1
|
Charles-Chess NAE, Kurup SP. Regulatory T cell memory: implications for malaria. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025:vkaf067. [PMID: 40267394 DOI: 10.1093/jimmun/vkaf067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 03/12/2025] [Indexed: 04/25/2025]
Abstract
Regulatory T cells (Tregs) can persist as memory cells (mTregs) in both infectious and non-infectious settings. However, their functional behavior, phenotypic stability, and suppressive properties upon antigen re-exposure remain poorly understood. Emerging evidence suggests that mTregs exhibit enhanced proliferation and suppressive capacity upon re-encountering the same antigen, a feature that may be critical in recurrent infections such as malaria. In malaria, Tregs are known to modulate immune responses and influence acute disease outcomes, suggesting that mTreg recall may play a significant role in long-term immunity. This review explores the biology of Treg memory, with a focus on malaria, and examines the immunological implications of maintaining a suppressive mTreg population in malaria immunity.
Collapse
Affiliation(s)
- Nana Appiah Essel Charles-Chess
- Department of Cellular Biology, University of Georgia, Athens, GA, United States
- Center for Tropical & Emerging Global Diseases, University of Georgia, Athens, GA, United States
| | - Samarchith P Kurup
- Department of Cellular Biology, University of Georgia, Athens, GA, United States
- Center for Tropical & Emerging Global Diseases, University of Georgia, Athens, GA, United States
| |
Collapse
|
2
|
Kim MJ, Chu KB, Yoon KW, Kang HJ, Lee DH, Moon EK, Quan FS. Virus-like particles expressing microneme-associated antigen of Plasmodium berghei confer better protection than those expressing apical membrane antigen 1. PARASITES, HOSTS AND DISEASES 2024; 62:193-204. [PMID: 38835260 PMCID: PMC11150920 DOI: 10.3347/phd.24017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 04/18/2024] [Indexed: 06/06/2024]
Abstract
Malaria is a global disease affecting a large portion of the world's population. Although vaccines have recently become available, their efficacies are suboptimal. We generated virus-like particles (VLPs) that expressed either apical membrane antigen 1 (AMA1) or microneme-associated antigen (MIC) of Plasmodium berghei and compared their efficacy in BALB/c mice. We found that immune sera acquired from AMA1 VLP- or MIC VLP-immunized mice specifically interacted with the antigen of choice and the whole P. berghei lysate antigen, indicating that the antibodies were highly parasite-specific. Both VLP vaccines significantly enhanced germinal center B cell frequencies in the inguinal lymph nodes of mice compared with the control, but only the mice that received MIC VLPs showed significantly enhanced CD4+ T cell responses in the blood following P. berghei challenge infection. AMA1 and MIC VLPs significantly suppressed TNF-α and interleukin-10 production but had a negligible effect on interferon-γ. Both VLPs prevented excessive parasitemia buildup in immunized mice, although parasite burden reduction induced by MIC VLPs was slightly more effective than that induced by AMA1. Both VLPs were equally effective at preventing body weight loss. Our findings demonstrated that the MIC VLP was an effective inducer of protection against murine experimental malaria and should be the focus of further development.
Collapse
Affiliation(s)
- Min-Ju Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447,
Korea
| | - Ki Back Chu
- Department of Parasitology, Inje University College of Medicine, Busan 47392,
Korea
- Department of Infectious Disease and Malaria, Paik Institute of Clinical Research, Inje University, Busan 47392,
Korea
| | - Keon-Woong Yoon
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447,
Korea
| | - Hae-Ji Kang
- Department of Microbiology, Dongguk University College of Medicine, Gyeongju 38066,
Korea
| | - Dong-Hun Lee
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447,
Korea
| | - Eun-Kyung Moon
- Department of Medical Zoology, Kyung Hee University School of Medicine, Seoul 02447,
Korea
| | - Fu-Shi Quan
- Department of Medical Zoology, Kyung Hee University School of Medicine, Seoul 02447,
Korea
- Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, School of Medicine, Graduate School, Kyung Hee University, Seoul 02447,
Korea
| |
Collapse
|
3
|
de Roquetaillade C, Laouenan C, Mira JP, Roy C, Thuong M, Azoulay É, Gruson D, Jacobs F, Chommeloux J, Raffi F, Hocqueloux L, Imbert P, Jeantils V, Delassus JL, Matheron S, Fitting C, Timsit JF, Bruneel F. Cytokine profiles in adults with imported malaria. Sci Rep 2023; 13:10347. [PMID: 37365194 DOI: 10.1038/s41598-023-36212-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 05/31/2023] [Indexed: 06/28/2023] Open
Abstract
The increase in worldwide travel is making imported malaria a growing health concern in non-endemic countries. Most data on the pathophysiology of malaria come from endemic areas. Little is known about cytokine profiles during imported malaria. This study aimed at deciphering the relationship between cytokine host response and malaria severity among imported cases in France. This study reports cytokine profiles in adults with Plasmodium falciparum malaria included in the PALUREA prospective study conducted between 2006 and 2010. The patients were classified as having uncomplicated malaria (UM) or severe malaria (SM), with this last further categorized as very severe malaria (VSM) or less severe malaria (LSM). At hospital admission, eight blood cytokines were assayed in duplicate using Luminex® technology: interleukin (IL)-1α, IL-1β, IL-2, IL-4, IL-10, tumor necrosis factor (TNF)α, interferon (IFN)γ, and macrophage migration inhibitory factor (MIF). These assays were repeated on days 1 and 2 in the SM group. Of the 278 patients, 134 had UM and 144 SM. At hospital admission, over half the patients had undetectable levels of IL-1α, IL-1β, IL-2, IL-4, IFNγ, and TNFα, while IL-10 and MIF were significantly higher in the SM vs. the UM group. Higher IL-10 was significantly associated with higher parasitemia (R = 0.32 [0.16-0.46]; P = 0.0001). In the SM group, IL-10 elevation persisting from admission to day 2 was significantly associated with subsequent nosocomial infection. Of eight tested cytokines, only MIF and IL-10 were associated with disease severity in adults with imported P. falciparum malaria. At admission, many patients had undetectable cytokine levels, suggesting that circulating cytokine assays may not be helpful as part of the routine evaluation of adults with imported malaria. Persisting high IL-10 concentration was associated with subsequent nosocomial infection, suggesting its possible interest in immune monitoring of most severe patients.
Collapse
Affiliation(s)
- Charles de Roquetaillade
- Department of Anesthesiology and Critical Care, Hôpital Lariboisière, FHU PROMICE, DMU Parabol, AP-HP Nord, Paris, France.
- INSERM UMR 942 MASCOT, Université de Paris-Cité, Paris, France.
| | - Cédric Laouenan
- Département Epidémiologie Biostatistiques et Recherche Clinique, AP-HP, INSERM, Centre d'Investigation Clinique-Epidémiologie Clinique 1425, Hôpital Bichat, Paris, France
- UMR 1137, Université de Paris-Cité, INSERM, IAME, Hôpital Bichat, AP-HP, Paris, France
| | - Jean-Paul Mira
- Service de medecine intensive-reanimation, Hôpital Cochin, AP-HP Centre, Paris, France
- Université Paris Cité, Paris, France
- Institut Cochin, INSERM U1016, CNRS UMR 8104, Université Paris Cité, AP-HP, Paris, France
| | - Carine Roy
- Département Epidémiologie Biostatistiques et Recherche Clinique, AP-HP, INSERM, Centre d'Investigation Clinique-Epidémiologie Clinique 1425, Hôpital Bichat, Paris, France
- UMR 1137, Université de Paris-Cité, INSERM, IAME, Hôpital Bichat, AP-HP, Paris, France
| | - Marie Thuong
- Service de medecine intensive-reanimation, Centre Hospitalier René Dubos, Pontoise, France
| | - Élie Azoulay
- Service de medecine intensive-reanimation, Hôpital Saint-Louis, Hôpitaux Universitaires Paris-Nord, AP-HP, Paris, France
| | - Didier Gruson
- Service de medecine intensive-reanimation, Hôpital Pellegrin-Tripode, Bordeaux, France
- Centre de Recherche Cardio-Thoracique, CHU Bordeaux, Bordeaux, France
| | - Frédéric Jacobs
- Service de medecine intensive-reanimation, Hôpital Antoine Béclère, Université Paris-Saclay, AP-HP, Clamart, France
| | - Juliette Chommeloux
- Service de medecine intensive reanimation, Institut de Cardiologie, ICAN, Groupe Hospitalier Pitié-Salpêtrière, Sorbonne Université, AP-HP, Paris, France
| | | | - Laurent Hocqueloux
- Service de maladies infectieuses, Centre Hospitalier Régional d'Orléans, Orléans, France
| | - Patrick Imbert
- Centre de vaccinations internationales, Hôpital d'instruction des armees Bégin, Saint-Mandé, France
| | - Vincent Jeantils
- Service de maladies infectieuses, Hôpital Jean Verdier, AP-HP, Bondy, France
| | - Jean-Luc Delassus
- Service de medecine interne et de maladies infectieuses, Centre hospitalier intercommunal Robert-Ballanger, Aulnay-sous-Bois, France
| | - Sophie Matheron
- Service de maladies infectieuses et tropicales, Hôpital Bichat, GHU Paris Nord, AP-HP, Paris, France
| | | | - Jean-François Timsit
- Service de medecine intensive et reanimation (MI2), Hôpital Bichat, Paris, France
- IAME, Université de Paris, INSERM U1137, AP-HP, Paris, France
| | - Fabrice Bruneel
- Service de reanimation, Centre Hospitalier de Versailles, Hôpital André Mignot, Le Chesnay, France
| |
Collapse
|
4
|
B cells promote granulomatous inflammation during chronic Mycobacterium tuberculosis infection in mice. PLoS Pathog 2023; 19:e1011187. [PMID: 36888692 PMCID: PMC9994760 DOI: 10.1371/journal.ppat.1011187] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 02/05/2023] [Indexed: 03/09/2023] Open
Abstract
The current study reveals that in chronic TB, the B cell-deficient μMT strain, relative to wild-type (WT) C57BL/6 mice, displays in the lungs lower levels of inflammation that are associated with decreased CD4+ T cell proliferation, diminished Th1 response, and enhanced levels of interleukin (IL)-10. The latter result raises the possibility that B cells may restrict lung expression of IL-10 in chronic TB. These observations are recapitulated in WT mice depleted for B cells using anti-CD20 antibodies. IL-10 receptor (IL-10R) blockade reverses the phenotypes of decreased inflammation and attenuated CD4+ T cell responses in B cell-depleted mice. Together, these results suggest that in chronic murine TB, B cells, by virtue of their capacity to restrict expression of the anti-inflammatory and immunosuppressive IL-10 in the lungs, promote the development of a robust protective Th1 response, thereby optimizing anti-TB immunity. This vigorous Th1 immunity and restricted IL-10 expression may, however, allow the development of inflammation to a level that can be detrimental to the host. Indeed, decreased lung inflammation observed in chronically infected B cell-deficient mice, which exhibit augmented lung IL-10 levels, is associated with a survival advantage relative to WT animals. Collectively, the results reveal that in chronic murine TB, B cells play a role in modulating the protective Th1 immunity and the anti-inflammatory IL-10 response, which results in augmentation of lung inflammation that can be host-detrimental. Intriguingly, in tuberculous human lungs, conspicuous B cell aggregates are present in close proximity to tissue-damaging lesions manifesting necrosis and cavitation, suggesting the possibility that in human TB, B cells may contribute to the development of exacerbated pathology that is known to promote transmission. Since transmission is a major hindrance to TB control, investigating into whether B cells can shape the development of severe pulmonic pathological responses in tuberculous individuals is warranted.
Collapse
|
5
|
Stijlemans B, Schoovaerts M, De Baetselier P, Magez S, De Trez C. The Role of MIF and IL-10 as Molecular Yin-Yang in the Modulation of the Host Immune Microenvironment During Infections: African Trypanosome Infections as a Paradigm. Front Immunol 2022; 13:865395. [PMID: 35464430 PMCID: PMC9022210 DOI: 10.3389/fimmu.2022.865395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
African trypanosomes are extracellular flagellated unicellular protozoan parasites transmitted by tsetse flies and causing Sleeping Sickness disease in humans and Nagana disease in cattle and other livestock. These diseases are usually characterized by the development of a fatal chronic inflammatory disease if left untreated. During African trypanosome infection and many other infectious diseases, the immune response is mediating a see-saw balance between effective/protective immunity and excessive infection-induced inflammation that can cause collateral tissue damage. African trypanosomes are known to trigger a strong type I pro-inflammatory response, which contributes to peak parasitaemia control, but this can culminate into the development of immunopathologies, such as anaemia and liver injury, if not tightly controlled. In this context, the macrophage migration inhibitory factor (MIF) and the interleukin-10 (IL-10) cytokines may operate as a molecular “Yin-Yang” in the modulation of the host immune microenvironment during African trypanosome infection, and possibly other infectious diseases. MIF is a pleiotropic pro-inflammatory cytokine and critical upstream mediator of immune and inflammatory responses, associated with exaggerated inflammation and immunopathology. For example, it plays a crucial role in the pro-inflammatory response against African trypanosomes and other pathogens, thereby promoting the development of immunopathologies. On the other hand, IL-10 is an anti-inflammatory cytokine, acting as a master regulator of inflammation during both African trypanosomiasis and other diseases. IL-10 is crucial to counteract the strong MIF-induced pro-inflammatory response, leading to pathology control. Hence, novel strategies capable of blocking MIF and/or promoting IL-10 receptor signaling pathways, could potentially be used as therapy to counteract immunopathology development during African trypanosome infection, as well as during other infectious conditions. Together, this review aims at summarizing the current knowledge on the opposite immunopathological molecular “Yin-Yang” switch roles of MIF and IL-10 in the modulation of the host immune microenvironment during infection, and more particularly during African trypanosomiasis as a paradigm.
Collapse
Affiliation(s)
- Benoit Stijlemans
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium.,Myeloid Cell Immunology Laboratory, Vlaams Instituut voor Biotechnologie (VIB) Centre for Inflammation Research, Brussels, Belgium
| | - Maxime Schoovaerts
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Patrick De Baetselier
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium.,Myeloid Cell Immunology Laboratory, Vlaams Instituut voor Biotechnologie (VIB) Centre for Inflammation Research, Brussels, Belgium
| | - Stefan Magez
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium.,Laboratory of Biomedical Research, Ghent University Global Campus, Incheon, South Korea
| | - Carl De Trez
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| |
Collapse
|
6
|
Chauhan R, Awasthi V, Thakur RS, Pande V, Chattopadhyay D, Das J. CD4 +ICOS +Foxp3 +: a sub-population of regulatory T cells contribute to malaria pathogenesis. Malar J 2022; 21:32. [PMID: 35109868 PMCID: PMC8812217 DOI: 10.1186/s12936-022-04055-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 01/19/2022] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Regulatory T cells are known to play a key role to counter balance the protective immune response and immune mediated pathology. However, the role of naturally occurring regulatory cells CD4+CD25+Foxp3+ in malaria infection during the disease pathogenesis is controversial. Beside this, ICOS molecule has been shown to be involved in the development and function of regulatory T cell enhance IL-10 production. Therefore, possible involvement of the ICOS dependent regulatory CD4+ICOS+Foxp3+ T cells in resistance/susceptibility during malaria parasite is explored in this study. METHODS 5 × 105 red blood cells infected with non-lethal and lethal parasites were inoculated in female Balb/c mice by intra-peritoneal injection. Infected or uninfected mice were sacrificed at early (3rd day post infection) and later stage (10th day post infection) of infection. Harvested cells were analysed by using flow cytometer and serum cytokine by Bioplex assay. RESULTS Thin blood films show that percentages of parasitaemia increases with disease progression in infections with the lethal malaria parasite and mice eventually die by day 14th post-infection. Whereas in case of non-lethal malaria parasite, parasitaemia goes down by 7th day post infection and gets cleared within 13th day. The number of CD4+ ICOS+ T cells increases in lethal infection with disease progression. Surprisingly, in non-lethal parasite, ICOS expression decreases after day 7th post infection as parasitaemia goes down. The frequency of CD4+ICOS+FoxP3+ Tregs was significantly higher in lethal parasitic infection as compared to the non-lethal parasite. The level of IL-12 cytokine was remarkably higher in non-lethal infection compared to the lethal infection. In contrast, the level of IL-10 cytokines was higher in lethal parasite infection compared to the non-lethal parasite. CONCLUSION Taken together, these data suggest that lethal parasite induce immunosuppressive environment, protecting from host immune responses and help the parasite to survive whereas non-lethal parasite leads to low frequencies of Treg cells seldom impede immune response that allow the parasite to get self-resolved.
Collapse
Affiliation(s)
- Rubika Chauhan
- Parasite-Host Biology, National Institute of Malaria Research, Sector-8, Dwarka, New Delhi, 110077, India
| | - Vikky Awasthi
- Parasite-Host Biology, National Institute of Malaria Research, Sector-8, Dwarka, New Delhi, 110077, India
| | - Reva Sharan Thakur
- Parasite-Host Biology, National Institute of Malaria Research, Sector-8, Dwarka, New Delhi, 110077, India
| | - Veena Pande
- Biotechnology Department, Kumaun University, Nainital, India
| | - Debprasad Chattopadhyay
- ICMR Virus Unit, ID and BG Hospital, Kolkata, 700010, India.,ICMR-National Institute of Traditional Medicine (NITM), Belagavi, 590010, India
| | - Jyoti Das
- Parasite-Host Biology, National Institute of Malaria Research, Sector-8, Dwarka, New Delhi, 110077, India.
| |
Collapse
|
7
|
Abdrabou W, Dieng MM, Diawara A, Sermé SS, Almojil D, Sombié S, Henry NB, Kargougou D, Manikandan V, Soulama I, Idaghdour Y. Metabolome modulation of the host adaptive immunity in human malaria. Nat Metab 2021; 3:1001-1016. [PMID: 34113019 DOI: 10.1038/s42255-021-00404-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 05/07/2021] [Indexed: 02/06/2023]
Abstract
Host responses to infection with the malaria parasite Plasmodium falciparum vary among individuals for reasons that are poorly understood. Here we reveal metabolic perturbations as a consequence of malaria infection in children and identify an immunosuppressive role of endogenous steroid production in the context of P. falciparum infection. We perform metabolomics on matched samples from children from two ethnic groups in West Africa, before and after infection with seasonal malaria. Analysing 306 global metabolomes, we identify 92 parasitaemia-associated metabolites with impact on the host adaptive immune response. Integrative metabolomic and transcriptomic analyses, and causal mediation and moderation analyses, reveal an infection-driven immunosuppressive role of parasitaemia-associated pregnenolone steroids on lymphocyte function and the expression of key immunoregulatory lymphocyte genes in the Gouin ethnic group. In children from the less malaria-susceptible Fulani ethnic group, we observe opposing responses following infection, consistent with the immunosuppressive role of endogenous steroids in malaria. These findings advance our understanding of P. falciparum pathogenesis in humans and identify potential new targets for antimalarial therapeutic interventions.
Collapse
Affiliation(s)
- Wael Abdrabou
- Program in Biology, Division of Science and Mathematics, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
- Department of Biology, New York University, New York, NY, USA
| | - Mame Massar Dieng
- Program in Biology, Division of Science and Mathematics, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Aïssatou Diawara
- Program in Biology, Division of Science and Mathematics, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Samuel Sindié Sermé
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Dareen Almojil
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Salif Sombié
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Noelie Bere Henry
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Désiré Kargougou
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Vinu Manikandan
- Program in Biology, Division of Science and Mathematics, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Issiaka Soulama
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Youssef Idaghdour
- Program in Biology, Division of Science and Mathematics, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
8
|
Patel H, Dunican C, Cunnington AJ. Predictors of outcome in childhood Plasmodium falciparum malaria. Virulence 2020; 11:199-221. [PMID: 32063099 PMCID: PMC7051137 DOI: 10.1080/21505594.2020.1726570] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 01/16/2020] [Accepted: 01/20/2020] [Indexed: 12/16/2022] Open
Abstract
Plasmodium falciparum malaria is classified as either uncomplicated or severe, determining clinical management and providing a framework for understanding pathogenesis. Severe malaria in children is defined by the presence of one or more features associated with adverse outcome, but there is wide variation in the predictive value of these features. Here we review the evidence for the usefulness of these features, alone and in combination, to predict death and other adverse outcomes, and we consider the role that molecular biomarkers may play in augmenting this prediction. We also examine whether a more personalized approach to predicting outcome for specific presenting syndromes of severe malaria, particularly cerebral malaria, has the potential to be more accurate. We note a general need for better external validation in studies of outcome predictors and for the demonstration that predictors can be used to guide clinical management in a way that improves survival and long-term health.
Collapse
Affiliation(s)
- Harsita Patel
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College London, London, UK
| | - Claire Dunican
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College London, London, UK
| | - Aubrey J. Cunnington
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College London, London, UK
| |
Collapse
|
9
|
Kumar R, Ng S, Engwerda C. The Role of IL-10 in Malaria: A Double Edged Sword. Front Immunol 2019; 10:229. [PMID: 30809232 PMCID: PMC6379449 DOI: 10.3389/fimmu.2019.00229] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 01/28/2019] [Indexed: 12/11/2022] Open
Abstract
IL-10 produced by CD4+ T cells suppresses inflammation by inhibiting T cell functions and the upstream activities of antigen presenting cells (APCs). IL-10 was first identified in Th2 cells, but has since been described in IFNγ-producing Tbet+ Th1, FoxP3+ CD4+ regulatory T (Treg) and IL-17-producing CD4+ T (Th17) cells, as well as many innate and innate-like immune cell populations. IL-10 production by Th1 cells has emerged as an important mechanism to dampen inflammation in the face of intractable infection, including in African children with malaria. However, although these type I regulatory T (Tr1) cells protect tissue from inflammation, they may also promote disease by suppressing Th1 cell-mediated immunity, thereby allowing infection to persist. IL-10 produced by other immune cells during malaria can also influence disease outcome, but the full impact of this IL-10 production is still unclear. Together, the actions of this potent anti-inflammatory cytokine along with other immunoregulatory mechanisms that emerge following Plasmodium infection represent a potential hurdle for the development of immunity against malaria, whether naturally acquired or vaccine-induced. Recent advances in understanding how IL-10 production is initiated and regulated have revealed new opportunities for manipulating IL-10 for therapeutic advantage. In this review, we will summarize our current knowledge about IL-10 production during malaria and discuss its impact on disease outcome. We will highlight recent advances in our understanding about how IL-10 production by specific immune cell subsets is regulated and consider how this knowledge may be used in drug delivery and vaccination strategies to help eliminate malaria.
Collapse
Affiliation(s)
- Rajiv Kumar
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India.,Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Susanna Ng
- Immunology and Infection Lab, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Christian Engwerda
- Immunology and Infection Lab, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| |
Collapse
|
10
|
Abstract
Naturally acquired immunity to the blood-stage of the malaria parasite develops slowly in areas of high endemicity, but is not sterilizing. It manifests as a reduction in parasite density and clinical symptoms. Immunity as a result of blood-stage vaccination has not yet been achieved in humans, although there are many animal models where vaccination has been successful. The development of a blood-stage vaccine has been complicated by a number of factors including limited knowledge of human-parasite interactions and which antigens and immune responses are critical for protection. Opinion is divided as to whether this vaccine should aim to accelerate the acquisition of responses acquired following natural exposure, or whether it should induce a different response. Animal and experimental human models suggest that cell-mediated immune responses can control parasite growth, but these responses can also contribute to significant immunopathology if unregulated. They are largely ignored in most blood-stage malaria vaccine development strategies. Here, we discuss key observations relating to cell-mediated immune responses in the context of experimental human systems and field studies involving naturally exposed individuals and how this may inform the development of a blood-stage malaria vaccine.
Collapse
|
11
|
Increased exposure to Plasmodium chabaudi antigens sustains cross-reactivity and avidity of antibodies binding Nippostrongylus brasiliensis: dissecting cross-phylum cross-reactivity in a rodent model. Parasitology 2015; 142:1703-14. [DOI: 10.1017/s0031182015001390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
SUMMARYMounting an antibody response capable of discriminating amongst and appropriately targeting different parasites is crucial in host defence. However, cross-reactive antibodies that recognize (bind to) multiple parasite species are well documented. We aimed to determine if a higher inoculating dose of one species, and thus exposure to larger amounts of antigen over a longer period of time, would fine-tune responses to that species and reduce cross-reactivity. Using the Plasmodium chabaudi chabaudi (Pcc)–Nippostrongylus brasiliensis (Nb) co-infection model in BALB/c mice, in which we previously documented cross-reactive antibodies, we manipulated the inoculating dose of Pcc across 4 orders of magnitude. We investigated antigen-specific and cross-reactive antibody responses against crude and defined recombinant antigens by enzyme linked immunosorbent assay, Western blot and antibody depletion assays. Contrary to our hypothesis that increasing exposure to Pcc would reduce cross-reactivity to Nb, we found evidence for increased avidity of a subpopulation of antibodies that recognized shared antigens. Western blot indicated proteins of apparent monomer molecular mass 28 and 98 kDa in both Nb and Pcc antigen preparations and also an Nb protein of similar size to recombinant Pcc antigen, merozoite surface protein-119. The implications of antibodies binding antigen from such phylogenetically distinct parasites are discussed.
Collapse
|
12
|
Gonçalves RM, Lima NF, Ferreira MU. Parasite virulence, co-infections and cytokine balance in malaria. Pathog Glob Health 2014; 108:173-8. [PMID: 24854175 DOI: 10.1179/2047773214y.0000000139] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Strong early inflammatory responses followed by a timely production of regulatory cytokines are required to control malaria parasite multiplication without inducing major host pathology. Here, we briefly examine the homeostasis of inflammatory responses to malaria parasite species with varying virulence levels and discuss how co-infections with bacteria, viruses, and helminths can modulate inflammation, either aggravating or alleviating malaria-related morbidity.
Collapse
|
13
|
Abeles SR, Chuquiyauri R, Tong C, Vinetz JM. Human host-derived cytokines associated with Plasmodium vivax transmission from acute malaria patients to Anopheles darlingi mosquitoes in the Peruvian Amazon. Am J Trop Med Hyg 2013; 88:1130-7. [PMID: 23478585 DOI: 10.4269/ajtmh.12-0752] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Infection of mosquitoes by humans is not always successful in the setting of patent gametocytemia. This study tested the hypothesis that pro- or anti-inflammatory cytokines are associated with transmission of Plasmodium vivax to Anopheles darlingi mosquitoes in experimental infection. Blood from adults with acute, non-severe P. vivax malaria was fed to laboratory-reared F1 An. darlingi mosquitoes. A panel of cytokines at the time of mosquito infection was assessed in patient sera and levels compared among subjects who did and did not infect mosquitoes. Overall, blood from 43 of 99 (43%) subjects led to mosquito infection as shown by oocyst counts. Levels of IL-10, IL-6, TNF-α, and IFN-γ were significantly elevated in vivax infection and normalized 3 weeks later. The anti-inflammatory cytokine IL-10 was significantly higher in nontransmitters compared with top transmitters but was not in TNF-α and IFN-γ. The IL-10 elevation during acute malaria was associated with P. vivax transmission blocking.
Collapse
|
14
|
Freitas do Rosario AP, Langhorne J. T cell-derived IL-10 and its impact on the regulation of host responses during malaria. Int J Parasitol 2012; 42:549-55. [PMID: 22549022 DOI: 10.1016/j.ijpara.2012.03.010] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2011] [Revised: 03/02/2012] [Accepted: 03/24/2012] [Indexed: 02/04/2023]
Abstract
Despite intense research, malaria still is the one of the most devastating diseases killing more people than any other parasitic infection. In an attempt to control the infection, the host immune system produces a potent pro-inflammatory response. However, this response is also associated with complications, such as severe anaemia, hypoglycaemia and cerebral malaria. This pronounced production of pro-inflammatory cytokines response is a common feature of malaria caused by parasites infecting humans as well as rodents and primates. A balance between pro- and anti-inflammatory responses may be fundamental to the elimination of the parasite without inducing excessive host pathology. IL-10 is a key cytokine that has been shown to have an important regulatory function in establishing this balance in malaria. Here we discuss which cells can produce IL-10 during infection, and present an overview of the evidence showing that T-cell derived IL-10 plays an important role in regulating malaria pathology. Many different subsets of T cells can produce IL-10, however, evidence is accumulating that it is effector Th1 CD4(+) T cells which provide the crucial source that down-regulates inflammatory pathology during blood-stage malaria infections.
Collapse
|
15
|
Pierce SK, Miller LH. World Malaria Day 2009: what malaria knows about the immune system that immunologists still do not. THE JOURNAL OF IMMUNOLOGY 2009; 182:5171-7. [PMID: 19380759 DOI: 10.4049/jimmunol.0804153] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Malaria kills >1 million children each year, and there is little doubt that an effective vaccine would play a central role in preventing these deaths. However, the strategies that proved so successful in developing the vaccines we have today may simply not be adequate to confront complex, persistent infectious diseases, including malaria, AIDS, and tuberculosis. We believe that the development of a highly effective vaccine will require a better understanding of several features of the immune response to malaria. At the top of the list is the complex and ancient relationship between the parasite that causes malaria and the immune system that enables the parasite to persist in an otherwise functional immune system. A close second is the antigenic targets in malaria and how to overcome the enormous polymorphism of these targets. Meeting these challenges represents a call to arms of basic immunologists to advance our knowledge of malaria immunity.
Collapse
Affiliation(s)
- Susan K Pierce
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Twinbrook II, 12441 Parklawn Drive, Room 200B, Mail Stop Code 8180, Rockville, MD 20852, USA.
| | | |
Collapse
|