1
|
Kumar S, Mishra A, Kumar V, Singh T, Singh AK, Singh A. Designing and comparative analysis of anti-oxidant and heat shock proteins based multi-epitopic filarial vaccines. BMC Infect Dis 2024; 24:1436. [PMID: 39695454 DOI: 10.1186/s12879-024-10272-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 11/25/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Lymphatic Filariasis (LF) is a neglected tropical disease affecting more than 882 million people in 44 countries of the world. A multi-epitope prophylactic/therapeutic vaccination targeting filarial defense proteins would be invaluable to achieve the current LF elimination goal. METHOD Two groups of proteins, namely Anti-oxidant (AO) and Heat shock proteins (HSPs), have been implicated in the effective survival of the filarial parasites in their hosts. Several B-cell, CTL, and T-helper epitopes were predicted from the three anti-oxidant proteins GST, GPx, and SOD. Likewise, epitopes were also predicted for HSP110, HSP90, and HSP70. Among the predicted epitopes, screening was applied to include only non-allergenic, non-toxic epitopes to construct two MEVs, PVAO and PVHSP. The epitopes for each group of proteins were connected to each other by the inclusion of suitable linkers and an adjuvant. The 3D models for PVAO and PVHSP were predicted, and validated, followed by prediction of physicochemical properties using bioinformatics tools. The binding free energy of PVAO and PVHSP with Toll like Receptors (TLR) TLR1/2, TLR4, TLR5, TLR6, and TLR9 was calculated with HawkDock. The immunogenicity of both the MEVs were assessed by Immune simulation after which codon adaptation and in-silico cloning were carried out. RESULTS Conservation of the selected AOs and HSPs in other parasitic nematode species suggested that both the generated chimera could be helpful in cross-protection too. The 3D models of both MEVs contained more than 97% residues in allowed regions, as predicted by PROCHECK server. High MMGBSA and docking scores were obtained between MEVs and TLR4, TLR1/2, TLR6, and TLR9. Molecular dynamics simulation confirmed the stability of candidate vaccines in dynamic conditions present in the biological systems. The in-silico immune simulation indicated significantly high levels of IgG1, T-helper, T-cytotoxic cells, INF-γ, and IL-2 responses following immunization with PVAO and PVHSP. CONCLUSION The immunoinformatics approaches used in this study confirmed that, the designed vaccines are capable of eliciting sustained immunity against LF, however, additional in-vivo studies would be required to confirm their efficacy. Furthermore, by employing multi-epitope structures and constructing two different cocktail vaccines for LF, this study can form an important milestone in the development of future LF vaccine/s.
Collapse
Affiliation(s)
- Sunil Kumar
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, UP, 221005, India
| | - Ayushi Mishra
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, UP, 221005, India
| | - Vipin Kumar
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, UP, 221005, India
| | - Tripti Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, UP, 221005, India
| | - Amit Kumar Singh
- Department of Medical Health and Family Welfare, Malaria and Vector Borne Disease, Filaria Control Unit Varanasi, Varanasi, UP, 221005, India
| | - Anchal Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, UP, 221005, India.
| |
Collapse
|
2
|
Nakhale MR, Bhoj P, Togre N, Khatri V, Batra L, Padigel U, Goswami K. Dose-Dependent Prophylactic Efficacy of Filarial Antigens Glutathione-S-Transferase and Abundant Larval Transcript-2 against Brugia malayi Challenge in Mastomys. THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2024; 2024:4543922. [PMID: 39105125 PMCID: PMC11300053 DOI: 10.1155/2024/4543922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/31/2024] [Accepted: 07/04/2024] [Indexed: 08/07/2024]
Abstract
Objective To identify the most effective dose of filarial rBmALT-2 and rWbGST alone or in combination against B. malayi infection in vitro and in vivo. Methods Mastomys (n = 5-7/group) received intramuscular (i.m.) injection with three different doses (25, 50, and 100 μg) of rBmALT-2 or rWbGST, either alone or in combination with alum as the adjuvant. Protective immunity was studied by in vivo and in vitro cytotoxicity assay. To evaluate the cellular immune response, splenocyte proliferation and cytokine profile were assessed. Results Serological results revealed a substantial (p < 0.005) induction of IgG1, IgG2a, and IgG3 responses in vaccinated Mastomys. Mastomys immunized with 50 μg rBmALT-2 + alum induced 79-81% killing against the L3 larvae challenge in vivo and in vitro ADCC assay (p < 0.005); whereas rWbGST + alum alone or in combination with rBmALT-2 + alum induced 63-68% killing (p < 0.005) in vivo and in vitro. Antigen-specific cytokine profiles of Mastomys vaccinated with either BmALT-2, WbGST or a combination showed elevated IL-10, IL-4, and IFN-γ levels, signifying both Th1 and Th2 immune response. Conclusions These findings suggest that immunization of Mastomys with a 50 μg/dose of rBmALT-2 + alum four times at a 4-week interval demonstrated considerable protection against B. malayi infection.
Collapse
Affiliation(s)
- Mohini Rambhau Nakhale
- Department of BiochemistryJB Tropical Disease Research CentreMahatma Gandhi Institute of Medical Sciences, Sevagram 442 102, Maharashtra, India
| | - Priyanka Bhoj
- Department of Pathology and Laboratory MedicineLewis Katz School of MedicineTemple University, Philadelphia 19140, PA, USA
| | - Namdev Togre
- Department of Pathology and Laboratory MedicineLewis Katz School of MedicineTemple University, Philadelphia 19140, PA, USA
| | - Vishal Khatri
- Department of BiochemistryJB Tropical Disease Research CentreMahatma Gandhi Institute of Medical Sciences, Sevagram 442 102, Maharashtra, India
| | - Lalit Batra
- Regional Biocontainent LaboratoryCenter for Predictive Medicine for Biodefense and Emerging Infectious DiseasesUniversity of Louisville, Louisville 40222, KY, USA
| | - Udaikumar Padigel
- Department of BiochemistryJB Tropical Disease Research CentreMahatma Gandhi Institute of Medical Sciences, Sevagram 442 102, Maharashtra, India
| | - Kalyan Goswami
- Department of BiochemistryJB Tropical Disease Research CentreMahatma Gandhi Institute of Medical Sciences, Sevagram 442 102, Maharashtra, India
| |
Collapse
|
3
|
Britten NS, Butler JA. Ruthenium metallotherapeutics: novel approaches to combatting parasitic infections. Curr Med Chem 2022; 29:5159-5178. [PMID: 35366762 DOI: 10.2174/0929867329666220401105444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/15/2022] [Accepted: 01/24/2022] [Indexed: 11/22/2022]
Abstract
Human parasitic infections cause a combined global mortality rate of over one million people per annum and represent some of the most challenging diseases for medical intervention. Current chemotherapeutic strategies often require prolonged treatment, coupled with subsequent drug-induced cytotoxic morbidity to the host, while resistance generation is also a major concern. Metals have been used extensively throughout the history of medicine, with more recent applications as anticancer and antimicrobial agents. Ruthenium metallotherapeutic antiparasitic agents are highly effective at targeting a range of key parasites, including the causative agents of malaria, trypanosomiasis, leishmaniasis, amoebiasis, toxoplasmosis and other orphan diseases, while demonstrating lower cytotoxicity profiles than current treatment strategies. Generally, such compounds also demonstrate activity against multiple cellular target sites within parasites, including inhibition of enzyme function, cell membrane perturbation, and alterations to metabolic pathways, therefore reducing the opportunity for resistance generation. This review provides a comprehensive and subjective analysis of the rapidly developing area of ruthenium metal-based antiparasitic chemotherapeutics, in the context of rational drug design and potential clinical approaches to combatting human parasitic infections.
Collapse
Affiliation(s)
- Nicole S. Britten
- Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, United Kingdom
| | - Jonathan A. Butler
- Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, United Kingdom
| |
Collapse
|
4
|
Sharma S, Ahmad F, Singh A, Rathaur S. Role of anti-filarial drugs in inducing ER stress mediated signaling in bovine filarial parasitosis Setaria cervi. Vet Parasitol 2021; 290:109357. [PMID: 33516120 DOI: 10.1016/j.vetpar.2021.109357] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 12/31/2020] [Accepted: 01/06/2021] [Indexed: 01/04/2023]
Abstract
In this ex vivo study, S. cervi parasitoses were treated with Ivermectin (50 μM), Albendazole (200 μM) alone and Ivermectin + Albendazole (50 + 200 μM) at 37°C for 8 h and the motility and viability of the parasitoses were evaluated. Individually both drugs Ivermectin (Iver) and Albendazole (Alb) are reported to affect the function and integrity of ER, however till date, no reports are available on the functional changes in ER due to a combined Iver and Alb treatment of bovine helminth parasitosis. Here, we report the lethal effect of a combination treatment of Iver and Alb against adult bovine filarial parasitosis Setaria cervi. The underlying mechanism of drug action was elucidated by performing a systematic biochemical, molecular and proteomics based study. Altered calcium homeostasis in drug treated parasitoses lead to reduction in levels of total Endoplasmic Reticulum (ER) calcium by 50 % and 61 % and elevation by 50 % and 63 % in cytosol in Iver alone and Iver + Alb treated parasitoses respectively. Further, it was found that upregulated expression of ER localized GRP94, galactosyltransferase and glycosyltransferase activity in addition to reduction in activity of PDI indicated ER stress mechanisms being operative under combined drug treatment. Marked rise of 79 % reactive oxygen species and reduced antioxidant levels induced oxidative stress in drug treated parasitosis. The collective effect of both ER and oxidative stress might have triggered apoptosis, as evidenced by the elevated calpain activity, reduction of 67 % in cytochrome c oxidase and 83 % rise in caspase-3 activity in the Iver + Alb treated parasitoses respectively. The ER proteome analysis by 2D gel electrophoresis revealed 76 spots in the control and 56 spots in the treated proteome. A MALDI-MS/MS analysis of some of the differentially expressed spots of the combination drug treated parasitoses identified glucuronosyltransferase as a major upregulated protein with a fold change of 1.81. Trafficking protein, acyl transferase, MATH involved in protein folding were also found to be downregulated. Thus, this study based on biochemical and proteomic approaches indicates that a combination of anti-filarial drugs Iver and Alb can alter calcium homeostasis in bovine filarial parasitosis leading to induction of ER stress culminating into apoptosis.
Collapse
Affiliation(s)
- Shweta Sharma
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Faiyaz Ahmad
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Anchal Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Sushma Rathaur
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
5
|
Glutathione-S-transferase of Trichinella spiralis regulates maturation and function of dendritic cells. Parasitology 2019; 146:1725-1732. [PMID: 31405388 DOI: 10.1017/s003118201900115x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Immunomodulation by molecules from Trichinella spiralis (T. spiralis) has been widely reported. Glutathione-S-transferase (GST) is a major immune-modulator of the family of detoxification enzymes. Dendritic cells (DCs) are an important target for the regulation of the immune response by T. spiralis. In this study, the recombinant GST of T. spiralis (rTs-GST) was expressed and purified. rTs-GST induced low CD40 expression and moderate CD80, CD86 and MHC-II expressions and inhibited the increase of CD40, CD80 and CD86 on DCs induced by LPS. We showed that rTs-GST decreased the LPS-induced elevated level of pro-inflammatory cytokines of DCs and enhanced the level of regulatory cytokines IL-10 and TGF-β. Furthermore, co-culture of DCs and CD4+ T cells demonstrated that rTs-GST-treated DCs suppressed the proliferation of OVA-specific CD4+ T cells and increased the population of regulatory T cells (Tregs). rTs-GST-treated DCs induced a higher level of IL-4, IL-10 and TGF-β, but inhibited the level of IFN-γ. This indicates that rTs-GST-pulsed DCs induce both Th2-type responses and Tregs. These findings contribute to the current understanding of the immunomodulation of Ts-GST on cellular response and immunomodulation of T. spiralis.
Collapse
|
6
|
Tian X, Lu M, Wang W, Jia C, Muhammad E, Yan R, Xu L, Song X, Li X. HcTTR: a novel antagonist against goat interleukin 4 derived from the excretory and secretory products of Haemonchus contortus. Vet Res 2019; 50:42. [PMID: 31164173 PMCID: PMC6549353 DOI: 10.1186/s13567-019-0661-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 05/01/2019] [Indexed: 12/27/2022] Open
Abstract
Haemonchus contortus (H. contortus) has evolved sophisticated evasion mechanisms to ensure their survival, including generating excretion and secretion products (ESPs) to regulate the secretion of host cytokines. Interleukin 4 (IL4) is a classic T-helper cell type 2 (Th2)-type cytokine that plays an irreplaceable role against nematode infection. In this study, three proteins, glutathione S-transferase domain containing protein (HcGST), transthyretin domain containing protein (HcTTR) and calponin actin-binding domain containing protein (HcCab), were identified to bind to goat IL4 by co-immunoprecipitation (Co-IP) assays and yeast two-hybrid screening. Additionally, cell proliferation analysis showed that HcTTR blocked the IL4-induced proliferation of peripheral blood mononuclear cells in goats, while HcGST and HcCab did not. In addition, HcTTR could also downregulate the transcription of candidate genes in the IL4-induced JAK/STAT pathway. These results indicated that HcTTR is a novel antagonist against goat IL4 from HcESPs, and this information could improve our understanding of the relationship between host cytokines and parasite infections.
Collapse
Affiliation(s)
- XiaoWei Tian
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095 China
| | - MingMin Lu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095 China
| | - WenJuan Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095 China
| | - CaiWen Jia
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095 China
| | - Ehsan Muhammad
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095 China
| | - RuoFeng Yan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095 China
| | - LiXin Xu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095 China
| | - XiaoKai Song
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095 China
| | - XiangRui Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095 China
| |
Collapse
|
7
|
Liu CY, Song YY, Ren HN, Sun GG, Liu RD, Jiang P, Long SR, Zhang X, Wang ZQ, Cui J. Cloning and expression of a Trichinella spiralis putative glutathione S-transferase and its elicited protective immunity against challenge infections. Parasit Vectors 2017; 10:448. [PMID: 28962639 PMCID: PMC5622431 DOI: 10.1186/s13071-017-2384-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 09/17/2017] [Indexed: 01/25/2023] Open
Abstract
Background Glutathione-S-transferase (GST) is a widespread multigene family of detoxification enzymes. The vaccination of mice with recombinant GST of 24 kDa from Trichinella spiralis elicited a low immune protection against challenge infection. The objective of this study was to characterize the T. spiralis putative GST gene (TspGST) encoding a 30.8 kDa protein and to evaluate its potential as a candidate antigen for anti-Trichinella vaccine. Methods The full-length cDNA sequence of TspGST from T. spiralis muscle larvae (ML) was expressed in E. coli. The enzymatic activity and antigenicity of the rTspGST were identified by spectrophotometry, Western blot, and ELISA. The expression of TspGST at T. spiralis various stages was investigated by RT-PCR and indirect immunofluorescent test (IIFT). Serum level of total IgG, IgG1, and IgG2a antibodies against rTspGST were measured by ELISA. The immune protection produced by vaccination with rTspGST against T. spiralis was evaluated. Results The sequencing results showed that the cDNA of TspGST was 840 bp, and encoded a protein of 279 amino acids, which had a molecular size of 30.8 kDa and a pI of 5.21. Its amino acid sequence shares 37% similarity with TsGST. The rTspGST protein had enzymatic activity of GST. On Western blot and ELISA analysis, the native TspGST protein with 30.8 kDa in crude antigens derived from adult worms (AW), newborn larvae (NBL), infective intestinal larvae (IIL) and ML was recognized by anti-rTspGST sera, but the ML ES antigens could be not recognized by anti-rTspGST sera. Expression of TspGST was found in all of T. spiralis various stages (AW, NBL, ML, and IIL). An immunolocalization analysis identified TspGST in different stages (mainly in cuticles) of the nematode. The mice vaccinated with the rTspGST elicited Th2-predominant immune responses, showed a 34.38% reduction of adult worms and a 43.70% reduction of muscle larvae. Conclusions Immunization with rTspGST produced a partial immune protection, and the rTspGST could be regarded as a potential candidate target for an anti-Trichinella vaccine.
Collapse
Affiliation(s)
- Chun Ying Liu
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450052, China
| | - Yan Yan Song
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450052, China
| | - Hua Na Ren
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450052, China
| | - Ge Ge Sun
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450052, China
| | - Ruo Dan Liu
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450052, China
| | - Peng Jiang
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450052, China
| | - Shao Rong Long
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450052, China
| | - Xi Zhang
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450052, China
| | - Zhong Quan Wang
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450052, China.
| | - Jing Cui
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
8
|
Andure D, Pote K, Khatri V, Amdare N, Padalkar R, Reddy MVR. Immunization with Wuchereria bancrofti Glutathione-S-transferase Elicits a Mixed Th1/Th2 Type of Protective Immune Response Against Filarial Infection in Mastomys. Indian J Clin Biochem 2016; 31:423-30. [PMID: 27605739 DOI: 10.1007/s12291-016-0556-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Accepted: 01/22/2016] [Indexed: 11/30/2022]
Abstract
Lymphatic filariasis is a mosquito borne parasitic infection and can severely affect the normal working ability of an individual. Currently there is no vaccine available to prevent this infection and the development of a potential vaccine could effectively support the on-going mass drug administration program by World Health Organization (WHO). Filarial parasites have complex mechanisms to modulate the host immune responses against them. The glutathione-S-transferases (GST) are the important enzymes effectively involved to counteract the oxidative free radicals produced by the host. In the present study, we have shown that the mastomys which are fully permissible rodents for Brugia malayi when immunized with Wuchereria bancrofti recombinant GST (rWbGST) could induce 65.5 % in situ cytotoxicity against B. malayi infective (L3) larvae. There was a balanced Th1/Th2 immune response in the vaccinated animals, characterized by higher levels of WbGST-specific IgG1 and IgG2a antibodies and pronounced IFN-γ, IL-10 and IL-4 cytokines production by the spleen cells.
Collapse
Affiliation(s)
- Dhananjay Andure
- Padmashree Dr. Vithalrao Vikhe Patil Foundation's Medical College and Hospital, Ahmednagar, Maharashtra 414 111 India
| | - Kiran Pote
- Department of Biochemistry and JB Tropical Disease Research Centre, Mahatma Gandhi Institute of Medical Sciences, Sevagram, Maharashtra 442 102 India
| | - Vishal Khatri
- Department of Biochemistry and JB Tropical Disease Research Centre, Mahatma Gandhi Institute of Medical Sciences, Sevagram, Maharashtra 442 102 India
| | - Nitin Amdare
- Department of Biochemistry and JB Tropical Disease Research Centre, Mahatma Gandhi Institute of Medical Sciences, Sevagram, Maharashtra 442 102 India
| | - Ramchandra Padalkar
- Padmashree Dr. Vithalrao Vikhe Patil Foundation's Medical College and Hospital, Ahmednagar, Maharashtra 414 111 India
| | - Maryada Venkata Rami Reddy
- Department of Biochemistry and JB Tropical Disease Research Centre, Mahatma Gandhi Institute of Medical Sciences, Sevagram, Maharashtra 442 102 India
| |
Collapse
|
9
|
Morris CP, Bennuru S, Kropp LE, Zweben JA, Meng Z, Taylor RT, Chan K, Veenstra TD, Nutman TB, Mitre E. A Proteomic Analysis of the Body Wall, Digestive Tract, and Reproductive Tract of Brugia malayi. PLoS Negl Trop Dis 2015; 9:e0004054. [PMID: 26367142 PMCID: PMC4569401 DOI: 10.1371/journal.pntd.0004054] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 08/14/2015] [Indexed: 12/18/2022] Open
Abstract
Filarial worms are parasitic nematodes that cause devastating diseases such as lymphatic filariasis (LF) and onchocerciasis. Filariae are nematodes with complex anatomy including fully developed digestive tracts and reproductive organs. To better understand the basic biology of filarial parasites and to provide insights into drug targets and vaccine design, we conducted a proteomic analysis of different anatomic fractions of Brugia malayi, a causative agent of LF. Approximately 500 adult female B. malayi worms were dissected, and three anatomical fractions (body wall, digestive tract, and reproductive tract) were obtained. Proteins from each anatomical fraction were extracted, desalted, trypsinized, and analyzed by microcapillary reverse-phase liquid chromatography-tandem-mass spectrometry. In total, we identified 4,785 B. malayi proteins. While 1,894 were identified in all three anatomic fractions, 396 were positively identified only within the digestive tract, 114 only within the body wall, and 1,011 only within the reproductive tract. Gene set enrichment analysis revealed a bias for transporters to be present within the digestive tract, suggesting that the intestine of adult filariae is functional and important for nutrient uptake or waste removal. As expected, the body wall exhibited increased frequencies of cytoskeletal proteins, and the reproductive tract had increased frequencies of proteins involved in nuclear regulation and transcription. In assessing for possible vaccine candidates, we focused on proteins sequestered within the digestive tract, as these could possibly represent “hidden antigens” with low risk of prior allergic sensitization. We identified 106 proteins that are enriched in the digestive tract and are predicted to localize to the surface of cells in the the digestive tract. It is possible that some of these proteins are on the luminal surface and may be accessible by antibodies ingested by the worm. A subset of 27 of these proteins appear especially promising vaccine candidates as they contain significant non-cytoplasmic domains, only 1–2 transmembrane domains, and a high degree of homology to W. bancrofti and/or O. volvulus. Filarial worms are parasitic worms that can live for years within humans and cause diseases such as elephantiasis and river blindness. In this study, we identified the proteins that exist within the worm's digestive tract, reproductive tract, and body wall. In addition to increasing our understanding of the basic biology of these parasites, this information is valuable for predicting which proteins may be candidates for vaccine development and rational drug design. Specifically, by analyzing which intestinal proteins are likely expressed on the surface of cells contained within the parasite's digestive tract and have little similarity to human proteins, we identified 27 possible vaccine candidates that warrant further study.
Collapse
Affiliation(s)
- C. Paul Morris
- Department of Microbiology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
- National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Sasisekhar Bennuru
- National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Laura E. Kropp
- Department of Microbiology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Jesse A. Zweben
- Department of Microbiology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Zhaojing Meng
- Protein Characterization Laboratory Cancer Research Technology Program, Leidos Biomedical Research inc., Frederick National Laboratory, Frederick, Maryland, United States of America
| | - Rebekah T. Taylor
- Department of Biology, Frostburg State University, Frostburg, Maryland, United States of America
| | - King Chan
- Protein Characterization Laboratory Cancer Research Technology Program, Leidos Biomedical Research inc., Frederick National Laboratory, Frederick, Maryland, United States of America
| | - Timothy D. Veenstra
- Protein Characterization Laboratory Cancer Research Technology Program, Leidos Biomedical Research inc., Frederick National Laboratory, Frederick, Maryland, United States of America
| | - Thomas B. Nutman
- National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Edward Mitre
- Department of Microbiology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
10
|
Chalcone scaffolds as anti-infective agents: structural and molecular target perspectives. Eur J Med Chem 2015; 101:496-524. [PMID: 26188621 DOI: 10.1016/j.ejmech.2015.06.052] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 05/27/2015] [Accepted: 06/28/2015] [Indexed: 12/11/2022]
Abstract
In recent years, widespread outbreak of numerous infectious diseases across the globe has created havoc among the population. Particularly, the inhabitants of tropical and sub-tropical regions are mainly affected by these pathogens. Several natural and (semi) synthetic chalcones deserve the credit of being potential anti-infective candidates that inhibit various parasitic, malarial, bacterial, viral, and fungal targets like cruzain-1/2, trypanopain-Tb, trans-sialidase, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), fumarate reductase, falcipain-1/2, β-hematin, topoisomerase-II, plasmepsin-II, lactate dehydrogenase, protein kinases (Pfmrk and PfPK5), and sorbitol-induced hemolysis, DEN-1 NS3, H1N1, HIV (Integrase/Protease), protein tyrosine phosphatase A/B (Ptp-A/B), FtsZ, FAS-II, lactate/isocitrate dehydrogenase, NorA efflux pump, DNA gyrase, fatty acid synthase, chitin synthase, and β-(1,3)-glucan synthase. In this review, a comprehensive study (from Jan. 1982 to May 2015) of the structural features of anti-infective chalcones, their mechanism of actions (MOAs) and structure activity relationships (SARs) have been highlighted. With the knowledge of molecular targets, structural insights and SARs, this review may be helpful for (medicinal) chemists to design more potent, safe, selective and cost effective anti-infective agents.
Collapse
|
11
|
Li LG, Wang ZQ, Liu RD, Yang X, Liu LN, Sun GG, Jiang P, Zhang X, Zhang GY, Cui J. Trichinella spiralis: low vaccine potential of glutathione S-transferase against infections in mice. Acta Trop 2015; 146:25-32. [PMID: 25757368 DOI: 10.1016/j.actatropica.2015.02.020] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Revised: 02/24/2015] [Accepted: 02/28/2015] [Indexed: 12/14/2022]
Abstract
We have previously reported that Trichinella spiralis glutathione-S-transferase (TsGST) gene is an up-regulated gene in intestinal infective larvae (IIL) compared to muscle larvae (ML). In this study, the TsGST gene was cloned, and recombinant TsGST (rTsGST) was produced. Anti-rTsGST serum recognized the native TsGST by Western blotting in crude antigens of ML, adult worm (AW) and newborn larvae (NBL) of T. spiralis, but not in ML excretory-secretory (ES) antigens. Expression of TsGST was observed in all different developmental stages (IIL, AW, NBL and ML). An immunolocalization analysis identified TsGST in the cuticle, stichosome and genital primordium of the parasite. The rTsGST had GST enzymatic activity. After a challenge infection with T. spiralis larvae, mice immunized with rTsGST displayed a 35.71% reduction in adult worms and a 38.55% reduction in muscle larvae. The vaccination of mice with rTsGST induced the Th1/Th2-mixed type of immune response with Th2 predominant (high levels of IgG1) and partial protective immunity against T. spiralis infection.
Collapse
Affiliation(s)
- Ling Ge Li
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou 450052, China
| | - Zhong Quan Wang
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou 450052, China.
| | - Ruo Dan Liu
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou 450052, China
| | - Xuan Yang
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou 450052, China
| | - Li Na Liu
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou 450052, China
| | - Ge Ge Sun
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou 450052, China
| | - Peng Jiang
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou 450052, China
| | - Xi Zhang
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou 450052, China
| | - Gong Yuan Zhang
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou 450052, China
| | - Jing Cui
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou 450052, China.
| |
Collapse
|
12
|
Immunological changes induced by Toxoplasma gondii Glutathione-S-Transferase (TgGST) delivered as a DNA vaccine. Res Vet Sci 2015; 99:157-64. [DOI: 10.1016/j.rvsc.2014.12.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 11/18/2014] [Accepted: 12/03/2014] [Indexed: 01/20/2023]
|
13
|
Biochemical and functional characterization of the glutathione S-transferase from Trichinella spiralis. Parasitol Res 2015; 114:2007-13. [DOI: 10.1007/s00436-015-4410-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 03/02/2015] [Indexed: 10/23/2022]
|
14
|
Strube C, Haake C, Sager H, Schorderet Weber S, Kaminsky R, Buschbaum S, Joekel D, Schicht S, Kremmer E, Korrell J, Schnieder T, von Samson-Himmelstjerna G. Vaccination with recombinant paramyosin against the bovine lungworm Dictyocaulus viviparus considerably reduces worm burden and larvae shedding. Parasit Vectors 2015; 8:119. [PMID: 25890350 PMCID: PMC4352246 DOI: 10.1186/s13071-015-0733-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 02/12/2015] [Indexed: 11/10/2022] Open
Abstract
Background The lungworm Dictyocaulus viviparus, causing parasitic bronchitis in cattle, induces a temporary protective immunity that prevents clinical disease. A radiation-attenuated larvae based vaccine is commercially available in a few European countries, but has the disadvantages of a live vaccine. As a recombinant subunit vaccine would overcome these disadvantages, the parasite’s muscle protein paramyosin (PMY) was tested as a recombinant vaccine antigen. Methods D. viviparus-PMY was recombinantly expressed in Escherichia coli as a glutathione-S-transferase (GST)-fused protein. Emulsified in adjuvant Saponin Quil A, the protein was given intramuscularly into calves. Two independent recombinant PMY (rPMY) vaccination trials with negative control groups (first trial: adjuvant only; second trial: non-fused GST) as well as an additional positive control group in the second trial, using the Bovilis©Dictol live vaccine to verify vaccination results, were performed. To determine the vaccination success, shedding of larvae as well as worm burden and worm sizes were analyzed. Additionally, ELISA-based determination of development of immunglobulins IgM, IgA, IgE, IgG as well as the subclasses IgG1 and IgG2 was performed. To analyze PMY localization in the bovine lungworm, immunohistochemical staining of adult worms was carried out. Results Immunohistochemical staining revealed that PMY is part of the bovine lungworm’s pharyngeal and body wall muscles. Vaccination with rPMY resulted in 47% [geometric mean: 67%] and 57% (geometric mean: 71%) reduction of larvae shedding in the first and second vaccination trial, respectively. Worm burden was reduced by 54% (geometric mean: 86%) and 31% (geometric mean: 68%), respectively, and worms of rPMY-vaccinated cattle were significantly shorter in both trials. Furthermore, ELISAs showed a clear antibody response towards rPMY with exception of IgE for which titers could not be detected. After challenge infection, rPMY antibodies were only exceptionally elevated among study animals indicating PMY to be a hidden antigen. Conclusions Even though vaccination with the attenuated live vaccine was with 94% (geometric mean: 95%) reduction in larvae shedding and 93% (geometric mean: 94%) reduction in worm burden superior to rPMY vaccination, results using the latter are promising and show the potential for further development of a recombinant PMY-based vaccine against the bovine lungworm.
Collapse
Affiliation(s)
- Christina Strube
- Institute for Parasitology, University of Veterinary Medicine Hannover, Hanover, Germany.
| | - Claas Haake
- Institute for Parasitology, University of Veterinary Medicine Hannover, Hanover, Germany.
| | - Heinz Sager
- Novartis Centre de Recherche Santé Animale, St. Aubin, Switzerland.
| | | | - Ronald Kaminsky
- Novartis Centre de Recherche Santé Animale, St. Aubin, Switzerland.
| | - Sandra Buschbaum
- Institute for Parasitology, University of Veterinary Medicine Hannover, Hanover, Germany.
| | - Deborah Joekel
- Institute for Parasitology, University of Veterinary Medicine Hannover, Hanover, Germany.
| | - Sabine Schicht
- Institute for Parasitology, University of Veterinary Medicine Hannover, Hanover, Germany.
| | - Elisabeth Kremmer
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Molecular Immunology, Munich, Germany.
| | - Julia Korrell
- Institute for Parasitology, University of Veterinary Medicine Hannover, Hanover, Germany.
| | - Thomas Schnieder
- Institute for Parasitology, University of Veterinary Medicine Hannover, Hanover, Germany.
| | | |
Collapse
|
15
|
Saeed M, Baig MH, Bajpai P, Srivastava AK, Ahmad K, Mustafa H. Predicted binding of certain antifilarial compounds with glutathione-S-transferase of human Filariids. Bioinformation 2013; 9:233-7. [PMID: 23516334 PMCID: PMC3602877 DOI: 10.6026/97320630009233] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Accepted: 02/18/2013] [Indexed: 12/02/2022] Open
Abstract
UNLABELLED : Glutathione-S-transferase is a major phase-II detoxification enzyme in parasitic helminthes. Previous research highlights the importance of GSTs in the establishment of chronic infections in cytotoxic microenvironments. Filarial nematodes depend on these detoxification enzymes for their survival in the host. GST plays an important role in filariasis and other diseases. GST from W.bancrofti and B.malayi are very much different from human GST. This structural difference makes GST potential chemotherapeutic targets for antifilarial treatment. In this study we have checked the efficacy of some well known antifilarial compounds against GST from B.malayi and W.bancrofti. The structure of BmGST was modeled using modeller9v10 and was submitted to PMDB. Molecular docking study reveals arbindazole to be the most potent compounds against GST from both the filarial parasites. Role of some residues playing important role in the binding of compounds within the active site of GST has also been revealed in the present study. The BmGST and WbGST structural information and docking studies could aid in screening new antifilarials or selective inhibitors for chemotherapy against filariasis. ABBREVIATIONS GST - Glutathione-S-transferase, Bm - Brugia malayi, Wb - Wuchereria bancrofti.
Collapse
Affiliation(s)
- Mohd Saeed
- Department of Bioscience, Integral University, Lucknow-226026
| | | | - Preeti Bajpai
- Department of Bioscience, Integral University, Lucknow-226026
| | | | - Khurshid Ahmad
- Department of Bioscience, Integral University, Lucknow-226026
| | - Huma Mustafa
- Council of Science and Technology, Uttar Pradesh
| |
Collapse
|
16
|
Brugia malayi thioredoxin peroxidase as a potential vaccine candidate antigen for lymphatic filariasis. Appl Biochem Biotechnol 2012; 167:1351-64. [PMID: 22528648 DOI: 10.1007/s12010-012-9643-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Accepted: 02/27/2012] [Indexed: 10/28/2022]
Abstract
Attempts were made to evaluate the protective efficacy of Brugia malayi thioredoxin peroxidase (BmTPX) in a mouse model. Mice immunized with a protein vaccine containing rBmTPX developed higher titres (1:5,000/1:10,000) of anti-BmTPX antibodies, compared with the mice immunized with the alum control. There was a higher level of cellular proliferative response in mice immunized with BmTPX compared with the alum control (p < 0.05), which was associated with a Th2-type of response. In order to compare the prophylactic efficacy of BmTPX in natural infection, we evaluated the human immune responses to these antigens in endemic normals (EN) and infected individuals (microfilaraemic and chronic pathology). Results showed that EN subjects carry BmTPX-specific IgG1 and IgG3 circulating antibodies against natural exposure to filariasis. Peripheral blood mononuclear cells from EN subjects responded strongly to rBmTPX by proliferating, as well as by secreting interferon (IFN)-γ (Th1) and IL-5 (Th2), a mixed type of response to rBmTPX. In the case of infected individuals, there was no IFN-γ or IL-5 response. Thus, there was a clear dichotomy in the cytokine production by infected versus EN individuals. Our findings suggest that BmTPX may be a suitable antigen candidate for lymphatic filariasis, but a further study is still required.
Collapse
|
17
|
Bal M, Mandal N, Achary KG, Das MK, Kar SK. Immunoprophylactic potential of filarial glutathione-s-transferase in lymphatic filariaisis. ASIAN PAC J TROP MED 2011; 4:185-91. [PMID: 21771450 DOI: 10.1016/s1995-7645(11)60066-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Revised: 11/08/2010] [Accepted: 12/15/2010] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE To elucidates the immunoprophylactic potential of glutathion-s-transferase (GST) from cattle filarial parasite Setaria digitata (S. digitata) against lymphatic filariasis. METHODS GST was purified through affinity chromatography (SdGST) and chacterized by SDS-PAGE and Nano-LC MS/MS analysis. Antibody isotypes to SdGST were measured by ELISA. Antibody dependant cellular cytotoxicity (ADCC) was performed in vitro using sera from immunized animals and immune individuals. T-cell proliferation and cytokine response to SdGST in different groups of filariasis were measured. Immunoprophylactic potential of SdGST was evaluate in animal model. RESULTS SdGST exhibited 30-fold enhancement of enzyme activity over crude parasitic extract. It was found to be 26 kDa by SDS-PAGE. Nano LC-MS/MS analysis followed by blast search showed 100% homology with Dirofilaria immitis (D. immitis) and only 43% with Homo sapiens (H. sapiens). Immunoblotting analysis showed putatively immune individuals carry significant level of antibodies to SdGST as compared with microfilaraemics. Immunized sera and sera endemic normal could neutralize the enzymatic activity of SdGST and inducing in vitro cytotoxicity of microfilariae. Peripheral blood mononuclear cells (PBMC) from endemic normals upon stimulation with SdGST showed a mixed type of Th1/Th2 response. SdGST immunization clear microfilariae from circulation in S. digitata implanted mastomys. CONCLUSIONS The heterologous GST could be potentially developed as a vaccine candidate against lymphatic filarial parasite.
Collapse
Affiliation(s)
- Madhusmita Bal
- Division of Immunology, Regional Medical Research Centre (Indian Council of Medical Research) Chandrasekharpur, Bhubaneswar-751023, India.
| | | | | | | | | |
Collapse
|
18
|
Virtual screening and in vitro assay of potential drug like inhibitors from spices against glutathione-S-transferase of filarial nematodes. J Mol Model 2011; 18:151-63. [DOI: 10.1007/s00894-011-1035-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Accepted: 03/09/2011] [Indexed: 01/11/2023]
|
19
|
Yadav M, Liebau E, Haldar C, Rathaur S. Identification of major antigenic peptide of filarial glutathione-S-transferase. Vaccine 2010; 29:1297-303. [PMID: 21144917 DOI: 10.1016/j.vaccine.2010.11.078] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Revised: 11/20/2010] [Accepted: 11/22/2010] [Indexed: 01/10/2023]
Abstract
In our earlier report, a 26kDa Setaria cervi glutathione-S-transferase showed significant protection (82%) in jirds infected with L3 larvae of Brugia malayi. In the present study we have identified the major antigenic epitopes in ScGST. Carboxypeptidase B has been used to digest the ScGST in to smaller fragments. The digested products were separated as four protein bands on SDS-PAGE. The smallest fragment of 6kDa (P4) from ScGST was identified as major antigenic epitope because of its significant reactivity with jird anti ScGST sera and human filarial sera in immunoblotting. The MALDI-LC/MS sequencing of ScGST P4 peptide ((5)KLTYFSIRGRGLAEPIRL(20), (22)KVPDDQQFLDDLISR(36) and (47)VFHFGQGPHHGPPR(62)) suggested that this protein band has a fragment of 5-62 residues long that matched with the N-terminal end of filarial GST. The antigenicity plot of ScGST was compared with BmGST model and both exhibited three immunogenic peaks within the first 60 residues towards N-terminal. In BmGST the N-terminal region was also detected with N-glycosylation signal peptide NAS adding to its high immunogenic property. Further, P4 showed strong reactivity with IgG1 and IL-4 response in endemic normal sera suggested its role in Th2 response which in turn is correlated with antibody dependent cell mediated cytotoxicity. Thus taking these results into account we propose 5-62 residues long N-terminal peptide of GST as a potential target for further vaccination studies against filarial infection.
Collapse
Affiliation(s)
- Marshleen Yadav
- Department of Biochemistry, Banaras Hindu University, Varanasi 221005, India
| | | | | | | |
Collapse
|
20
|
Identification and characterization of nematode specific protective epitopes of Brugia malayi TRX towards development of synthetic vaccine construct for lymphatic filariasis. Vaccine 2010; 28:5038-48. [PMID: 20653106 DOI: 10.1016/j.vaccine.2010.05.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Although multi-epitope vaccines have been evaluated for various diseases, they have not yet been investigated for lymphatic filariasis. Here, we report for the first time identification of two immunodominant B epitopes (TRXP1 and TRXP2) from the antioxidant Brugia malayi thioredoxin by studying their immune responses in mice model and human subjects. TRXP1 was also found to harbor a T epitope recognized by human PBMCs and mice splenocytes. Further, the epitopic peptides were synthesized as a single peptide conjugate (PC1) and their prophylactic efficacy was tested in a murine model of filariasis with L3 larvae. PC1 conferred a significantly high protection (75.14%) (P < 0.0001) compared to control (3.7%) and recombinant TRX (63.03%) (P < 0.018) in experimental filariasis. Our results suggest that multi-epitope vaccines could be a promising strategy in the control of lymphatic filariasis.
Collapse
|
21
|
Singh A, Kamal S, Rathaur S. Filarial selenium glutathione peroxidase: a probable immunodiagnostic marker for lymphatic filariasis. Trans R Soc Trop Med Hyg 2010; 104:524-8. [PMID: 20227740 DOI: 10.1016/j.trstmh.2010.02.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Revised: 02/15/2010] [Accepted: 02/15/2010] [Indexed: 11/19/2022] Open
Abstract
Lymphatic filariasis (LF) caused by Wuchereria bancrofti is widely prevalent in tropical and subtropical countries. Night blood film examination is most commonly used for diagnosis of filariasis but is cumbersome and labour intensive. In order to develop an indirect ELISA-based immunodiagnostic test, the importance of antifilarial IgG subclasses was evaluated in bancroftian filariasis patients. Blood samples from healthy individuals and different categories of LF patients were used to estimate the diagnostic potential of selenium glutathione peroxidase antigen purified from the bovine filarial parasite Setaria cervi. This antigen reacted with both IgG(1) and IgG(4); however, the IgG1 response was greater in microfilaraemic patients and the IgG(4) response was higher in chronic filarial patients. The diagnostic sensitivity of IgG(1) and IgG(4) was 97% and 96% whereas specificity was determined to be 95% and 98% respectively. Our observations suggest that SeGSHPx could be an alternative diagnostic marker for the detection of bancroftian filariasis in an endemic area.
Collapse
Affiliation(s)
- Anchal Singh
- Department of Biochemistry, Faculty of Science, Banaras Hindu University, Varanasi, UP 221005, India
| | | | | |
Collapse
|
22
|
Identification of Setaria cervi heat shock protein70 by mass spectrometry and its evaluation as diagnostic marker for lymphatic filariasis. Vaccine 2010; 28:1429-36. [DOI: 10.1016/j.vaccine.2009.06.044] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2008] [Accepted: 06/09/2009] [Indexed: 11/21/2022]
|
23
|
Veerapathran A, Dakshinamoorthy G, Gnanasekar M, Reddy MVR, Kalyanasundaram R. Evaluation of Wuchereria bancrofti GST as a vaccine candidate for lymphatic filariasis. PLoS Negl Trop Dis 2009; 3:e457. [PMID: 19513102 PMCID: PMC2685978 DOI: 10.1371/journal.pntd.0000457] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Accepted: 05/14/2009] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Lymphatic filarial parasites survive within the lymphatic vessels for years despite the complex immune environment surrounding them. Parasites possibly accomplish this by adopting various immunomodulatory strategies, which include release of glutathione-S-transferases (GSTs) that counteract the oxidative free radicals produced by the host. Since GSTs produced by parasites appear to be critical for the survival of parasites in the host, several studies evaluated the potential of parasite GSTs as vaccine candidates especially against schistosomiasis, fascioliasis and Seteria cervi. However, vaccine potential of GSTs of lymphatic filarial parasites has not been evaluated before. METHODS/PRINCIPAL FINDINGS In the present study, the GST gene was cloned from the third stage larval (L3) cDNA libraries of Wuchereria bancrofti, and recombinant GST (WbGST) was expressed and purified. Serum samples from individuals living in an endemic area were analyzed for their reactivity with rWbGST. These findings showed that sera from endemic normal individuals (EN) carry significant levels of anti-WbGST IgG antibodies compared to subjects who are microfilaraemic (Mf) or show symptoms of clinical pathology (CP). Isotype analysis of the anti-WbGST IgG antibodies showed a predominance of IgG1 and IgG3 antibodies in EN individuals. Subsequent functional analysis of the rWbGST showed that the rWbGST protein retained the enzymatic activity of GST and the antibodies in EN sera could inhibit this enzymatic activity. Similar results were obtained when anti-rWbGST antibodies raised in mice were used in the neutralization assay. Brugia malayi GST and WbGST show significant sequence similarity. Therefore, to evaluate the vaccine potential of rWbGST, we used B. malayi L3 as challenge parasites. Vaccine potential of rWbGST was initially evaluated by confirming the role of human and mice WbGST antibodies in an antibody dependent cellular cytotoxicity (ADCC) assay. Subsequent vaccination studies in a jird model showed that approximately 61% protection could be achieved against a B. malayi L3 challenge infection in jirds immunized with rWbGST. CONCLUSIONS Results of this study show that rWbGST is a potential vaccine candidate against lymphatic filariasis. Nearly 61% protection can be achieved against a B. malayi challenge infection in a jird model. The study also showed that the WbGST protein retained the enzymatic activity of GST and this enzymatic activity appears to be critical for the survival of the parasite in the host.
Collapse
Affiliation(s)
- Anandharaman Veerapathran
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, Illinois, United States of America
- Department of Biochemistry, Mahatma Gandhi Institute of Medical Sciences, Sevagram, Maharashtra, India
| | | | - Munirathinam Gnanasekar
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, Illinois, United States of America
| | | | - Ramaswamy Kalyanasundaram
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, Illinois, United States of America
| |
Collapse
|
24
|
Ahmad R, Srivastava AK, Walter RD. Purification and biochemical characterization of cytosolic glutathione-S-transferase from filarial worms Setaria cervi. Comp Biochem Physiol B Biochem Mol Biol 2008; 151:237-45. [DOI: 10.1016/j.cbpb.2008.03.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2007] [Revised: 03/23/2008] [Accepted: 03/31/2008] [Indexed: 10/22/2022]
|
25
|
Anand SB, Murugan V, Prabhu PR, Anandharaman V, Reddy MVR, Kaliraj P. Comparison of immunogenicity, protective efficacy of single and cocktail DNA vaccine of Brugia malayi abundant larval transcript (ALT-2) and thioredoxin peroxidase (TPX) in mice. Acta Trop 2008; 107:106-12. [PMID: 18547532 DOI: 10.1016/j.actatropica.2008.04.018] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2007] [Revised: 04/18/2008] [Accepted: 04/22/2008] [Indexed: 11/30/2022]
Abstract
Although DNA vaccines have several advantages over conventional vaccines, antibody production and protection are often not adequate, particularly in single plasmid vaccine formulation. In the present study we evaluated the efficacy of a cocktail vaccine based on plasmids encoding larval (L3) stage-specific Brugia malayi abundant larval transcript (BmALT-2) and antioxidant detoxification enzyme B. malayi thioredoxin peroxidase (BmTPX) to induce antibodies, protective efficacy and cell-mediated immune response in mice. Mice immunized with cocktail DNA vaccines containing the pVAX ALT-2+TPX developed higher titers of anti-BmALT-2+TPX (1:5000) antibodies, compared to the mice immunized with single DNA vaccine of pVAX ALT-2 or pVAX TPX (1:2000). Correlating with this, the mice administered with cocktail vaccine induced up to 78% of cytotoxicity against B. malayi mf. This cytotoxicity was high compared to 34% induced by the pVAX-ALT2 or 37% by pVAX-TPX. Moreover, cocktail vaccination of mice resulted in significantly higher level of cellular proliferative response associated with raised levels of IFN-gamma that skewed towards Th1 type of response compared to vaccination using either of the components. Taken together, these data suggest that the combination of two or more antigens maybe an effective vaccine development strategy to improve protection and immunogenicity against human lymphatic filariasis.
Collapse
|
26
|
Filarial glutathione-S-transferase: A potential vaccine candidate against lymphatic filariasis. Vaccine 2008; 26:4094-100. [DOI: 10.1016/j.vaccine.2008.03.099] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2008] [Revised: 03/26/2008] [Accepted: 03/31/2008] [Indexed: 11/17/2022]
|
27
|
Dabir S, Dabir P, Goswami K, Goswamy K, Reddy MVR. Prophylactic evaluation of recombinant extracellular superoxide dismutase of Brugia malayi in jird model. Vaccine 2008; 26:3705-10. [PMID: 18524430 DOI: 10.1016/j.vaccine.2008.04.061] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2007] [Revised: 04/18/2008] [Accepted: 04/27/2008] [Indexed: 10/22/2022]
Abstract
The immunoscreening of Brugia malayi adult cDNA library with pooled endemic normal sera identified several seroreactive clones including, EC-SOD which contained a 612 bp insert and showed significant nucleotide and deduced amino acid sequence homologies with superoxide dismutase (SOD) of other nematode parasites. The SODs are known to play an important role in the protection of parasite against reactive oxygen species of the host. The coding region of the B. malayi EC-SOD (BmEC-SOD) was cloned and expressed in Escherichia coli followed by affinity purification on nickel agarose resin. Staining of native polyacrylamide gel for SOD activity of the expressed recombinant protein revealed that SOD activity inactivated by potassium cyanide and hydrogen peroxide but not by sodium azide, indicating presence of Cu/Zn-SOD. The rBm EC-SOD protein showed its activity over a broad range of pH.7.0-11.0. Further the immune protective activity of recombinant EC-SOD antigen was evaluated in susceptible host, jirds (gerbils) (Meriones unguiculatus) against B. malayi filarial infection. The immunized jirds showed 33.5% and 36% cytotoxicity against microfilariae and 42.8% and 45.5% cytotoxicity against infective larvae in in vitro antibody dependent cellular cytotoxicity (ADCC) assay and in in situ micropore chamber methods respectively. This study suggests that the rBm EC-SOD antigen could stimulate a partial protective immune response against microfilariae and infective larvae in experimental animals against filarial infection.
Collapse
Affiliation(s)
- Snehal Dabir
- Department of Biochemistry & J.B. Tropical Disease Research Center, Mahatma Gandhi Institute of Medical Sciences, Sevagram 442102, MS, India.
| | | | | | | | | |
Collapse
|
28
|
Ahmad R, Srivastava AK. Biochemical composition and metabolic pathways of filarial worms Setaria cervi: search for new antifilarial agents. J Helminthol 2008; 81:261-80. [PMID: 17875226 DOI: 10.1017/s0022149x07799133] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The main problem regarding the chemotherapy of filariasis is that no safe and effective drug is available yet to combat the adult human filarial worms. Setaria cervi, the causal organism of setariasis and lumbar paralysis in cattle, is routinely employed as a model organism for conducting biochemical and enzymatic studies on filarial parasites. In view of the practical difficulties in procuring human strains of Wuchereria bancrofti and Brugia malayi for drug screening, the bovine filarial parasite S. cervi, resembling the human species in having microfilarial periodicity and chemotherapeutic response to known antifilarial agents, is widely used as a model in such studies. For a rational approach to antifilarial chemotherapy, knowledge of the biochemical composition and metabolic pathways of this helminth parasite may be of paramount importance, so that more potent antifilarial agents based on specific drug targets can be identified in drug discovery programmes. The present review provides an update on the biochemistry of the important metabolic pathways functioning within this potentially important bovine parasite, that have so far been studied, and on those that need to be investigated further so as to identify novel drug targets that can be exploited for designing new antifilarial drugs.
Collapse
Affiliation(s)
- Rumana Ahmad
- Division of Biochemistry, Po Box 173, Central Drug Research Institute, Chattar Manzil Palace, Lucknow-226001, India
| | | |
Collapse
|
29
|
Gupta S, Singh A, Yadav M, Singh K, Rathaur S. MALDI mass sequencing and characterization of filarialglutathione-S-transferase. Biochem Biophys Res Commun 2007; 356:381-5. [PMID: 17367761 DOI: 10.1016/j.bbrc.2007.02.147] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2007] [Accepted: 02/22/2007] [Indexed: 10/23/2022]
Abstract
Glutathione-S-transferase has been detected in the somatic extract and excretory-secretory products of different life stages of Setaria cervi, a bovine filarial parasite. The enzyme was subjected to MALDI-TOF followed by mass spectrometry and the nearest match found was Pleuronectes platessa GST. Molecular mass of the purified enzyme was approximately 26 kDa as determined by SDS-PAGE and MALDI-TOF. Setaria cervi GST exhibited high activity towards 1-chloro-2,4-dinitrobenzene and ethacrynic acid. Kinetic analysis with respect to 1-chloro-2,4-dinitrobenzene and glutathione as substrate revealed a K(m) of 2.22 mM and 0.61 mM, respectively. The activity was inhibited significantly by Cibacron blue and alpha-tocopherol.
Collapse
Affiliation(s)
- Sarika Gupta
- Molecular Biophysics Unit, Indian Institute of Sciences, Bangalore 560012, India
| | | | | | | | | |
Collapse
|
30
|
Vaccination with Setaria cervi 175 kDa collagenase induces high level of protection against Brugia malayi infection in jirds. Vaccine 2006; 24:6208-15. [PMID: 16870314 DOI: 10.1016/j.vaccine.2006.05.103] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2006] [Revised: 05/27/2006] [Accepted: 05/29/2006] [Indexed: 11/20/2022]
Abstract
A zinc containing metalloprotease, 175 kDa collagenase, purified from adult female Setaria cervi showed strong cross-reactivity with sera from putatively immune (PI) individuals (unpublished observation) and induced cytotoxicity to B. malayi L3 larvae and microfilariae by ADCC mechanism [Srivastava Y, Bhandari YP, Reddy MVR, Harinath BC, Rathaur S. An adult 175 kDa collagenase antigen of Setaria cervi in immunoprophylaxis against Brugia malayi. J Helminth 2004;78:347-52]. These preliminary observations suggested the immunoprotective nature of collagenase. To confirm the vaccine potential of this protease, a vaccine trial was conducted in jirds (Meriones unguiculatus) against human filarial parasite B. malayi. The vaccination resulted into a mean protection level of 75.86% and produced high level of protease neutralizing antibodies. Cytokine analysis in immune jirds sera suggested a mixed Th1/Th2 type cellular immune response whereas ELISA, immunoblotting and enzyme antibody inhibition assay revealed the presence of specific anti-collagenase antibodies. Taken together, all these results suggest that S. cervi 175 kDa collagenase could form the basis of an effective molecular vaccine against human lymphatic filariasis.
Collapse
|