substantia nigra of the midbrain and the accumulation of α-synuclein in neurons. Peiminine (PMN) is an extract of Fritillaria thunbergii Miq that has antioxidant and anti-neuroinflammatory effects. We used Caenorhabditis elegans and SH-SY5Y cell models of PD to evaluate the neuroprotective potential of PMN and address its corresponding mechanism of action. We found that pretreatment with PMN reduced reactive oxygen species production and DA neuron degeneration caused by exposure to 6-hydroxydopamine (6-OHDA), and therefore significantly improved the DA-mediated food-sensing behavior of 6-OHDA-exposed worms and prolonged their lifespan. PMN also diminished the accumulation of α-synuclein in transgenic worms and transfected cells. In our study of the mechanism of action, we found that PMN lessened ARTS-mediated degradation of X-linked inhibitor of apoptosis (XIAP) by enhancing the expression of PINK1/parkin. This led to reduced 6-OHDA-induced apoptosis, enhanced activity of the ubiquitin–proteasome system, and increased autophagy, which diminished the accumulation of α-synuclein. The use of small interfering RNA to down-regulate parkin reversed the benefits of PMN in the PD models. Our findings suggest PMN as a candidate compound worthy of further evaluation for the treatment of PD.
Collapse
Affiliation(s)
- Yu-Ling Hsu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan; (Y.-L.H.); (H.-S.H.); (S.-P.L.); (Y.-T.C.); (W.-C.S.)
| | - Huey-Shan Hung
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan; (Y.-L.H.); (H.-S.H.); (S.-P.L.); (Y.-T.C.); (W.-C.S.)
- Translational Medicine Research Center, China Medical University Hospital, Taichung 40447, Taiwan
| | - Chia-Wen Tsai
- Department of Nutrition, China Medical University, Taichung 40402, Taiwan;
| | - Shih-Ping Liu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan; (Y.-L.H.); (H.-S.H.); (S.-P.L.); (Y.-T.C.); (W.-C.S.)
- Translational Medicine Research Center, China Medical University Hospital, Taichung 40447, Taiwan
| | - Yu-Ting Chiang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan; (Y.-L.H.); (H.-S.H.); (S.-P.L.); (Y.-T.C.); (W.-C.S.)
| | - Yun-Hua Kuo
- Department of Nursing, Taipei Veterans General Hospital, Taipei 12217, Taiwan;
| | - Woei-Cherng Shyu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan; (Y.-L.H.); (H.-S.H.); (S.-P.L.); (Y.-T.C.); (W.-C.S.)
- Translational Medicine Research Center, China Medical University Hospital, Taichung 40447, Taiwan
| | - Shinn-Zong Lin
- Bioinnovation Center, Tzu Chi Foundation, Department of Neurosurgery, Buddhist Tzu Chi General Hospital, Tzu Chi University, Hualien 970, Taiwan;
| | - Ru-Huei Fu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan; (Y.-L.H.); (H.-S.H.); (S.-P.L.); (Y.-T.C.); (W.-C.S.)
- Translational Medicine Research Center, China Medical University Hospital, Taichung 40447, Taiwan
- Department of Psychology, Asia University, Taichung 41354, Taiwan
- Correspondence: ; Tel.: +886-422052121-7826
| |
Collapse
|
13
|
Najib NH, Nies YH, Abd Halim SA, Yahaya MF, Das S, Lim WL, Teoh SL. Modeling Parkinson’s Disease in Zebrafish. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2020; 19:386-399. [DOI: 10.2174/1871527319666200708124117] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 05/10/2020] [Accepted: 06/17/2020] [Indexed: 01/04/2023]
Abstract
Parkinson’s Disease (PD) is one of the most common neurodegenerative disorders that affects
the motor system, and includes cardinal motor symptoms such as resting tremor, cogwheel rigidity,
bradykinesia and postural instability. Its prevalence is increasing worldwide due to the increase in
life span. Although, two centuries since the first description of the disease, no proper cure with regard
to treatment strategies and control of symptoms could be reached. One of the major challenges faced
by the researchers is to have a suitable research model. Rodents are the most common PD models
used, but no single model can replicate the true nature of PD. In this review, we aim to discuss another
animal model, the zebrafish (Danio rerio), which is gaining popularity. Zebrafish brain has all the major
structures found in the mammalian brain, with neurotransmitter systems, and it also possesses a
functional blood-brain barrier similar to humans. From the perspective of PD research, the zebrafish
possesses the ventral diencephalon, which is thought to be homologous to the mammalian substantia
nigra. We summarize the various zebrafish models available to study PD, namely chemical-induced
and genetic models. The zebrafish can complement the use of other animal models for the mechanistic
study of PD and help in the screening of new potential therapeutic compounds.
Collapse
Affiliation(s)
- Nor H.M. Najib
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Yong H. Nies
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Syarifah A.S. Abd Halim
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Mohamad F. Yahaya
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Srijit Das
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Wei L. Lim
- Department of Biological Sciences, School of Science and Technology, Sunway University, Selangor, Malaysia
| | - Seong L. Teoh
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| |
Collapse
|