1
|
Rakshe PS, Dutta BJ, Chib S, Maurya N, Singh S. Unveiling the interplay of AMPK/SIRT1/PGC-1α axis in brain health: Promising targets against aging and NDDs. Ageing Res Rev 2024; 96:102255. [PMID: 38490497 DOI: 10.1016/j.arr.2024.102255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/21/2024] [Accepted: 02/27/2024] [Indexed: 03/17/2024]
Abstract
The escalating prevalence of neurodegenerative diseases (NDDs) within an aging global population presents a pressing challenge. The multifaceted pathophysiological mechanisms underlying these disorders, including oxidative stress, mitochondrial dysfunction, and neuroinflammation, remain complex and elusive. Among these, the AMPK/SIRT1/PGC-1α pathway emerges as a pivotal network implicated in neuroprotection against these destructive processes. This review sheds light on the potential therapeutic implications of targeting this axis, specifically emphasizing the promising role of flavonoids in mitigating NDD-related complications. Expanding beyond conventional pharmacological approaches, the exploration of non-pharmacological interventions such as exercise and calorie restriction (CR), coupled with the investigation of natural compounds, offers a beacon of hope. By strategically elucidating the intricate connections within these pathways, this review aims to pave the ways for novel multi-target agents and interventions, fostering a renewed optimism in the quest to combat and manage the debilitating impacts of NDDs on global health and well-being.
Collapse
Affiliation(s)
- Pratik Shankar Rakshe
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Export Promotion Industrial Park (EPIP), Zandaha Road, Hajipur, Bihar, India
| | - Bhaskar Jyoti Dutta
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Export Promotion Industrial Park (EPIP), Zandaha Road, Hajipur, Bihar, India
| | - Shivani Chib
- Department of Pharmacology, Central University of Punjab, Badal - Bathinda Rd, Ghudda, Punjab, India
| | - Niyogita Maurya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Export Promotion Industrial Park (EPIP), Zandaha Road, Hajipur, Bihar, India
| | - Sanjiv Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Export Promotion Industrial Park (EPIP), Zandaha Road, Hajipur, Bihar, India.
| |
Collapse
|
2
|
Ravichandran KA, Heneka MT. Inflammasomes in neurological disorders - mechanisms and therapeutic potential. Nat Rev Neurol 2024; 20:67-83. [PMID: 38195712 DOI: 10.1038/s41582-023-00915-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2023] [Indexed: 01/11/2024]
Abstract
Inflammasomes are molecular scaffolds that are activated by damage-associated and pathogen-associated molecular patterns and form a key element of innate immune responses. Consequently, the involvement of inflammasomes in several diseases that are characterized by inflammatory processes, such as multiple sclerosis, is widely appreciated. However, many other neurological conditions, including Alzheimer disease, Parkinson disease, amyotrophic lateral sclerosis, stroke, epilepsy, traumatic brain injury, sepsis-associated encephalopathy and neurological sequelae of COVID-19, all involve persistent inflammation in the brain, and increasing evidence suggests that inflammasome activation contributes to disease progression in these conditions. Understanding the biology and mechanisms of inflammasome activation is, therefore, crucial for the development of inflammasome-targeted therapies for neurological conditions. In this Review, we present the current evidence for and understanding of inflammasome activation in neurological diseases and discuss current and potential interventional strategies that target inflammasome activation to mitigate its pathological consequences.
Collapse
Affiliation(s)
- Kishore Aravind Ravichandran
- Department of Neuroinflammation, Institute of innate immunity, University of Bonn Medical Center Bonn, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Michael T Heneka
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Esch-sur-Alzette, Luxembourg.
- Department of Infectious Diseases and Immunology, University of Massachusetts Medical School, North Worcester, MA, USA.
| |
Collapse
|
3
|
Spurlock M, An W, Reshetnikova G, Wen R, Wang H, Braha M, Solis G, Kurtenbach S, Galindez OJ, de Rivero Vaccari JP, Chou TH, Porciatti V, Shestopalov VI. The Inflammasome-Dependent Dysfunction and Death of Retinal Ganglion Cells after Repetitive Intraocular Pressure Spikes. Cells 2023; 12:2626. [PMID: 37998361 PMCID: PMC10670000 DOI: 10.3390/cells12222626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 11/25/2023] Open
Abstract
The dysfunction and selective loss of retinal ganglion cells (RGCs) is a known cause of vision loss in glaucoma and other neuropathies, where ocular hypertension (OHT) is the major risk factor. We investigated the impact of transient non-ischemic OHT spikes (spOHT) on RGC function and viability in vivo to identify cellular pathways linking low-grade repetitive mechanical stress to RGC pathology. We found that repetitive spOHT had an unexpectedly high impact on intraocular homeostasis and RGC viability, while exposure to steady OHT (stOHT) of a similar intensity and duration failed to induce pathology. The repetitive spOHT induced the rapid activation of the inflammasome, marked by the upregulation of NLRP1, NLRP3, AIM2, caspases -1, -3/7, -8, and Gasdermin D (GSDMD), and the release of interleukin-1β (IL-1β) and other cytokines into the vitreous. Similar effects were also detected after 5 weeks of exposure to chronic OHT in an induced glaucoma model. The onset of these immune responses in both spOHT and glaucoma models preceded a 50% deficit in pattern electroretinogram (PERG) amplitude and a significant loss of RGCs 7 days post-injury. The inactivation of inflammasome complexes in Nlrp1-/-, Casp1-/-, and GsdmD-/- knockout animals significantly suppressed the spOHT-induced inflammatory response and protected RGCs. Our results demonstrate that mechanical stress produced by acute repetitive spOHT or chronic OHT is mechanistically linked to inflammasome activation, which leads to RGC dysfunction and death.
Collapse
Affiliation(s)
- Markus Spurlock
- Bascom Palmer Eye Institute Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (M.S.); (W.A.); (G.R.); (R.W.); (H.W.); (M.B.); (G.S.); (S.K.); (V.P.)
- Neuroscience Graduate Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
| | - Weijun An
- Bascom Palmer Eye Institute Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (M.S.); (W.A.); (G.R.); (R.W.); (H.W.); (M.B.); (G.S.); (S.K.); (V.P.)
| | - Galina Reshetnikova
- Bascom Palmer Eye Institute Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (M.S.); (W.A.); (G.R.); (R.W.); (H.W.); (M.B.); (G.S.); (S.K.); (V.P.)
| | - Rong Wen
- Bascom Palmer Eye Institute Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (M.S.); (W.A.); (G.R.); (R.W.); (H.W.); (M.B.); (G.S.); (S.K.); (V.P.)
| | - Hua Wang
- Bascom Palmer Eye Institute Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (M.S.); (W.A.); (G.R.); (R.W.); (H.W.); (M.B.); (G.S.); (S.K.); (V.P.)
| | - Michelle Braha
- Bascom Palmer Eye Institute Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (M.S.); (W.A.); (G.R.); (R.W.); (H.W.); (M.B.); (G.S.); (S.K.); (V.P.)
| | - Gabriela Solis
- Bascom Palmer Eye Institute Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (M.S.); (W.A.); (G.R.); (R.W.); (H.W.); (M.B.); (G.S.); (S.K.); (V.P.)
| | - Stefan Kurtenbach
- Bascom Palmer Eye Institute Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (M.S.); (W.A.); (G.R.); (R.W.); (H.W.); (M.B.); (G.S.); (S.K.); (V.P.)
| | - Orlando J. Galindez
- Department of Neurological Surgery and The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
| | - Juan Pablo de Rivero Vaccari
- Neuroscience Graduate Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
- Department of Neurological Surgery and The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
| | - Tsung-Han Chou
- Bascom Palmer Eye Institute Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (M.S.); (W.A.); (G.R.); (R.W.); (H.W.); (M.B.); (G.S.); (S.K.); (V.P.)
| | - Vittorio Porciatti
- Bascom Palmer Eye Institute Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (M.S.); (W.A.); (G.R.); (R.W.); (H.W.); (M.B.); (G.S.); (S.K.); (V.P.)
| | - Valery I. Shestopalov
- Bascom Palmer Eye Institute Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (M.S.); (W.A.); (G.R.); (R.W.); (H.W.); (M.B.); (G.S.); (S.K.); (V.P.)
- Department of Cell Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
4
|
Yan Z, He Z, Jiang H, Zhang Y, Xu Y, Zhang Y. TRPV4-mediated mitochondrial dysfunction induces pyroptosis and cartilage degradation in osteoarthritis via the Drp1-HK2 axis. Int Immunopharmacol 2023; 123:110651. [PMID: 37506502 DOI: 10.1016/j.intimp.2023.110651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/11/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023]
Abstract
Osteoarthritis (OA) is an age-related chronic degenerative disease with complex pathophysiological mechanisms. Accumulating evidence indicates that nod-like receptor pyrin domain 3 (NLRP3) inflammasome-mediated pyroptosis of chondrocytes plays a crucial role in the OA progression. Transient Receptor Potential Vanilloid 4 (TRPV4), described as a calcium-permeable cation channel, isassociated with proinflammatory factors and pyroptosis. In this study, we studied the potential functions of TRPV4 in chondrocyte pyroptosis and cartilage degradation. We found that lipopolysaccharides(LPS)-induced mitochondrial reactive oxygen species (mtROS) accumulation aggravated chondrocyte pyroptosis and cartilage degeneration. TRPV4 induces dynamin-related protein 1 (Drp1) mitochondrial translocation through the Ca2+-calmodulin-dependent protein kinase II (CaMKII) signaling pathway, which subsequently caused the mitochondrial dysfunction (e.g., mPTP over opening; Δψm depolarization; ATP production decreased; mtROS accumulation), pyroptosis and extracellular matrix (ECM) degradation through hexokinase 2 (HK2) dissociation from mitochondrial membrane. Moreover, TRPV4 inhibition reversed Drp1-involved chondrocyte pyroptosis and cartilage degeneration in the anterior cruciate ligament transection (ACLT) mouse model. Our findings revealed the internal mechanisms underlying TRPV4 regulation in chondrocytes and its intrinsic therapeutic efficacy for OA.
Collapse
Affiliation(s)
- Zijian Yan
- Department of Orthopaedics Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Zili He
- Department of Orthopaedics Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Hongyi Jiang
- Department of Orthopaedics Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yu Zhang
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yitie Xu
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yingze Zhang
- Department of Orthopaedics Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Department of Orthopedic Surgery of Hebei Province, Third Hospital of Hebei Medical University, 139 Ziqiang Road, Shijiazhuang 050051, Hebei, China; NHC Key Laboratory of Intelligent Orthopeadic Equipment, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.
| |
Collapse
|
5
|
Cui YR, Bu ZQ, Yu HY, Yan LL, Feng J. Emodin attenuates inflammation and demyelination in experimental autoimmune encephalomyelitis. Neural Regen Res 2023; 18:1535-1541. [PMID: 36571359 PMCID: PMC10075100 DOI: 10.4103/1673-5374.358612] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Emodin, a substance extracted from herbs such as rhubarb, has a protective effect on the central nervous system. However, the potential therapeutic effect of emodin in the context of multiple sclerosis remains unknown. In this study, a rat model of experimental autoimmune encephalomyelitis was established by immune induction to simulate multiple sclerosis, and the rats were intraperitoneally injected with emodin (20 mg/kg/d) from the day of immune induction until they were sacrificed. In this model, the nucleotide-binding domain-like receptor family pyrin domain containing 3 (NLRP3) inflammasome and the microglia exacerbated neuroinflammation, playing an important role in the development of multiple sclerosis. In addition, silent information regulator of transcription 1 (SIRT1)/peroxisome proliferator-activated receptor-alpha coactivator (PGC-1α) was found to inhibit activation of the NLRP3 inflammasome, and SIRT1 activation reduced disease severity in experimental autoimmune encephalomyelitis. Furthermore, treatment with emodin decreased body weight loss and neurobehavioral deficits, alleviated inflammatory cell infiltration and demyelination, reduced the expression of inflammatory cytokines, inhibited microglial aggregation and activation, decreased the levels of NLRP3 signaling pathway molecules, and increased the expression of SIRT1 and PGC-1α. These findings suggest that emodin improves the symptoms of experimental autoimmune encephalomyelitis, possibly through regulating the SIRT1/PGC-1α/NLRP3 signaling pathway and inhibiting microglial inflammation. These findings provide experimental evidence for treatment of multiple sclerosis with emodin, enlarging the scope of clinical application for emodin.
Collapse
Affiliation(s)
- Yue-Ran Cui
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Zhong-Qi Bu
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Hai-Yang Yu
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Li-Li Yan
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Juan Feng
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| |
Collapse
|
6
|
Tureckova J, Hermanova Z, Marchetti V, Anderova M. Astrocytic TRPV4 Channels and Their Role in Brain Ischemia. Int J Mol Sci 2023; 24:ijms24087101. [PMID: 37108263 PMCID: PMC10138480 DOI: 10.3390/ijms24087101] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/06/2023] [Accepted: 04/08/2023] [Indexed: 04/29/2023] Open
Abstract
Transient receptor potential cation channels subfamily V member 4 (TRPV4) are non-selective cation channels expressed in different cell types of the central nervous system. These channels can be activated by diverse physical and chemical stimuli, including heat and mechanical stress. In astrocytes, they are involved in the modulation of neuronal excitability, control of blood flow, and brain edema formation. All these processes are significantly impaired in cerebral ischemia due to insufficient blood supply to the tissue, resulting in energy depletion, ionic disbalance, and excitotoxicity. The polymodal cation channel TRPV4, which mediates Ca2+ influx into the cell because of activation by various stimuli, is one of the potential therapeutic targets in the treatment of cerebral ischemia. However, its expression and function vary significantly between brain cell types, and therefore, the effect of its modulation in healthy tissue and pathology needs to be carefully studied and evaluated. In this review, we provide a summary of available information on TRPV4 channels and their expression in healthy and injured neural cells, with a particular focus on their role in ischemic brain injury.
Collapse
Affiliation(s)
- Jana Tureckova
- Institute of Experimental Medicine, Czech Academy of Sciences, 1083 Videnska, 142 20 Prague, Czech Republic
| | - Zuzana Hermanova
- Institute of Experimental Medicine, Czech Academy of Sciences, 1083 Videnska, 142 20 Prague, Czech Republic
- Second Faculty of Medicine, Charles University, 84 V Uvalu, 150 06 Prague, Czech Republic
| | - Valeria Marchetti
- Institute of Experimental Medicine, Czech Academy of Sciences, 1083 Videnska, 142 20 Prague, Czech Republic
- Second Faculty of Medicine, Charles University, 84 V Uvalu, 150 06 Prague, Czech Republic
| | - Miroslava Anderova
- Institute of Experimental Medicine, Czech Academy of Sciences, 1083 Videnska, 142 20 Prague, Czech Republic
- Second Faculty of Medicine, Charles University, 84 V Uvalu, 150 06 Prague, Czech Republic
| |
Collapse
|
7
|
Liu X, Dou B, Tang W, Yang H, Chen K, Wang Y, Qin J, Yang F. Cardioprotective effects of circ_0002612 in myocardial ischemia/reperfusion injury correlate with disruption of miR-30a-5p-dependent Ppargc1a inhibition. Int Immunopharmacol 2023; 117:110006. [PMID: 37012879 DOI: 10.1016/j.intimp.2023.110006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 02/19/2023] [Accepted: 03/06/2023] [Indexed: 03/14/2023]
Abstract
INTRODUCTION Novel mechanistic insights into the effects of circular RNAs (circRNAs) on the physiology and pathology of cardiovascular diseases are under increasingly active investigation. This study defined the cardioprotective role and mechanistic actions of circ_0002612 in myocardial ischemia/reperfusion injury (MI/RI). METHODS MI/RI was induced in mice by ligation of the left anterior descending (LAD) artery followed by reperfusion, and the in vitro model was established in cultured cardiomyocytes under hypoxia/reoxygenation (H/R) conditions. Interaction among circ_0002612, miR-30a-5p, Ppargc1a, and NLRP3 was predicted by bioinformatics analysis and further experimentally identified. Gain- and loss-of-function experiments were performed to evaluate the effect of the circ_0002612/miR-30a-5p/Ppargc1a/NLRP3 axis on the cardiac function and myocardial infarction of I/R-injured mice, as well as viability and apoptosis of H/R-challenged cardiomyocytes. RESULTS In the myocardial tissues of MI/RI mice, miR-30a-5p was negatively correlated with circ_0002612 or Ppargc1a, but circ_0002612 was positively correlated with the expression of Ppargc1a. circ_0002612 competitively bound to miR-30a-5p to release expression of its target gene Ppargc1a. circ_0002612 promoted cardiomyocyte viability while suppressing the apoptosis by impairing the miR-30a-5p-mediated inhibition of Ppargc1a. Additionally, Ppargc1a inhibited the expression of NLRP3 and consequently facilitated cardiomyocyte proliferation while suppressing cell apoptosis. By inhibiting the expression of NLRP3, circ_0002612 protected mice from MI/RI. CONCLUSION Overall, this study demonstrates the cardioprotective role of circ_0002612 against MI/RI, which may be a viable target for MI/RI.
Collapse
|
8
|
Feng Z, Huang Q, Zhang X, Xu P, Li S, Ma D, Meng Q. PPAR-γ Activation Alleviates Osteoarthritis through Both the Nrf2/NLRP3 and PGC-1α/Δψm Pathways by Inhibiting Pyroptosis. PPAR Res 2023; 2023:2523536. [PMID: 37020714 PMCID: PMC10070030 DOI: 10.1155/2023/2523536] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/10/2023] [Accepted: 02/27/2023] [Indexed: 03/30/2023] Open
Abstract
Osteoarthritis (OA) is a common degenerative joint disease with a gradually increasing morbidity in the aging and obese population. Emerging evidence has implicated pyroptosis in the etiology of OA and it may be recognized as a therapeutic target in OA. We have previously reported regarding another disease that peroxisome proliferator-activated receptor gamma (PPAR-γ) activation exerts an anti-inflammatory effect by suppressing the nucleotide-binding and oligomerization domain-like receptor containing protein (NLRP) 3 inflammasome. However, the relationship between PPAR-γ and NLRP3-mediated pyroptosis in OA cartilage and its underlying mechanisms is fully unclear. In this study, we found that the level of NLRP3-mediated pyroptosis in severe lateral femoral condyle cartilage wear in the knee of an OA patient was significantly higher than that in the mild lateral femoral condyle cartilage wear areas. Moreover, in lipopolysaccharide (LPS)/adenosine triphosphate (ATP)-induced primary chondrocytes and knee OA rat models, we demonstrated that activation of PPAR-γ by pioglitazone (Piog) attenuated LPS/ATP-induced chondrocyte pyroptosis and arthritis. These effects were partially counteracted by either blocking the nuclear factor erythroid-2-related factor (Nrf2)/NLRP3 or PGC1-α/Δψm signaling pathway. Simultaneous depression of these two signaling pathways can completely abrogate the protective effects of Piog on OA and chondrocytes. Taken together, Piog protects OA cartilage against pyroptosis-induced damage by simultaneously activating both the Nrf2/NLRP3 and PGC-1α/Δψm pathways, which enhances antioxidative and anti-inflammatory responses as well as mitochondrial biogenesis. Therefore, Piog may be a promising agent for human OA cartilage damage in future clinical treatments.
Collapse
|
9
|
Zeng ML, Kong S, Chen TX, Peng BW. Transient Receptor Potential Vanilloid 4: a Double-Edged Sword in the Central Nervous System. Mol Neurobiol 2023; 60:1232-1249. [PMID: 36434370 DOI: 10.1007/s12035-022-03141-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/17/2022] [Indexed: 11/26/2022]
Abstract
Transient receptor potential vanilloid 4 (TRPV4) is a nonselective cation channel that can be activated by diverse stimuli, such as heat, mechanical force, hypo-osmolarity, and arachidonic acid metabolites. TRPV4 is widely expressed in the central nervous system (CNS) and participates in many significant physiological processes. However, accumulative evidence has suggested that deficiency, abnormal expression or distribution, and overactivation of TRPV4 are involved in pathological processes of multiple neurological diseases. Here, we review the latest studies concerning the known features of this channel, including its expression, structure, and its physiological and pathological roles in the CNS, proposing an emerging therapeutic strategy for CNS diseases.
Collapse
Affiliation(s)
- Meng-Liu Zeng
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Donghu Rd185#, Wuhan, 430071, Hubei, China.,Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Shuo Kong
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Donghu Rd185#, Wuhan, 430071, Hubei, China
| | - Tao-Xiang Chen
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Donghu Rd185#, Wuhan, 430071, Hubei, China
| | - Bi-Wen Peng
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Donghu Rd185#, Wuhan, 430071, Hubei, China.
| |
Collapse
|
10
|
Xia CY, Guo YX, Lian WW, Yan Y, Ma BZ, Cheng YC, Xu JK, He J, Zhang WK. The NLRP3 inflammasome in depression: Potential mechanisms and therapies. Pharmacol Res 2023; 187:106625. [PMID: 36563870 DOI: 10.1016/j.phrs.2022.106625] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/20/2022] [Accepted: 12/18/2022] [Indexed: 12/25/2022]
Abstract
Increasing evidence suggests that the failure of clinical antidepressants may be related with neuroinflammation. The NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasome is an intracellular multiprotein complex, and has been considered as a key contributor to the development of neuroinflammation. Inhibition of NLRP3 inflammasome is an effective method for depression treatment. In this review, we summarized current researches highlighting the role of NLRP3 inflammasome in the pathology of depression. Firstly, we discussed NLRP3 inflammasome activation in patients with depression and animal models. Secondly, we outlined the possible mechanisms driving the activation of NLRP3 inflammasome. Thirdly, we discussed the pathogenetic role of NLRP3 inflammasome in depression. Finally, we overviewed the current and potential antidepressants targeting the NLRP3 inflammasome. Overall, the inhibition of NLRP3 inflammasome activation may be a potential therapeutic strategy for inflammation-related depression.
Collapse
Affiliation(s)
- Cong-Yuan Xia
- Department of Pharmacy & Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, PR China
| | - Yu-Xuan Guo
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, PR China
| | - Wen-Wen Lian
- Department of Pharmacy & Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, PR China
| | - Yu Yan
- Department of Pharmacy & Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, PR China
| | - Bing-Zhi Ma
- Department of Pharmacy & Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, PR China
| | - Yung-Chi Cheng
- School of Medicine, Yale University, New Haven, CT, United States
| | - Jie-Kun Xu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, PR China.
| | - Jun He
- Department of Pharmacy & Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, PR China.
| | - Wei-Ku Zhang
- Department of Pharmacy & Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, PR China.
| |
Collapse
|
11
|
Research progress of targeting NLRP3 inflammasome in peripheral nerve injury and pain. Int Immunopharmacol 2022; 110:109026. [DOI: 10.1016/j.intimp.2022.109026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/25/2022] [Accepted: 06/30/2022] [Indexed: 01/08/2023]
|
12
|
Zirngibl M, Assinck P, Sizov A, Caprariello AV, Plemel JR. Oligodendrocyte death and myelin loss in the cuprizone model: an updated overview of the intrinsic and extrinsic causes of cuprizone demyelination. Mol Neurodegener 2022; 17:34. [PMID: 35526004 PMCID: PMC9077942 DOI: 10.1186/s13024-022-00538-8] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 04/08/2022] [Indexed: 12/15/2022] Open
Abstract
The dietary consumption of cuprizone – a copper chelator – has long been known to induce demyelination of specific brain structures and is widely used as model of multiple sclerosis. Despite the extensive use of cuprizone, the mechanism by which it induces demyelination are still unknown. With this review we provide an updated understanding of this model, by showcasing two distinct yet overlapping modes of action for cuprizone-induced demyelination; 1) damage originating from within the oligodendrocyte, caused by mitochondrial dysfunction or reduced myelin protein synthesis. We term this mode of action ‘intrinsic cell damage’. And 2) damage to the oligodendrocyte exerted by inflammatory molecules, brain resident cells, such as oligodendrocytes, astrocytes, and microglia or peripheral immune cells – neutrophils or T-cells. We term this mode of action ‘extrinsic cellular damage’. Lastly, we summarize recent developments in research on different forms of cell death induced by cuprizone, which could add valuable insights into the mechanisms of cuprizone toxicity. With this review we hope to provide a modern understanding of cuprizone-induced demyelination to understand the causes behind the demyelination in MS.
Collapse
Affiliation(s)
- Martin Zirngibl
- Faculty of Medicine & Dentistry, Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
| | - Peggy Assinck
- Wellcome Trust- MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK.,Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Anastasia Sizov
- Faculty of Medicine & Dentistry, Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
| | - Andrew V Caprariello
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Cumming School of Medicine, Calgary, Canada
| | - Jason R Plemel
- Faculty of Medicine & Dentistry, Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada. .,Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Canada. .,Department of Medicine, Division of Neurology, University of Alberta, Edmonton, Canada.
| |
Collapse
|
13
|
Zhou Y, Zhang F, Ding J. As a Modulator, Multitasking Roles of SIRT1 in Respiratory Diseases. Immune Netw 2022; 22:e21. [PMID: 35799705 PMCID: PMC9250864 DOI: 10.4110/in.2022.22.e21] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/05/2022] [Accepted: 05/08/2022] [Indexed: 01/04/2023] Open
Affiliation(s)
- Yunxin Zhou
- Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing Institute of Chinese Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China
| | - Fan Zhang
- Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing Institute of Chinese Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China
| | - Junying Ding
- Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing Institute of Chinese Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China
| |
Collapse
|
14
|
Lan Z, Chen L, Feng J, Xie Z, Liu Z, Wang F, Liu P, Yue X, Du L, Zhao Y, Yang P, Luo J, Zhu Z, Hu X, Cao L, Lu P, Sah R, Lavine K, Kim B, Hu H. Mechanosensitive TRPV4 is required for crystal-induced inflammation. Ann Rheum Dis 2021; 80:1604-1614. [PMID: 34663597 PMCID: PMC9131364 DOI: 10.1136/annrheumdis-2021-220295] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 09/13/2021] [Indexed: 12/12/2022]
Abstract
Crystal structures activate innate immune cells, especially macrophages and initiate inflammatory responses. We aimed to understand the role of the mechanosensitive TRPV4 channel in crystal-induced inflammation. Real-time RT-PCR, RNAscope in situ hybridisation, and Trpv4eGFP mice were used to examine TRPV4 expression and whole-cell patch-clamp recording and live-cell Ca2+ imaging were used to study TRPV4 function in mouse synovial macrophages and human peripheral blood mononuclear cells (PBMCs). Both genetic deletion and pharmacological inhibition approaches were used to investigate the role of TRPV4 in NLRP3 inflammasome activation induced by diverse crystals in vitro and in mouse models of crystal-induced pain and inflammation in vivo. TRPV4 was functionally expressed by synovial macrophages and human PBMCs and TRPV4 expression was upregulated by stimulation with monosodium urate (MSU) crystals and in human PBMCs from patients with acute gout flares. MSU crystal-induced gouty arthritis were significantly reduced by either genetic ablation or pharmacological inhibition of TRPV4 function. Mechanistically, TRPV4 mediated the activation of NLRP3 inflammasome by diverse crystalline materials but not non-crystalline NLRP3 inflammasome activators, driving the production of inflammatory cytokine interleukin-1β which elicited TRPV4-dependent inflammatory responses in vivo. Moreover, chemical ablation of the TRPV1-expressing nociceptors significantly attenuated the MSU crystal-induced gouty arthritis. In conclusion, TRPV4 is a common mediator of inflammatory responses induced by diverse crystals through NLRP3 inflammasome activation in macrophages. TRPV4-expressing resident macrophages are critically involved in MSU crystal-induced gouty arthritis. A neuroimmune interaction between the TRPV1-expressing nociceptors and the TRPV4-expressing synovial macrophages contributes to the generation of acute gout flares.
Collapse
Affiliation(s)
- Zhou Lan
- Department of Anesthesiology, Washington University School of Medicine in St Louis, St. Louis, Missouri, USA
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine in St Louis, St Louis, Missouri, USA
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, People's Republic of China
| | - Lvyi Chen
- Department of Anesthesiology, Washington University School of Medicine in St Louis, St. Louis, Missouri, USA
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine in St Louis, St Louis, Missouri, USA
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, Hubei, People's Republic of China
| | - Jing Feng
- Department of Anesthesiology, Washington University School of Medicine in St Louis, St. Louis, Missouri, USA
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine in St Louis, St Louis, Missouri, USA
| | - Zili Xie
- Department of Anesthesiology, Washington University School of Medicine in St Louis, St. Louis, Missouri, USA
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine in St Louis, St Louis, Missouri, USA
| | - Zhiyong Liu
- Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Fang Wang
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine in St Louis, St Louis, Missouri, USA
- Division of Dermatology, Department of Medicine, Washington University School of Medicine in St Louis, St Louis, Missouri, USA
| | - Peng Liu
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, Hubei, People's Republic of China
| | - Xueping Yue
- Department of Anesthesiology, Washington University School of Medicine in St Louis, St. Louis, Missouri, USA
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine in St Louis, St Louis, Missouri, USA
| | - Lixia Du
- Department of Anesthesiology, Washington University School of Medicine in St Louis, St. Louis, Missouri, USA
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine in St Louis, St Louis, Missouri, USA
| | - Yonghui Zhao
- Department of Anesthesiology, Washington University School of Medicine in St Louis, St. Louis, Missouri, USA
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine in St Louis, St Louis, Missouri, USA
| | - Pu Yang
- Department of Anesthesiology, Washington University School of Medicine in St Louis, St. Louis, Missouri, USA
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine in St Louis, St Louis, Missouri, USA
| | - Jialie Luo
- Department of Anesthesiology, Washington University School of Medicine in St Louis, St. Louis, Missouri, USA
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine in St Louis, St Louis, Missouri, USA
| | - Zhe Zhu
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Xueming Hu
- Department of Anesthesiology, Washington University School of Medicine in St Louis, St. Louis, Missouri, USA
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine in St Louis, St Louis, Missouri, USA
| | - Liang Cao
- Department of Anesthesiology, Washington University School of Medicine in St Louis, St. Louis, Missouri, USA
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine in St Louis, St Louis, Missouri, USA
| | - Ping Lu
- Department of Anesthesiology, Washington University School of Medicine in St Louis, St. Louis, Missouri, USA
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine in St Louis, St Louis, Missouri, USA
| | - Rajan Sah
- Department of Internal Medicine, Cardiovascular Division, Washington University School of Medicine in St Louis, St Louis, Missouri, USA
| | - Kory Lavine
- Department of Internal Medicine, Cardiovascular Division, Washington University School of Medicine in St Louis, St Louis, Missouri, USA
| | - Brian Kim
- Department of Anesthesiology, Washington University School of Medicine in St Louis, St. Louis, Missouri, USA
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine in St Louis, St Louis, Missouri, USA
- Division of Dermatology, Department of Medicine, Washington University School of Medicine in St Louis, St Louis, Missouri, USA
- Department of Pathology and Immunology, Washington University School of Medicine in St Louis, St Louis, Missouri, USA
| | - Hongzhen Hu
- Department of Anesthesiology, Washington University School of Medicine in St Louis, St. Louis, Missouri, USA
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine in St Louis, St Louis, Missouri, USA
- Division of Dermatology, Department of Medicine, Washington University School of Medicine in St Louis, St Louis, Missouri, USA
| |
Collapse
|
15
|
An Epigenetic Insight into NLRP3 Inflammasome Activation in Inflammation-Related Processes. Biomedicines 2021; 9:biomedicines9111614. [PMID: 34829842 PMCID: PMC8615487 DOI: 10.3390/biomedicines9111614] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/25/2021] [Accepted: 10/29/2021] [Indexed: 12/13/2022] Open
Abstract
Aberrant NLRP3 (NOD-, LRR-, and pyrin domain-containing protein 3) inflammasome activation in innate immune cells, triggered by diverse cellular danger signals, leads to the production of inflammatory cytokines (IL-1β and IL-18) and cell death by pyroptosis. These processes are involved in the pathogenesis of a wide range of diseases such as autoimmune, neurodegenerative, renal, metabolic, vascular diseases and cancer, and during physiological processes such as aging. Epigenetic dynamics mediated by changes in DNA methylation patterns, chromatin assembly and non-coding RNA expression are key regulators of the expression of inflammasome components and its further activation. Here, we review the role of the epigenome in the expression, assembly, and activation of the NLRP3 inflammasome, providing a critical overview of its involvement in the disease and discussing how targeting these mechanisms by epigenetic treatments could be a useful strategy for controlling NLRP3-related inflammatory diseases.
Collapse
|
16
|
Zhang C, Guan Q, Shi H, Cao L, Liu J, Gao Z, Zhu W, Yang Y, Luan Z, Yao R. A novel RIP1/RIP3 dual inhibitor promoted OPC survival and myelination in a rat neonatal white matter injury model with hOPC graft. Stem Cell Res Ther 2021; 12:462. [PMID: 34407865 PMCID: PMC8375070 DOI: 10.1186/s13287-021-02532-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 07/08/2021] [Indexed: 01/27/2023] Open
Abstract
Background The dual inhibitors of receptor interacting protein kinase-1 and -3 (RIP1 and RIP3) play an important role in cell death processes and inflammatory responses. White matter injury (WMI), a leading cause of neurodevelopmental disabilities in preterm infants, which is characterized by extensive myelination disturbances and demyelination. Neuroinflammation, leads to the loss and differentiation-inhibition of oligodendrocyte precursor cells (OPCs), represents a major barrier to myelin repair. Whether the novel RIP1/RIP3 dual inhibitor ZJU-37 can promote transplanted OPCs derived from human neural stem cells (hOPCs) survival, differentiation and myelination remains unclear. In this study, we investigated the effect of ZJU-37 on myelination and neurobehavioral function in a neonatal rat WMI model induced by hypoxia and ischemia. Methods In vivo, P3 rat pups were subjected to right common carotid artery ligation and hypoxia, and then treated with ZJU-37 or/and hOPCs, then OPCs apoptosis, myelination, glial cell and NLRP3 inflammasome activation together with cognitive outcome were evaluated at 12 weeks after transplantation. In vitro, the effect of ZJU-37 on NLRP3 inflammasome activation in astrocytes induced by oxygen–glucose deprivation (OGD) were examined by western blot and immunofluorescence. The effect of ZJU-37 on OPCs apoptosis induced by the conditioned medium from OGD-injured astrocytes (OGD-astrocyte-CM) was analyzed by flow cytometry and immunofluorescence. Results ZJU-37 combined with hOPCs more effectively decreased OPC apoptosis, promoted myelination in the corpus callosum and improved behavioral function compared to ZJU-37 or hOPCs treatment. In addition, the activation of glial cells and NLRP3 inflammasome was reduced by ZJU-37 or/and hOPCs treatment in the neonatal rat WMI model. In vitro, it was also confirmed that ZJU-37 can suppress NLRP3 inflammasome activation in astrocytes induced by OGD. Not only that, the OGD-astrocyte-CM treated with ZJU-37 obviously attenuated OPC apoptosis and dysdifferentiation caused by the OGD-astrocyte-CM. Conclusions The novel RIP1/RIP3 dual inhibitor ZJU-37 may promote OPC survival, differentiation and myelination by inhibiting NLRP3 inflammasome activation in a neonatal rat model of WMI with hOPC graft.
Collapse
Affiliation(s)
- Chu Zhang
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China
| | - Qian Guan
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China
| | - Hao Shi
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China
| | - Lingsheng Cao
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China
| | - Jing Liu
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China
| | - Zixuan Gao
- Department of Histology and Embryology, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China
| | - Wenxi Zhu
- Class ten, Grade two, Xuzhou Senior School, Xuzhou, 221003, People's Republic of China
| | - Yinxiang Yang
- Pediatrics, The Sixth Medical Center of PLA General Hospital, Beijing, 100048, People's Republic of China
| | - Zuo Luan
- Pediatrics, The Sixth Medical Center of PLA General Hospital, Beijing, 100048, People's Republic of China
| | - Ruiqin Yao
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China.
| |
Collapse
|
17
|
Aguilera M, Rossini V, Hickey A, Simnica D, Grady F, Felice VD, Moloney A, Pawley L, Fanning A, McCarthy L, O’Mahony SM, Cryan JF, Nally K, Shanahan F, Melgar S. Inflammasome Signaling Regulates the Microbial-Neuroimmune Axis and Visceral Pain in Mice. Int J Mol Sci 2021; 22:ijms22158336. [PMID: 34361102 PMCID: PMC8371481 DOI: 10.3390/ijms22158336] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/21/2021] [Accepted: 07/27/2021] [Indexed: 12/13/2022] Open
Abstract
Interactions between the intestinal microbiota, immune system and nervous system are essential for homeostasis in the gut. Inflammasomes contribute to innate immunity and brain–gut interactions, but their role in microbiota–neuro–immune interactions is not clear. Therefore, we investigated the effect of the inflammasome on visceral pain and local and systemic neuroimmune responses after antibiotic-induced changes to the microbiota. Wild-type (WT) and caspase-1/11 deficient (Casp1 KO) mice were orally treated for 2 weeks with an antibiotic cocktail (Abx, Bacitracin A and Neomycin), followed by quantification of representative fecal commensals (by qPCR), cecal short chain fatty acids (by HPLC), pathways implicated in the gut–neuro-immune axis (by RT-qPCR, immunofluorescence staining, and flow cytometry) in addition to capsaicin-induced visceral pain responses. Abx-treatment in WT-mice resulted in an increase in colonic macrophages, central neuro-immune interactions, colonic inflammasome and nociceptive receptor gene expression and a reduction in capsaicin-induced visceral pain. In contrast, these responses were attenuated in Abx-treated Casp1 KO mice. Collectively, the data indicate an important role for the inflammasome pathway in functional and inflammatory gastrointestinal conditions where pain and alterations in microbiota composition are prominent.
Collapse
Affiliation(s)
- Mònica Aguilera
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland; (M.A.); (V.R.); (A.H.); (D.S.); (F.G.); (V.D.F.); (A.M.); (L.P.); (A.F.); (L.M.); (S.M.O.); (J.F.C.); (K.N.); (F.S.)
| | - Valerio Rossini
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland; (M.A.); (V.R.); (A.H.); (D.S.); (F.G.); (V.D.F.); (A.M.); (L.P.); (A.F.); (L.M.); (S.M.O.); (J.F.C.); (K.N.); (F.S.)
| | - Ana Hickey
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland; (M.A.); (V.R.); (A.H.); (D.S.); (F.G.); (V.D.F.); (A.M.); (L.P.); (A.F.); (L.M.); (S.M.O.); (J.F.C.); (K.N.); (F.S.)
- School of Biochemistry and Cell Biology, University College Cork, T12 YT20 Cork, Ireland
| | - Donjete Simnica
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland; (M.A.); (V.R.); (A.H.); (D.S.); (F.G.); (V.D.F.); (A.M.); (L.P.); (A.F.); (L.M.); (S.M.O.); (J.F.C.); (K.N.); (F.S.)
| | - Fiona Grady
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland; (M.A.); (V.R.); (A.H.); (D.S.); (F.G.); (V.D.F.); (A.M.); (L.P.); (A.F.); (L.M.); (S.M.O.); (J.F.C.); (K.N.); (F.S.)
| | - Valeria D. Felice
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland; (M.A.); (V.R.); (A.H.); (D.S.); (F.G.); (V.D.F.); (A.M.); (L.P.); (A.F.); (L.M.); (S.M.O.); (J.F.C.); (K.N.); (F.S.)
- Department of Anatomy and Neuroscience, University College Cork, T12 YT20 Cork, Ireland
| | - Amy Moloney
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland; (M.A.); (V.R.); (A.H.); (D.S.); (F.G.); (V.D.F.); (A.M.); (L.P.); (A.F.); (L.M.); (S.M.O.); (J.F.C.); (K.N.); (F.S.)
| | - Lauren Pawley
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland; (M.A.); (V.R.); (A.H.); (D.S.); (F.G.); (V.D.F.); (A.M.); (L.P.); (A.F.); (L.M.); (S.M.O.); (J.F.C.); (K.N.); (F.S.)
- Department of Anatomy and Neuroscience, University College Cork, T12 YT20 Cork, Ireland
| | - Aine Fanning
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland; (M.A.); (V.R.); (A.H.); (D.S.); (F.G.); (V.D.F.); (A.M.); (L.P.); (A.F.); (L.M.); (S.M.O.); (J.F.C.); (K.N.); (F.S.)
| | - Lorraine McCarthy
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland; (M.A.); (V.R.); (A.H.); (D.S.); (F.G.); (V.D.F.); (A.M.); (L.P.); (A.F.); (L.M.); (S.M.O.); (J.F.C.); (K.N.); (F.S.)
| | - Siobhan M. O’Mahony
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland; (M.A.); (V.R.); (A.H.); (D.S.); (F.G.); (V.D.F.); (A.M.); (L.P.); (A.F.); (L.M.); (S.M.O.); (J.F.C.); (K.N.); (F.S.)
- Department of Anatomy and Neuroscience, University College Cork, T12 YT20 Cork, Ireland
| | - John F. Cryan
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland; (M.A.); (V.R.); (A.H.); (D.S.); (F.G.); (V.D.F.); (A.M.); (L.P.); (A.F.); (L.M.); (S.M.O.); (J.F.C.); (K.N.); (F.S.)
- Department of Anatomy and Neuroscience, University College Cork, T12 YT20 Cork, Ireland
| | - Ken Nally
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland; (M.A.); (V.R.); (A.H.); (D.S.); (F.G.); (V.D.F.); (A.M.); (L.P.); (A.F.); (L.M.); (S.M.O.); (J.F.C.); (K.N.); (F.S.)
- School of Biochemistry and Cell Biology, University College Cork, T12 YT20 Cork, Ireland
| | - Fergus Shanahan
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland; (M.A.); (V.R.); (A.H.); (D.S.); (F.G.); (V.D.F.); (A.M.); (L.P.); (A.F.); (L.M.); (S.M.O.); (J.F.C.); (K.N.); (F.S.)
| | - Silvia Melgar
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland; (M.A.); (V.R.); (A.H.); (D.S.); (F.G.); (V.D.F.); (A.M.); (L.P.); (A.F.); (L.M.); (S.M.O.); (J.F.C.); (K.N.); (F.S.)
- Correspondence: ; Tel.: +353-21-4901384
| |
Collapse
|