1
|
Xu X, Liu Y, Li X, Zhang P, Lin F, Chen C, Zhang X, Li C, Fu Q. Characterization, expression profiling, and immunological role of Cathepsin D in Sebastes schlegelii during bacterial infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2025; 167:105387. [PMID: 40339947 DOI: 10.1016/j.dci.2025.105387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/06/2025] [Accepted: 05/03/2025] [Indexed: 05/10/2025]
Abstract
Cathepsin D (CTSD), a ubiquitous aspartate hydrolase in eukaryotes, is predominantly localized in lysosomes and involved in the process of substance hydrolysis. While extensive studies have highlighted the importance of CTSD in various physiological and pathological conditions in mammals, its functional roles and mechanisms in fish in responses to bacterial infections remain poorly understood. In this study, two CTSD genes, SsCTSDa and SsCTSDb, were identified in Sebastes schlegelii, and their characteristics were systematically investigated through phylogenetic analysis, syntenic analysis, and tissue-specific expression profiling under both healthy and bacterial infection conditions. Additionally, their immune-related properties, including subcellular localization, microbial ligand-binding capacity, and agglutination activity, were explored. Firstly, SsCTSDa encodes a 396-amino acid protein with a molecular mass of 43.01 kDa, while SsCTSDb encodes a 339-amino acid protein with a molecular mass of 43.36 kDa. Furthermore, both genes were ubiquitously expressed in all examined tissues, with the highest expression levels observed in the spleen. Moreover, SsCTSDa and SsCTSDb exhibited distinct expression patterns following bacterial infection, showing significant upregulation in the kidney and gill. Functional assays demonstrated that recombinant SsCTSDa (rSsCTSDa) and SsCTSDb (rSsCTSDb) exhibited strong binding affinity to microbial ligands, including LPS, PGN, LTA, and Poly (I:C). Notably, rSsCTSDb displayed broad-spectrum agglutination activity against both Gram-positive and Gram-negative bacteria, whereas rSsCTSDa specifically agglutinated Gram-negative bacteria. This study suggests that CTSD plays a crucial role in the immune responses of teleosts, highlighting its potential as a key mediator in host-pathogen interactions.
Collapse
Affiliation(s)
- Xuan Xu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yiying Liu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xingchun Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Pei Zhang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Fengjun Lin
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Chonghui Chen
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xiaoxu Zhang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Chao Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Qiang Fu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
2
|
Schaub GA. Trypanosoma cruzi/Triatomine Interactions-A Review. Pathogens 2025; 14:392. [PMID: 40333244 PMCID: PMC12030229 DOI: 10.3390/pathogens14040392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2025] [Revised: 04/14/2025] [Accepted: 04/15/2025] [Indexed: 05/09/2025] Open
Abstract
This review summarizes the interactions between Trypanosoma cruzi, the etiologic agent of Chagas disease, and its vectors, the triatomines, and highlights open questions. Four important facts should be emphasized at the outset: (1) The development of T. cruzi strains and their interactions with the mammalian host and the insect vector vary greatly. (2) Only about 10 of over 150 triatomine species have been studied for their interactions with the protozoan parasite. (3) The use of laboratory strains of triatomines makes generalizations difficult, as maintenance conditions influence the interactions. (4) The intestinal microbiota is involved in the interactions, but the mutualistic symbionts, Actinomycetales, have so far only been identified in four species of triatomines. The effects of the vector on T. cruzi are reflected in a different colonization ability of T. cruzi in different triatomine species. In addition, the conditions in the intestine lead to strong multiplication in the posterior midgut and rectum, with infectious metacyclic trypomastigotes developing almost exclusively in the latter. Starvation and feeding of the vector induce the development of certain stages of T. cruzi. The negative effects of T. cruzi on the triatomines depend on the T. cruzi strain and are particularly evident when the triatomines are stressed. The intestinal immunity of the triatomines responds to ingested blood-stage trypomastigotes of some T. cruzi strains and affects many intestinal bacteria, but not all and not the mutualistic symbionts. The specific interaction between T. cruzi and the bacteria is evident after the knockdown of antimicrobial peptides: the number of non-symbiotic bacteria increases and the number of T. cruzi decreases. In long-term infections, the suppression of intestinal immunity is indicated by the growth of specific microbiota.
Collapse
Affiliation(s)
- Günter A Schaub
- Zoology/Parasitology, Ruhr-University Bochum, Universitätsstr. 150, 44780 Bochum, Germany
| |
Collapse
|
3
|
Ouali R, Vieira LR, Salmon D, Bousbata S. Trypanosoma cruzi reprograms mitochondrial metabolism within the anterior midgut of its vector Rhodnius prolixus during the early stages of infection. Parasit Vectors 2024; 17:381. [PMID: 39242536 PMCID: PMC11380418 DOI: 10.1186/s13071-024-06415-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 07/18/2024] [Indexed: 09/09/2024] Open
Abstract
BACKGROUND Trypanosoma cruzi is transmitted to humans by hematophagous bugs belonging to the Triatominae subfamily. Its intra-vectorial cycle is complex and occurs exclusively in the insect's midgut. Dissecting the elements involved in the cross-talk between the parasite and its vector within the digestive tract should provide novel targets for interrupting the parasitic life cycle and affecting vectorial competence. These interactions are shaped by the strategies that parasites use to infect and exploit their hosts, and the host's responses that are designed to detect and eliminate parasites. The objective of the current study is to characterize the impact of T. cruzi establishment within its vector on the dynamics of its midgut. METHODS In this study, we evaluated the impact of T. cruzi infection on protein expression within the anterior midgut of the model insect Rhodnius prolixus at 6 and 24 h post-infection (hpi) using high-throughput quantitative proteomics. RESULTS Shortly after its ingestion, the parasite modulates the proteome of the digestive epithelium by upregulating 218 proteins and negatively affecting the expression of 11 proteins involved in a wide array of cellular functions, many of which are pivotal due to their instrumental roles in cellular metabolism and homeostasis. This swift response underscores the intricate manipulation of the vector's cellular machinery by the parasite. Moreover, a more in-depth analysis of proteins immediately induced by the parasite reveals a pronounced predominance of mitochondrial proteins, thereby altering the sub-proteomic landscape of this organelle. This includes various complexes of the respiratory chain involved in ATP generation. In addition to mitochondrial metabolic dysregulation, a significant number of detoxifying proteins, such as antioxidant enzymes and P450 cytochromes, were immediately induced by the parasite, highlighting a stress response. CONCLUSIONS This study is the first to illustrate the response of the digestive epithelium upon contact with T. cruzi, as well as the alteration of mitochondrial sub-proteome by the parasite. This manipulation of the vector's physiology is attributable to the cascade activation of a signaling pathway by the parasite. Understanding the elements of this response, as well as its triggers, could be the foundation for innovative strategies to control the transmission of American trypanosomiasis, such as the development of targeted interventions aimed at disrupting parasite proliferation and transmission within the triatomine vector.
Collapse
Affiliation(s)
- Radouane Ouali
- Laboratory of Vector-Pathogen Biology, Proteomic Platform, Department of Molecular Biology, Université Libre de Bruxelles, 6041, Gosselies, Belgium.
| | - Larissa Rezende Vieira
- Institute of Medical Biochemistry Leopoldo de Meis, Centro de Ciências e da Saúde, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Didier Salmon
- Institute of Medical Biochemistry Leopoldo de Meis, Centro de Ciências e da Saúde, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Sabrina Bousbata
- Laboratory of Vector-Pathogen Biology, Proteomic Platform, Department of Molecular Biology, Université Libre de Bruxelles, 6041, Gosselies, Belgium.
| |
Collapse
|
4
|
Schaub GA. Interaction of Trypanosoma cruzi, Triatomines and the Microbiota of the Vectors-A Review. Microorganisms 2024; 12:855. [PMID: 38792688 PMCID: PMC11123833 DOI: 10.3390/microorganisms12050855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 05/26/2024] Open
Abstract
This review summarizes the interactions between Trypanosoma cruzi, the etiologic agent of Chagas disease, its vectors, triatomines, and the diverse intestinal microbiota of triatomines, which includes mutualistic symbionts, and highlights open questions. T. cruzi strains show great biological heterogeneity in their development and their interactions. Triatomines differ from other important vectors of diseases in their ontogeny and the enzymes used to digest blood. Many different bacteria colonize the intestinal tract of triatomines, but only Actinomycetales have been identified as mutualistic symbionts. Effects of the vector on T. cruzi are indicated by differences in the ability of T. cruzi to establish in the triatomines and in colonization peculiarities, i.e., proliferation mainly in the posterior midgut and rectum and preferential transformation into infectious metacyclic trypomastigotes in the rectum. In addition, certain forms of T. cruzi develop after feeding and during starvation of triatomines. Negative effects of T. cruzi on the triatomine vectors appear to be particularly evident when the triatomines are stressed and depend on the T. cruzi strain. Effects on the intestinal immunity of the triatomines are induced by ingested blood-stage trypomastigotes of T. cruzi and affect the populations of many non-symbiotic intestinal bacteria, but not all and not the mutualistic symbionts. After the knockdown of antimicrobial peptides, the number of non-symbiotic bacteria increases and the number of T. cruzi decreases. Presumably, in long-term infections, intestinal immunity is suppressed, which supports the growth of specific bacteria, depending on the strain of T. cruzi. These interactions may provide an approach to disrupt T. cruzi transmission.
Collapse
Affiliation(s)
- Günter A Schaub
- Zoology/Parasitology, Ruhr-University Bochum, Universitätsstr. 150, 44780 Bochum, Germany
| |
Collapse
|
5
|
de Araújo CN, Santiago PB, Causin Vieira G, Silva GDS, Moura RP, Bastos IMD, de Santana JM. The biotechnological potential of proteases from hematophagous arthropod vectors. Front Cell Infect Microbiol 2023; 13:1287492. [PMID: 37965257 PMCID: PMC10641018 DOI: 10.3389/fcimb.2023.1287492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/09/2023] [Indexed: 11/16/2023] Open
Affiliation(s)
- Carla Nunes de Araújo
- Host-Pathogen Interface Laboratory, Department of Cell Biology, Institute of Biology, University of Brasília, Brasília, DF, Brazil
- Faculty of Ceilândia, University of Brasília, Brasília, DF, Brazil
| | - Paula Beatriz Santiago
- Host-Pathogen Interface Laboratory, Department of Cell Biology, Institute of Biology, University of Brasília, Brasília, DF, Brazil
| | - Giulia Causin Vieira
- Host-Pathogen Interface Laboratory, Department of Cell Biology, Institute of Biology, University of Brasília, Brasília, DF, Brazil
| | - Gabriel dos Santos Silva
- Host-Pathogen Interface Laboratory, Department of Cell Biology, Institute of Biology, University of Brasília, Brasília, DF, Brazil
| | - Renan Pereira Moura
- Host-Pathogen Interface Laboratory, Department of Cell Biology, Institute of Biology, University of Brasília, Brasília, DF, Brazil
| | - Izabela Marques Dourado Bastos
- Host-Pathogen Interface Laboratory, Department of Cell Biology, Institute of Biology, University of Brasília, Brasília, DF, Brazil
| | - Jaime Martins de Santana
- Host-Pathogen Interface Laboratory, Department of Cell Biology, Institute of Biology, University of Brasília, Brasília, DF, Brazil
| |
Collapse
|
6
|
Reynoso-Ducoing OA, González-Rete B, Díaz E, Candelas-Otero FN, López-Aviña JA, Cabrera-Bravo M, Bucio-Torres MI, Torres-Gutiérrez E, Salazar-Schettino PM. Expression of Proteins, Glycoproteins, and Transcripts in the Guts of Fasting, Fed, and Trypanosoma cruzi-Infected Triatomines: A Systematic Review. Pathogens 2023; 12:1124. [PMID: 37764932 PMCID: PMC10534304 DOI: 10.3390/pathogens12091124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/27/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Chagas disease is caused by the hemoflagellate protozoan Trypanosoma cruzi. The main transmission mechanism for the parasite in endemic areas is contact with the feces of an infected triatomine bug. Part of the life cycle of T. cruzi occurs in the digestive tract of triatomines, where vector and parasite engage in a close interaction at a proteomic-molecular level. This interaction triggers replication and differentiation processes in the parasite that can affect its infectivity for the vertebrate host. With the aim of compiling and analyzing information from indexed publications on transcripts, proteins, and glycoproteins in the guts of fasting, fed, and T. cruzi-infected triatomines in the period 2000-2022, a systematic review was conducted following the PRISMA guidelines. Fifty-five original research articles retrieved from PubMed and ScienceDirect were selected; forty-four papers reported 1-26,946 transcripts, and twenty-one studies described 1-2603 peptides/proteins.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Elia Torres-Gutiérrez
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Coyoacán, México City 04510, Mexico; (O.A.R.-D.); (B.G.-R.); (E.D.); (F.N.C.-O.); (J.A.L.-A.); (M.C.-B.); (M.I.B.-T.)
| | - Paz María Salazar-Schettino
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Coyoacán, México City 04510, Mexico; (O.A.R.-D.); (B.G.-R.); (E.D.); (F.N.C.-O.); (J.A.L.-A.); (M.C.-B.); (M.I.B.-T.)
| |
Collapse
|
7
|
Carvalho-Costa TM, Tiveron RDR, Mendes MT, Barbosa CG, Nevoa JC, Roza GA, Silva MV, Figueiredo HCP, Rodrigues V, Soares SDC, Oliveira CJF. Salivary and Intestinal Transcriptomes Reveal Differential Gene Expression in Starving, Fed and Trypanosoma cruzi-Infected Rhodnius neglectus. Front Cell Infect Microbiol 2022; 11:773357. [PMID: 34988032 PMCID: PMC8722679 DOI: 10.3389/fcimb.2021.773357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/04/2021] [Indexed: 11/28/2022] Open
Abstract
Rhodnius neglectus is a potential vector of Trypanosoma cruzi (Tc), the causative agent of Chagas disease. The salivary glands (SGs) and intestine (INT) are actively required during blood feeding. The saliva from SGs is injected into the vertebrate host, modulating immune responses and favoring feeding for INT digestion. Tc infection significantly alters the physiology of these tissues; however, studies that assess this are still scarce. This study aimed to gain a better understanding of the global transcriptional expression of genes in SGs and INT during fasting (FA), fed (FE), and fed in the presence of Tc (FE + Tc) conditions. In FA, the expression of transcripts related to homeostasis maintenance proteins during periods of stress was predominant. Therefore, the transcript levels of Tret1-like and Hsp70Ba proteins were increased. Blood appeared to be responsible for alterations found in the FE group, as most of the expressed transcripts, such as proteases and cathepsin D, were related to digestion. In FE + Tc group, there was a decreased expression of blood processing genes for insect metabolism (e.g., Antigen-5 precursor, Pr13a, and Obp), detoxification (Sult1) in INT and acid phosphatases in SG. We also found decreased transcriptional expression of lipocalins and nitrophorins in SG and two new proteins, pacifastin and diptericin, in INT. Several transcripts of unknown proteins with investigative potential were found in both tissues. Our results also show that the presence of Tc can change the expression in both tissues for a long or short period of time. While SG homeostasis seems to be re-established on day 9, changes in INT are still evident. The findings of this study may be used for future research on parasite-vector interactions and contribute to the understanding of food physiology and post-meal/infection in triatomines.
Collapse
Affiliation(s)
- Tamires Marielem Carvalho-Costa
- Laboratory of Immunology and Bioinformatics, Institute of Biological and Natural Sciences, Federal University of Triangulo Mineiro, Uberaba, Brazil
| | - Rafael Destro Rosa Tiveron
- Laboratory of Immunology and Bioinformatics, Institute of Biological and Natural Sciences, Federal University of Triangulo Mineiro, Uberaba, Brazil
| | - Maria Tays Mendes
- Biomedical Research Center, The University of Texas at El Paso, El Paso, TX, United States
| | - Cecília Gomes Barbosa
- Laboratory of Immunology and Bioinformatics, Institute of Biological and Natural Sciences, Federal University of Triangulo Mineiro, Uberaba, Brazil
| | - Jessica Coraiola Nevoa
- Laboratory of Immunology and Bioinformatics, Institute of Biological and Natural Sciences, Federal University of Triangulo Mineiro, Uberaba, Brazil
| | - Guilherme Augusto Roza
- Laboratory of Immunology and Bioinformatics, Institute of Biological and Natural Sciences, Federal University of Triangulo Mineiro, Uberaba, Brazil
| | - Marcos Vinícius Silva
- Laboratory of Immunology and Bioinformatics, Institute of Biological and Natural Sciences, Federal University of Triangulo Mineiro, Uberaba, Brazil
| | | | - Virmondes Rodrigues
- Laboratory of Immunology and Bioinformatics, Institute of Biological and Natural Sciences, Federal University of Triangulo Mineiro, Uberaba, Brazil
| | - Siomar de Castro Soares
- Laboratory of Immunology and Bioinformatics, Institute of Biological and Natural Sciences, Federal University of Triangulo Mineiro, Uberaba, Brazil
| | - Carlo José Freire Oliveira
- Laboratory of Immunology and Bioinformatics, Institute of Biological and Natural Sciences, Federal University of Triangulo Mineiro, Uberaba, Brazil
| |
Collapse
|
8
|
Moyetta NR, Ramos FO, Leyria J, Canavoso LE, Fruttero LL. Morphological and Ultrastructural Characterization of Hemocytes in an Insect Model, the Hematophagous Dipetalogaster maxima (Hemiptera: Reduviidae). INSECTS 2021; 12:insects12070640. [PMID: 34357299 PMCID: PMC8303341 DOI: 10.3390/insects12070640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/23/2021] [Accepted: 06/25/2021] [Indexed: 12/04/2022]
Abstract
Simple Summary Chagas’ disease is a debilitating and life-threatening disease endemic of the Americas, although it currently affects about six to seven million people around the world. The triatomines, also known as kissing bugs, are blood-feeding insects that play a key role in the transmission of Chagas’ disease since they are the vectors of the parasite Trypanosoma cruzi, the causative agent of the illness. On the other hand, the hemocytes are the cells present in the circulatory system of insects and other invertebrates. These cells are comparable to the white blood cells of vertebrates and fulfill vital functions in coagulation and defense against pathogens. The classification of hemocytes is mainly based in their cell shape, which is technically challenging to assess, and the authors have not always agreed upon this subject. In this study we combined different techniques to classify the hemocytes of the kissing bug Dipetalogaster maxima in a juvenile stage of development. We characterized the hemocytes in five types, including plasmatocytes, granulocytes, prohemocytes, adipohemocytes and oenocytes. These findings contribute to the understanding of insect and triatomine physiology and can be applied to unravel basic aspects of insect immune responses, coagulation cascades and endocrine processes. Abstract Hemocytes, the cells present in the hemolymph of insects and other invertebrates, perform several physiological functions, including innate immunity. The current classification of hemocyte types is based mostly on morphological features; however, divergences have emerged among specialists in triatomines, the insect vectors of Chagas’ disease (Hemiptera: Reduviidae). Here, we have combined technical approaches in order to characterize the hemocytes from fifth instar nymphs of the triatomine Dipetalogaster maxima. Moreover, in this work we describe, for the first time, the ultrastructural features of D. maxima hemocytes. Using phase contrast microscopy of fresh preparations, five hemocyte populations were identified and further characterized by immunofluorescence, flow cytometry and transmission electron microscopy. The plasmatocytes and the granulocytes were the most abundant cell types, although prohemocytes, adipohemocytes and oenocytes were also found. This work sheds light on a controversial aspect of triatomine cell biology and physiology setting the basis for future in-depth studies directed to address hemocyte classification using non-microscopy-based markers.
Collapse
Affiliation(s)
- Natalia R. Moyetta
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina; (N.R.M.); (F.O.R.); (J.L.); (L.E.C.)
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba 5000, Argentina
| | - Fabián O. Ramos
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina; (N.R.M.); (F.O.R.); (J.L.); (L.E.C.)
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba 5000, Argentina
| | - Jimena Leyria
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina; (N.R.M.); (F.O.R.); (J.L.); (L.E.C.)
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba 5000, Argentina
| | - Lilián E. Canavoso
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina; (N.R.M.); (F.O.R.); (J.L.); (L.E.C.)
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba 5000, Argentina
| | - Leonardo L. Fruttero
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina; (N.R.M.); (F.O.R.); (J.L.); (L.E.C.)
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba 5000, Argentina
- Correspondence:
| |
Collapse
|
9
|
Schaub GA. An Update on the Knowledge of Parasite-Vector Interactions of Chagas Disease. Res Rep Trop Med 2021; 12:63-76. [PMID: 34093053 PMCID: PMC8169816 DOI: 10.2147/rrtm.s274681] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/15/2021] [Indexed: 11/23/2022] Open
Abstract
This review focusses on the interactions between the etiologic agent of Chagas disease, Trypanosoma cruzi, and its triatomine vector. The flagellate mainly colonizes the intestinal tract of the insect. The effect of triatomines on trypanosomes is indicated by susceptibility and refractoriness phenomena that vary according to the combination of the strains. Other effects are apparent in the different regions of the gut. In the stomach, the majority of ingested blood trypomastigotes are killed while the remaining transform to round stages. In the small intestine, these develop into epimastigotes, the main replicative stage. In the rectum, the population density is the highest and is where the infectious stage develops, the metacyclic trypomastigote. In all regions of the gut, starvation and feeding of the triatomine affect T. cruzi. In the small intestine and rectum, starvation reduces the population density and more spheromastigotes develop. In the rectum, feeding after short-term starvation induces metacyclogenesis and after long-term starvation the development of specific cells, containing several nuclei, kinetoplasts and flagella. When considering the effects of T. cruzi on triatomines, the flagellate seems to be of low pathogenicity. However, during stressful periods, which are normal in natural populations, effects occur often on the behaviour, eg, in readiness to approach the host, the period of time before defecation, dispersal and aggregation. In nymphs, the duration of the different instars and the mortality rates increase, but this seems to be induced by repeated infections or blood quality by the feeding on infected hosts. Starvation resistance is often reduced by infection. Longevity and reproduction of adults is reduced, but only after infection with some strains of T. cruzi. Only components of the surface coat of blood trypomastigotes induce an immune reaction. However, this seems to act against gut bacteria and favours the development of T. cruzi.
Collapse
Affiliation(s)
- Günter A Schaub
- Zoology/Parasitology, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
10
|
Ouali R, Vieira LR, Salmon D, Bousbata S. Early Post-Prandial Regulation of Protein Expression in the Midgut of Chagas Disease Vector Rhodnius prolixus Highlights New Potential Targets for Vector Control Strategy. Microorganisms 2021; 9:microorganisms9040804. [PMID: 33920371 PMCID: PMC8069306 DOI: 10.3390/microorganisms9040804] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/04/2021] [Accepted: 04/09/2021] [Indexed: 12/17/2022] Open
Abstract
Chagas disease is a vector-borne parasitic disease caused by the flagellated protozoan Trypanosoma cruzi and transmitted to humans by a large group of bloodsucking triatomine bugs. Triatomine insects, such as Rhodnius prolixus, ingest a huge amount of blood in a single meal. Their midgut represents an important interface for triatomine–trypanosome interactions. Furthermore, the development of parasites and their vectorial transmission are closely linked to the blood feeding and digestion; thus, an understanding of their physiology is essential for the development of new strategies to control triatomines. In this study, we used label-free quantitative proteomics to identify and analyze the early effect of blood feeding on protein expression in the midgut of Rhodnius prolixus. We both identified and quantified 124 proteins in the anterior midgut (AM) and 40 in the posterior midgut (PM), which vary significantly 6 h after feeding. The detailed analysis of these proteins revealed their predominant involvement in the primary function of hematophagy, including proteases, proteases inhibitors, amino acids metabolism, primary metabolites processing, and protein folding. Interestingly, our proteomics data show a potential role of the AM in protein digestion. Moreover, proteins related to detoxification processes and innate immunity, which are largely accepted to be triggered by blood ingestion, were mildly modulated. Surprisingly, one third of blood-regulated proteins in the AM have unknown function. This work contributes to the improvement of knowledge on the digestive physiology of triatomines in the early hours post-feeding. It provides key information for selecting new putative targets for the development of triatomine control tools and their potential role in the vector competence, which could be applied to other vector species.
Collapse
Affiliation(s)
- Radouane Ouali
- Proteomic Plateform, Laboratory of Microbiology, Department of Molecular Biology, Université Libre de Bruxelles, 6041 Gosselies, Belgium
- Correspondence: (R.O.); (S.B.)
| | - Larissa Rezende Vieira
- Laboratory of Molecular Biology of Trypanosomatids, Institute of Medical Biochemistry Leopoldo de Meis, Centro de Ciências da Saúde, Federal University of Rio de Janeiro, Rio de Janeiro RJ 21941-902, Brazil; (L.R.V.); (D.S.)
| | - Didier Salmon
- Laboratory of Molecular Biology of Trypanosomatids, Institute of Medical Biochemistry Leopoldo de Meis, Centro de Ciências da Saúde, Federal University of Rio de Janeiro, Rio de Janeiro RJ 21941-902, Brazil; (L.R.V.); (D.S.)
| | - Sabrina Bousbata
- Proteomic Plateform, Laboratory of Microbiology, Department of Molecular Biology, Université Libre de Bruxelles, 6041 Gosselies, Belgium
- Correspondence: (R.O.); (S.B.)
| |
Collapse
|
11
|
Talyuli OAC, Bottino-Rojas V, Polycarpo CR, Oliveira PL, Paiva-Silva GO. Non-immune Traits Triggered by Blood Intake Impact Vectorial Competence. Front Physiol 2021; 12:638033. [PMID: 33737885 PMCID: PMC7960658 DOI: 10.3389/fphys.2021.638033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 02/08/2021] [Indexed: 11/13/2022] Open
Abstract
Blood-feeding arthropods are considered an enormous public health threat. They are vectors of a plethora of infectious agents that cause potentially fatal diseases like Malaria, Dengue fever, Leishmaniasis, and Lyme disease. These vectors shine due to their own physiological idiosyncrasies, but one biological aspect brings them all together: the requirement of blood intake for development and reproduction. It is through blood-feeding that they acquire pathogens and during blood digestion that they summon a collection of multisystemic events critical for vector competence. The literature is focused on how classical immune pathways (Toll, IMD, and JAK/Stat) are elicited throughout the course of vector infection. Still, they are not the sole determinants of host permissiveness. The dramatic changes that are the hallmark of the insect physiology after a blood meal intake are the landscape where a successful infection takes place. Dominant processes that occur in response to a blood meal are not canonical immunological traits yet are critical in establishing vector competence. These include hormonal circuitries and reproductive physiology, midgut permeability barriers, midgut homeostasis, energy metabolism, and proteolytic activity. On the other hand, the parasites themselves have a role in the outcome of these blood triggered physiological events, consistently using them in their favor. Here, to enlighten the knowledge on vector-pathogen interaction beyond the immune pathways, we will explore different aspects of the vector physiology, discussing how they give support to these long-dated host-parasite relationships.
Collapse
Affiliation(s)
- Octavio A C Talyuli
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vanessa Bottino-Rojas
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carla R Polycarpo
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
| | - Pedro L Oliveira
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
| | - Gabriela O Paiva-Silva
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
| |
Collapse
|
12
|
Gumiel M, de Mattos DP, Vieira CS, Moraes CS, Moreira CJDC, Gonzalez MS, Teixeira-Ferreira A, Waghabi M, Azambuja P, Carels N. Proteome of the Triatomine Digestive Tract: From Catalytic to Immune Pathways; Focusing on Annexin Expression. Front Mol Biosci 2020; 7:589435. [PMID: 33363206 PMCID: PMC7755933 DOI: 10.3389/fmolb.2020.589435] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/21/2020] [Indexed: 12/15/2022] Open
Abstract
Rhodnius prolixus, Panstrongylus megistus, Triatoma infestans, and Dipetalogaster maxima are all triatomines and potential vectors of the protozoan Trypanosoma cruzi responsible for human Chagas' disease. Considering that the T. cruzi's cycle occurs inside the triatomine digestive tract (TDT), the analysis of the TDT protein profile is an essential step to understand TDT physiology during T. cruzi infection. To characterize the protein profile of TDT of D. maxima, P. megistus, R. prolixus, and T. infestans, a shotgun liquid chromatography-tandem mass spectrometry (LC-MS/MS) approach was applied in this report. Most proteins were found to be closely related to metabolic pathways such as gluconeogenesis/glycolysis, citrate cycle, fatty acid metabolism, oxidative phosphorylation, but also to the immune system. We annotated this new proteome contribution gathering it with those previously published in accordance with Gene Ontology and KEGG. Enzymes were classified in terms of class, acceptor, and function, while the proteins from the immune system were annotated by reference to the pathways of humoral response, cell cycle regulation, Toll, IMD, JNK, Jak-STAT, and MAPK, as available from the Insect Innate Immunity Database (IIID). These pathways were further subclassified in recognition, signaling, response, coagulation, melanization and none. Finally, phylogenetic affinities and gene expression of annexins were investigated for understanding their role in the protection and homeostasis of intestinal epithelial cells against the inflammation.
Collapse
Affiliation(s)
- Marcia Gumiel
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (IOC/FIOCRUZ), Rio de Janeiro, Brazil
- Research Department, Universidad Privada Franz Tamayo (UNIFRANZ), La Paz, Bolivia
| | - Debora Passos de Mattos
- Laboratório de Biologia de Insetos, Departamento de Biologia Geral, Universidade Federal Fluminense, Niterói, Brazil
- Programa de Pós-Graduação em Ciências e Biotecnologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil
| | - Cecília Stahl Vieira
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (IOC/FIOCRUZ), Rio de Janeiro, Brazil
- Departamento de Entomologia Molecular, Instituto Nacional de Entomologia Molecular (INCT-EM), Rio de Janeiro, Brazil
| | - Caroline Silva Moraes
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (IOC/FIOCRUZ), Rio de Janeiro, Brazil
| | | | - Marcelo Salabert Gonzalez
- Laboratório de Biologia de Insetos, Departamento de Biologia Geral, Universidade Federal Fluminense, Niterói, Brazil
- Programa de Pós-Graduação em Ciências e Biotecnologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil
- Departamento de Entomologia Molecular, Instituto Nacional de Entomologia Molecular (INCT-EM), Rio de Janeiro, Brazil
| | | | - Mariana Waghabi
- Laboratório de Genômica Funcional e Bioinformática, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | - Patricia Azambuja
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (IOC/FIOCRUZ), Rio de Janeiro, Brazil
- Laboratório de Biologia de Insetos, Departamento de Biologia Geral, Universidade Federal Fluminense, Niterói, Brazil
- Programa de Pós-Graduação em Ciências e Biotecnologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil
- Departamento de Entomologia Molecular, Instituto Nacional de Entomologia Molecular (INCT-EM), Rio de Janeiro, Brazil
| | - Nicolas Carels
- Laboratório de Modelagem de Sistemas Biológicos, National Institute for Science and Technology on Innovation in Neglected Diseases (INCT-IDN), Centro de Desenvolvimento Tecnológico em Saúde (CDTS), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| |
Collapse
|
13
|
Moyetta NR, Fruttero LL, Leyria J, Ramos FO, Carlini CR, Canavoso L. The entomotoxin Jack Bean Urease changes cathepsin D activity in nymphs of the hematophagous insect Dipetalogaster maxima (Hemiptera: Reduviidae). Comp Biochem Physiol B Biochem Mol Biol 2020; 251:110511. [PMID: 33007467 DOI: 10.1016/j.cbpb.2020.110511] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 09/14/2020] [Accepted: 09/24/2020] [Indexed: 01/12/2023]
Abstract
In insects, cathepsin D is a lysosomal aspartic endopeptidase involved in several functions such as digestion, defense and reproduction. Jack Bean Urease (JBU) is the most abundant urease isoform obtained from the seeds of the plant Canavalia ensiformis. JBU is a multifunctional protein with entomotoxic effects unrelated to its catalytic activity, by mechanisms not yet fully understood. In this work, we employed nymphs of the hematophagous insect Dipetalogaster maxima as an experimental model in order to study the effects of JBU on D. maxima CatD (DmCatD). In insects without treatment, immunofluorescence assays revealed a conspicuous distribution pattern of DmCatD in the anterior and posterior midgut as well as in the fat body and hemocytes. Western blot assays showed that the active form of DmCatD was present in the fat body, the anterior and posterior midgut; whereas the proenzyme was visualized in hemocytes and hemolymph. The transcript of DmCatD and its enzymatic activity was detected in the anterior and posterior midgut as well as in fat body and hemocytes. JBU injections induced a significant increase of DmCatD activity in the posterior midgut (at 3 h post-injection) whereas in the hemolymph, such an effect was observed after 18 h. These changes were not correlated with modifications in DmCatD mRNA and protein levels or changes in the immunofluorescence pattern. In vitro experiments might suggest a direct effect of the toxin in DmCatD activity. Our findings indicated that the tissue-specific increment of cathepsin D activity is a novel effect of JBU in insects.
Collapse
Affiliation(s)
- Natalia R Moyetta
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, CP 5000, Argentina; Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas, Córdoba, CP 5000, Argentina.
| | - Leonardo L Fruttero
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, CP 5000, Argentina; Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas, Córdoba, CP 5000, Argentina.
| | - Jimena Leyria
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, CP 5000, Argentina; Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas, Córdoba, CP 5000, Argentina.
| | - Fabian O Ramos
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, CP 5000, Argentina; Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas, Córdoba, CP 5000, Argentina.
| | - Célia R Carlini
- Brain Institute (INSCER) and School of Medicine, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, CEP 90610-000, Brazil.
| | - Lilián Canavoso
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, CP 5000, Argentina; Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas, Córdoba, CP 5000, Argentina.
| |
Collapse
|
14
|
Sáenz-Garcia JL, Yamanaka IB, Pacheco-Lugo LA, Miranda JS, Córneo ES, Machado-de-Ávila RA, De Moura JF, DaRocha WD. Targeting epimastigotes of Trypanosoma cruzi with a peptide isolated from a phage display random library. Exp Parasitol 2020; 210:107830. [PMID: 31917970 DOI: 10.1016/j.exppara.2020.107830] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/06/2019] [Accepted: 01/04/2020] [Indexed: 12/01/2022]
Abstract
Chagas disease, also known as American trypanosomiasis, is a potentially life-threatening illness caused by the protozoan parasite Trypanosoma cruzi, which is transmitted by insects of the family Reduviidae. Since conventional treatments with nitroheterocyclic drugs show serious adverse reactions and have questionable efficiency, different research groups have investigated polypeptide-based approaches to interfere with the parasite cell cycle in other Trypanosomatids. These strategies are supported by the fact that surface players are candidates to develop surface ligands that impair function since they may act as virulence factors. In this study, we used a phage display approach to identify peptides from one library-LX8CX8 (17 aa) (where X corresponds to any amino acid). After testing different biopanning conditions using live or fixed epimastigotes, 10 clones were sequenced that encoded the same peptide, named here as EPI18. The bacteriophage expressing EPI18 binds to epimastigotes from distinct strains of T. cruzi. To confirm these results, this peptide was synthetized, biotinylated, and assayed using flow cytometry and confocal microscopy analyses. These assays confirmed the specificity of the binding capacity of EPI18 toward epimastigote surfaces. Our findings suggest that EPI18 may have potential biotechnological applications that include peptide-based strategies to control parasite transmission.
Collapse
Affiliation(s)
- José L Sáenz-Garcia
- Laboratório de Genômica Funcional de Parasitos, Departamento de Bioquímica e Biologia Molecular, Universidade Federal Do Paraná, Curitiba, Brazil; Departamento de Ciencias Fisiológicas, Facultad de Ciencias Médicas, UNAN-Managua, Managua, Nicaragua
| | - Isabel B Yamanaka
- Laboratório de Imunoquímica, Departamento de Patologia Básica, Universidade Federal Do Paraná, Curitiba, Brazil
| | - Lisandro A Pacheco-Lugo
- Laboratório de Genômica Funcional de Parasitos, Departamento de Bioquímica e Biologia Molecular, Universidade Federal Do Paraná, Curitiba, Brazil; Universidad Simón Bolívar. Barranquilla, Colombia
| | - Juliana S Miranda
- Laboratório de Imunoquímica, Departamento de Patologia Básica, Universidade Federal Do Paraná, Curitiba, Brazil
| | - Emily S Córneo
- Laboratório de Fisiopatologia Experimental, Programa de Pós-Graduação Em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade Do Extremo Sul Catarinense, CEP, 88806-000. Criciúma, Brazil
| | - Ricardo A Machado-de-Ávila
- Laboratório de Fisiopatologia Experimental, Programa de Pós-Graduação Em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade Do Extremo Sul Catarinense, CEP, 88806-000. Criciúma, Brazil
| | - Juliana F De Moura
- Laboratório de Imunoquímica, Departamento de Patologia Básica, Universidade Federal Do Paraná, Curitiba, Brazil.
| | - Wanderson D DaRocha
- Laboratório de Genômica Funcional de Parasitos, Departamento de Bioquímica e Biologia Molecular, Universidade Federal Do Paraná, Curitiba, Brazil.
| |
Collapse
|
15
|
de Sousa JR, Da Costa Vasconcelos PF, Quaresma JAS. Functional aspects, phenotypic heterogeneity, and tissue immune response of macrophages in infectious diseases. Infect Drug Resist 2019; 12:2589-2611. [PMID: 31686866 PMCID: PMC6709804 DOI: 10.2147/idr.s208576] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 07/05/2019] [Indexed: 12/13/2022] Open
Abstract
Macrophages are a functionally heterogeneous group of cells with specialized functions depending not only on their subgroup but also on the function of the organ or tissue in which the cells are located. The concept of macrophage phenotypic heterogeneity has been investigated since the 1980s, and more recent studies have identified a diverse spectrum of phenotypic subpopulations. Several types of macrophages play a central role in the response to infectious agents and, along with other components of the immune system, determine the clinical outcome of major infectious diseases. Here, we review the functions of various macrophage phenotypic subpopulations, the concept of macrophage polarization, and the influence of these cells on the evolution of infections. In addition, we emphasize their role in the immune response in vivo and in situ, as well as the molecular effectors and signaling mechanisms used by these cells. Furthermore, we highlight the mechanisms of immune evasion triggered by infectious agents to counter the actions of macrophages and their consequences. Our aim here is to provide an overview of the role of macrophages in the pathogenesis of critical transmissible diseases and discuss how elucidation of this relationship could enhance our understanding of the host-pathogen association in organ-specific immune responses.
Collapse
Affiliation(s)
- Jorge Rodrigues de Sousa
- Tropical Medicine Center, Federal University of Pará, Belém, PA, Brazil
- Evandro Chagas Institute, Ministry of Health, Ananindeua, PA, Brazil
| | - Pedro Fernando Da Costa Vasconcelos
- Evandro Chagas Institute, Ministry of Health, Ananindeua, PA, Brazil
- Center of Biological and Health Sciences, State University of Pará, Belém, PA, Brazil
| | - Juarez Antonio Simões Quaresma
- Tropical Medicine Center, Federal University of Pará, Belém, PA, Brazil
- Evandro Chagas Institute, Ministry of Health, Ananindeua, PA, Brazil
- Center of Biological and Health Sciences, State University of Pará, Belém, PA, Brazil
- School of Medicine, São Paulo University, São Paulo, SP, Brazil
| |
Collapse
|
16
|
Ning M, Yuan M, Liu M, Gao Q, Wei P, Gu W, Wang W, Meng Q. Characterization of cathepsin D from Eriocheir sinensis involved in Spiroplasma eriocheiris infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 86:1-8. [PMID: 29709775 DOI: 10.1016/j.dci.2018.04.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/03/2018] [Accepted: 04/22/2018] [Indexed: 06/08/2023]
Abstract
Cathepsin D (catD) belongs to a lysosomal aspartic protease superfamily. The full-length catD cDNA from the Chinese mitten crab Eriocheir sinensis (EscatD) was 2748 bp and contained a 1158-bp ORF encoding a protein of 385 amino acids, including a signal peptide and two N-glycosylation sites. Phylogenetic analysis showed that EscatD was clustered into a single group, together with other catD for crustaceans. Quantitative real-time PCR revealed that EscatD was expressed mainly in the eyes, hemocytes, intestine and nerve and was expressed weakly in heart, muscle and gills. After challenge with Spiroplasma eriocheiris, the expression of EscatD was significantly up-regulated from 1 d to 9 d. The copy number of S. eriocheiris in a silencing EscatD group was significantly higher than those in the control groups during S. eriocheiris infection. Meanwhile, the survival rate of crabs decreased in an EscatD-dsRNA group. We further found that knockdown of EscatD by RNA interference resulted in a downward trend of expression levels of JNK, ERK, relish and p38 during the early stage, as well as a reduction in the expression of five antimicrobial peptides genes, namely, crusrin1, crustin2, ALF1, ALF2 and ALF3. The subcellular localization experiment suggested that recombinant EscatD was mainly located in the cytoplasm. The over-expression in Drosophila S2 cells indicated that EscatD could decrease the copy number of S. eriocheiris and increase cell viability. The above results demonstrated that EscatD plays an important immune role in E. sinensis to S. eriocheiris challenge.
Collapse
Affiliation(s)
- Mingxiao Ning
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Meijun Yuan
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Min Liu
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Qi Gao
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Panpan Wei
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Wei Gu
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu 222005, China
| | - Wen Wang
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Qingguo Meng
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu 222005, China.
| |
Collapse
|
17
|
de Fuentes-Vicente JA, Gutiérrez-Cabrera AE, Flores-Villegas AL, Lowenberger C, Benelli G, Salazar-Schettino PM, Córdoba-Aguilar A. What makes an effective Chagas disease vector? Factors underlying Trypanosoma cruzi-triatomine interactions. Acta Trop 2018; 183:23-31. [PMID: 29625091 DOI: 10.1016/j.actatropica.2018.04.008] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 03/13/2018] [Accepted: 04/01/2018] [Indexed: 12/31/2022]
Abstract
The Chagas disease is caused by the parasite Trypanosoma cruzi, which infect blood-feeding triatomine bugs to finally reach mammal hosts. Chagas disease is endemic in Latin America, and is ranked among the 13 neglected tropical diseases worldwide. Currently, an estimate of 7 million people is infected by T. cruzi, leading to about 22 000 deaths per year throughout the Americas. As occurs with other vectors, a major question towards control programs is what makes a susceptible bug. In this review, we focus on findings linked to insect gut structure and microbiota, immunity, genetics, blood sources, abiotic factors (with special reference to ambient temperature and altitude) to understand the interactions occurring between T. cruzi and triatomine bugs, under a co-evolutionary scenario. These factors lead to varying fitness benefits and costs for bugs, explaining why infection in the insect takes place and how it varies in time and space. Our analysis highlights that major factors are gut components and microbiota, blood sources and temperature. Although their close interaction has never been clarified, knowledge reviewed here may help to boost the success of triatomine control programs, reducing the use of insecticides.
Collapse
|
18
|
Santiago PB, de Araújo CN, Motta FN, Praça YR, Charneau S, Bastos IMD, Santana JM. Proteases of haematophagous arthropod vectors are involved in blood-feeding, yolk formation and immunity - a review. Parasit Vectors 2017; 10:79. [PMID: 28193252 PMCID: PMC5307778 DOI: 10.1186/s13071-017-2005-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 01/27/2017] [Indexed: 11/10/2022] Open
Abstract
Ticks, triatomines, mosquitoes and sand flies comprise a large number of haematophagous arthropods considered vectors of human infectious diseases. While consuming blood to obtain the nutrients necessary to carry on life functions, these insects can transmit pathogenic microorganisms to the vertebrate host. Among the molecules related to the blood-feeding habit, proteases play an essential role. In this review, we provide a panorama of proteases from arthropod vectors involved in haematophagy, in digestion, in egg development and in immunity. As these molecules act in central biological processes, proteases from haematophagous vectors of infectious diseases may influence vector competence to transmit pathogens to their prey, and thus could be valuable targets for vectorial control.
Collapse
Affiliation(s)
- Paula Beatriz Santiago
- Laboratório de Interação Patógeno-Hospedeiro, Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Asa Norte, 70910-900, Brasília, DF, Brazil
| | - Carla Nunes de Araújo
- Laboratório de Interação Patógeno-Hospedeiro, Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Asa Norte, 70910-900, Brasília, DF, Brazil.,Faculdade de Ceilândia, Universidade de Brasília, Centro Metropolitano, Conjunto A, Lote 01, 72220-275, Brasília, DF, Brazil
| | - Flávia Nader Motta
- Laboratório de Interação Patógeno-Hospedeiro, Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Asa Norte, 70910-900, Brasília, DF, Brazil.,Faculdade de Ceilândia, Universidade de Brasília, Centro Metropolitano, Conjunto A, Lote 01, 72220-275, Brasília, DF, Brazil
| | - Yanna Reis Praça
- Laboratório de Interação Patógeno-Hospedeiro, Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Asa Norte, 70910-900, Brasília, DF, Brazil.,Programa Pós-Graduação em Ciências Médicas, Faculdade de Medicina, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Asa Norte, 70910-900, Brasília, DF, Brazil
| | - Sébastien Charneau
- Laboratório de Bioquímica e Química de Proteínas, Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Asa Norte, 70910-900, Brasília, DF, Brazil
| | - Izabela M Dourado Bastos
- Laboratório de Interação Patógeno-Hospedeiro, Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Asa Norte, 70910-900, Brasília, DF, Brazil
| | - Jaime M Santana
- Laboratório de Interação Patógeno-Hospedeiro, Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Asa Norte, 70910-900, Brasília, DF, Brazil.
| |
Collapse
|
19
|
Sojka D, Hartmann D, Bartošová-Sojková P, Dvořák J. Parasite Cathepsin D-Like Peptidases and Their Relevance as Therapeutic Targets. Trends Parasitol 2016; 32:708-723. [PMID: 27344362 DOI: 10.1016/j.pt.2016.05.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 04/27/2016] [Accepted: 05/25/2016] [Indexed: 11/18/2022]
Abstract
Inhibition of aspartic cathepsin D-like peptidases (APDs) has been often discussed as an antiparasite intervention strategy. APDs have been considered as virulence factors of Trypanosoma cruzi and Leishmania spp., and have been demonstrated to have important roles in protein trafficking mechanisms of apicomplexan parasites. APDs also initiate blood digestion as components of multienzyme proteolytic complexes in malaria, platyhelminths, nematodes, and ticks. Increasing DNA and RNA sequencing data indicate that parasites express multiple APD isoenzymes of various functions that can now be specifically evaluated using new functional-genomic and biochemical tools, from which we can further assess the potential of APDs as targets for novel effective intervention strategies against parasitic diseases that still pose an alarming threat to mankind.
Collapse
Affiliation(s)
- Daniel Sojka
- Institute of Parasitology, Biology Centre, The Czech Academy of Sciences, Ceske Budejovice 370 05, Czech Republic.
| | - David Hartmann
- Institute of Parasitology, Biology Centre, The Czech Academy of Sciences, Ceske Budejovice 370 05, Czech Republic
| | - Pavla Bartošová-Sojková
- Institute of Parasitology, Biology Centre, The Czech Academy of Sciences, Ceske Budejovice 370 05, Czech Republic
| | - Jan Dvořák
- Institute of Molecular Genetics, The Czech Academy of Sciences, Prague 14220, Czech Republic; Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Prague 16610, Czech Republic; School of Biological Sciences, Queen's University Belfast, Belfast BT9 7BL, UK
| |
Collapse
|
20
|
Trypanosoma cruzi-Trypanosoma rangeli co-infection ameliorates negative effects of single trypanosome infections in experimentally infected Rhodnius prolixus. Parasitology 2016; 143:1157-67. [PMID: 27174360 DOI: 10.1017/s0031182016000615] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Trypanosoma cruzi, causative agent of Chagas disease, co-infects its triatomine vector with its sister species Trypanosoma rangeli, which shares 60% of its antigens with T. cruzi. Additionally, T. rangeli has been observed to be pathogenic in some of its vector species. Although T. cruzi-T. rangeli co-infections are common, their effect on the vector has rarely been investigated. Therefore, we measured the fitness (survival and reproduction) of triatomine species Rhodnius prolixus infected with just T. cruzi, just T. rangeli, or both T. cruzi and T. rangeli. We found that survival (as estimated by survival probability and hazard ratios) was significantly different between treatments, with the T. cruzi treatment group having lower survival than the co-infected treatment. Reproduction and total fitness estimates in the T. cruzi and T. rangeli treatments were significantly lower than in the co-infected and control groups. The T. cruzi and T. rangeli treatment group fitness estimates were not significantly different from each other. Additionally, co-infected insects appeared to tolerate higher doses of parasites than insects with single-species infections. Our results suggest that T. cruzi-T. rangeli co-infection could ameliorate negative effects of single infections of either parasite on R. prolixus and potentially help it to tolerate higher parasite doses.
Collapse
|
21
|
Marliére NP, Latorre-Estivalis JM, Lorenzo MG, Carrasco D, Alves-Silva J, Rodrigues JDO, Ferreira LDL, Lara LDM, Lowenberger C, Guarneri AA. Trypanosomes Modify the Behavior of Their Insect Hosts: Effects on Locomotion and on the Expression of a Related Gene. PLoS Negl Trop Dis 2015; 9:e0003973. [PMID: 26291723 PMCID: PMC4546274 DOI: 10.1371/journal.pntd.0003973] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 07/12/2015] [Indexed: 11/23/2022] Open
Abstract
Background As a result of evolution, the biology of triatomines must have been significantly adapted to accommodate trypanosome infection in a complex network of vector-vertebrate-parasite interactions. Arthropod-borne parasites have probably developed mechanisms, largely still unknown, to exploit the vector-vertebrate host interactions to ensure their transmission to suitable hosts. Triatomines exhibit a strong negative phototaxis and nocturnal activity, believed to be important for insect survival against its predators. Methodology/Principal Findings In this study we quantified phototaxis and locomotion in starved fifth instar nymphs of Rhodnius prolixus infected with Trypanosoma cruzi or Trypanosoma rangeli. T. cruzi infection did not alter insect phototaxis, but induced an overall 20% decrease in the number of bug locomotory events. Furthermore, the significant differences induced by this parasite were concentrated at the beginning of the scotophase. Conversely, T. rangeli modified both behaviors, as it significantly decreased bug negative phototaxis, while it induced a 23% increase in the number of locomotory events in infected bugs. In this case, the significant effects were observed during the photophase. We also investigated the expression of Rpfor, the triatomine ortholog of the foraging gene known to modulate locomotion in other insects, and found a 4.8 fold increase for T. rangeli infected insects. Conclusions/Significance We demonstrated for the first time that trypanosome infection modulates the locomotory activity of the invertebrate host. T. rangeli infection seems to be more broadly effective, as besides affecting the intensity of locomotion this parasite also diminished negative phototaxis and the expression of a behavior-associated gene in the triatomine vector. The control of Chagas disease, an infection that affects ca. 8 million people in Latin America, is mostly based on vector control activities. Understanding vector biology and how these insects interact with their environment, hosts and pathogens is crucial to improve vector control strategies. The behavior of triatomines has been largely studied, yet few reports have focused on the behavioral effects of the interaction that these insects endure with their natural parasites. Trypanosoma cruzi and Trypanosoma rangeli are two protozoan parasites found naturally infecting Rhodnius species. In this study, we showed for the first time that the locomotory activity of Rhodnius prolixus, a relevant vector of Chagas disease, is affected by trypanosome infection. T. cruzi was found to decrease bug locomotory activity during night hours, while T. rangeli promoted a generally increased insect locomotion. In addition, we searched for the R. prolixus orthologue (Rpfor) of a gene associated with the modulation of insect activity (foraging gene) and found that Rpfor expression was also affected by trypanosome infection.
Collapse
Affiliation(s)
- Newmar Pinto Marliére
- Centro de Pesquisas René Rachou, Avenida Augusto de Lima, Belo Horizonte, Minas Gerais, Brazil
| | | | - Marcelo Gustavo Lorenzo
- Centro de Pesquisas René Rachou, Avenida Augusto de Lima, Belo Horizonte, Minas Gerais, Brazil
| | - David Carrasco
- Chemical Ecology Group, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Juliana Alves-Silva
- Centro de Pesquisas René Rachou, Avenida Augusto de Lima, Belo Horizonte, Minas Gerais, Brazil
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | | | - Luisa de Melo Lara
- Centro de Pesquisas René Rachou, Avenida Augusto de Lima, Belo Horizonte, Minas Gerais, Brazil
| | - Carl Lowenberger
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Alessandra Aparecida Guarneri
- Centro de Pesquisas René Rachou, Avenida Augusto de Lima, Belo Horizonte, Minas Gerais, Brazil
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
- * E-mail:
| |
Collapse
|
22
|
Peterson JK, Graham AL, Dobson AP, Chávez OT. Rhodnius prolixus Life History Outcomes Differ when Infected with Different Trypanosoma cruzi I Strains. Am J Trop Med Hyg 2015; 93:564-72. [PMID: 26078316 DOI: 10.4269/ajtmh.15-0218] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 05/02/2015] [Indexed: 12/20/2022] Open
Abstract
The effect of a parasite on the life history of its vector is important for understanding and predicting disease transmission. Chagas disease agent Trypanosoma cruzi is a generalist parasite that is diverse across scales from its genetic diversity to the 100s of mammal and vector species it infects. Its vertebrate hosts show quite variable responses to infection, however, to date there are no studies looking at how T. cruzi variability might result in variable outcomes in its invertebrate host. Therefore, we investigated the effect of different T. cruzi I strains on Rhodnius prolixus survival and development. We found significant variation between insects infected with different strains, with some strains having no effect, as compared with uninfected insects, and others with significantly lower survival and development. We also found that different variables had varying importance between strains, with the effect of time postinfection and the blood:weight ratio of the infective meal significantly affecting the survival of insects infected with some strains, but not others. Our results suggest that T. cruzi can be pathogenic not only to its vertebrate hosts but also to its invertebrate hosts.
Collapse
Affiliation(s)
- Jennifer K Peterson
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey; Grupo BCEI, Universidad de Antioquia, Medellín, Colombia
| | - Andrea L Graham
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey; Grupo BCEI, Universidad de Antioquia, Medellín, Colombia
| | - Andrew P Dobson
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey; Grupo BCEI, Universidad de Antioquia, Medellín, Colombia
| | - Omar Triana Chávez
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey; Grupo BCEI, Universidad de Antioquia, Medellín, Colombia
| |
Collapse
|
23
|
Xiao R, Zhang Z, Wang H, Han Y, Gou M, Li B, Duan D, Wang J, Liu X, Li Q. Identification and characterization of a cathepsin D homologue from lampreys (Lampetra japonica). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 49:149-156. [PMID: 25450905 DOI: 10.1016/j.dci.2014.10.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 10/28/2014] [Accepted: 10/28/2014] [Indexed: 06/04/2023]
Abstract
Cathepsin D (EC 3.4.23.5) is a lysosomal aspartic proteinase of the pepsin superfamily which participates in various digestive processes within the cell. In the present study, the full length cDNA of a novel cathepsin D homologue was cloned from the buccal glands of lampreys (Lampetra japonica) for the first time, including a 124-bp 5' terminal untranslated region (5'-UTR), a 1194-bp open reading frame encoding 397 amino acids, and a 472-bp 3'-UTR. Lamprey cathepsin D is composed of a signal peptide (Met 1-Ala 20), a propeptide domain (Leu 21-Ala 48) and a mature domain (Glu 76-Val 397), and has a conserved bilobal structure. Cathepsin D was widely distributed in the buccal glands, immune bodies, hearts, intestines, kidneys, livers, and gills of lampreys. After challenging with Escherichia coli or Staphylococcus aureus, the expression level of lamprey cathepsin D in the buccal gland was 8.5-fold or 6.5-fold higher than that in the PBS group. In addition, lamprey cathepsin D stimulated with Escherichia coli was also up-regulated in the hearts, kidneys, and intestines. As for the Staphylococcus aureus challenged group, the expression level of lamprey cathepsin D was found increased in the intestines. The above results revealed that lamprey cathepsin D may play key roles in immune response to exogenous pathogen and could serve as a potential antibacterial agent in the near future. In addition, lamprey cathepsin D was subcloned into pcDNA 3.1 vector and expressed in the human embryonic kidney 293 cells. The recombinant lamprey cathepsin D could degrade hemoglobin, fibrinogen, and serum albumin which are the major components in the blood, suggested that lamprey cathepsin D may also act as a digestive enzyme during the adaptation to a blood-feeding lifestyle.
Collapse
Affiliation(s)
- Rong Xiao
- School of Life Sciences, Liaoning Normal University, Dalian 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian 116081, China
| | - Zhilin Zhang
- School of Life Sciences, Liaoning Normal University, Dalian 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian 116081, China
| | - Hongyan Wang
- School of Life Sciences, Liaoning Normal University, Dalian 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian 116081, China
| | - Yinglun Han
- School of Life Sciences, Liaoning Normal University, Dalian 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian 116081, China
| | - Meng Gou
- School of Life Sciences, Liaoning Normal University, Dalian 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian 116081, China
| | - Bowen Li
- School of Life Sciences, Liaoning Normal University, Dalian 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian 116081, China
| | - Dandan Duan
- School of Life Sciences, Liaoning Normal University, Dalian 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian 116081, China
| | - Jihong Wang
- School of Life Sciences, Liaoning Normal University, Dalian 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian 116081, China
| | - Xin Liu
- School of Life Sciences, Liaoning Normal University, Dalian 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian 116081, China
| | - Qingwei Li
- School of Life Sciences, Liaoning Normal University, Dalian 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian 116081, China.
| |
Collapse
|
24
|
Metabolic signatures of triatomine vectors of Trypanosoma cruzi unveiled by metabolomics. PLoS One 2013; 8:e77283. [PMID: 24204787 PMCID: PMC3813737 DOI: 10.1371/journal.pone.0077283] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 09/01/2013] [Indexed: 11/25/2022] Open
Abstract
Chagas disease is a trypanosomiasis whose causative agent is the protozoan parasite Trypanosoma cruzi, which is transmitted to humans by hematophagous insects known as triatomines and affects a large proportion of South America. The digestive tract of the insect vectors in which T. cruzi develops constitutes a dynamic environment that affects the development of the parasite. Thus, we set out to investigate the chemical composition of the triatomine intestinal tract through a metabolomics approach. We performed Direct Infusion Fourier Transform Ion Cyclotron Resonance Mass Spectrometry on fecal samples of three triatomine species (Rhodnius prolixus, Triatoma infestans, Panstrongylus megistus) fed with rabbit blood. We then identified groups of metabolites whose frequencies were either uniform in all species or enriched in each of them. By querying the Human Metabolome Database, we obtained putative identities of the metabolites of interest. We found that a core group of metabolites with uniform frequencies in all species represented approximately 80% of the molecules detected, whereas the other 20% varied among triatomine species. The uniform core was composed of metabolites of various categories, including fatty acids, steroids, glycerolipids, nucleotides, sugars, and others. Nevertheless, the metabolic fingerprint of triatomine feces differs depending on the species considered. The variable core was mainly composed of prenol lipids, amino acids, glycerolipids, steroids, phenols, fatty acids and derivatives, benzoic acid and derivatives, flavonoids, glycerophospholipids, benzopyrans, and quinolines. Triatomine feces constitute a rich and varied chemical medium whose constituents are likely to affect T. cruzi development and infectivity. The complexity of the fecal metabolome of triatomines suggests that it may affect triatomine vector competence for specific T. cruzi strains. Knowledge of the chemical environment of T. cruzi in its invertebrate host is likely to generate new ways to understand the factors influencing parasite proliferation as well as methods to control Chagas disease.
Collapse
|
25
|
Buarque DS, Braz GRC, Martins RM, Tanaka-Azevedo AM, Gomes CM, Oliveira FAA, Schenkman S, Tanaka AS. Differential expression profiles in the midgut of Triatoma infestans infected with Trypanosoma cruzi. PLoS One 2013; 8:e61203. [PMID: 23658688 PMCID: PMC3642171 DOI: 10.1371/journal.pone.0061203] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 03/07/2013] [Indexed: 11/26/2022] Open
Abstract
Chagas disease, or American trypanosomiasis, is a parasitic disease caused by the protozoan Trypanosoma cruzi and is transmitted by insects from the Triatominae subfamily. To identify components involved in the protozoan-vector relationship, we constructed and analyzed cDNA libraries from RNA isolated from the midguts of uninfected and T. cruzi-infected Triatoma infestans, which are major vectors of Chagas disease. We generated approximately 440 high-quality Expressed Sequence Tags (ESTs) from each T. infestans midgut cDNA library. The sequences were grouped in 380 clusters, representing an average length of 664.78 base pairs (bp). Many clusters were not classified functionally, representing unknown transcripts. Several transcripts involved in different processes (e.g., detoxification) showed differential expression in response to T. cruzi infection. Lysozyme, cathepsin D, a nitrophorin-like protein and a putative 14 kDa protein were significantly upregulated upon infection, whereas thioredoxin reductase was downregulated. In addition, we identified several transcripts related to metabolic processes or immunity with unchanged expressions, including infestin, lipocalins and defensins. We also detected ESTs encoding juvenile hormone binding protein (JHBP), which seems to be involved in insect development and could be a target in control strategies for the vector. This work demonstrates differential gene expression upon T. cruzi infection in the midgut of T. infestans. These data expand the current knowledge regarding vector-parasite interactions for Chagas disease.
Collapse
Affiliation(s)
- Diego S. Buarque
- Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Glória R. C. Braz
- Department of Biochemistry, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rafael M. Martins
- Biology of Host Parasite Interactions Unit, Institut Pasteur, Paris, France
| | | | - Cícera M. Gomes
- Laboratory of Herpetology, Instituto Butantan, São Paulo, Brazil
| | - Felipe A. A. Oliveira
- Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Sergio Schenkman
- Department of Microbiology, Immunology and Parasitology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Aparecida S. Tanaka
- Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
26
|
Balczun C, Siemanowski J, Pausch JK, Helling S, Marcus K, Stephan C, Meyer HE, Schneider T, Cizmowski C, Oldenburg M, Höhn S, Meiser CK, Schuhmann W, Schaub GA. Intestinal aspartate proteases TiCatD and TiCatD2 of the haematophagous bug Triatoma infestans (Reduviidae): sequence characterisation, expression pattern and characterisation of proteolytic activity. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2012; 42:240-250. [PMID: 22210150 DOI: 10.1016/j.ibmb.2011.12.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 12/09/2011] [Accepted: 12/13/2011] [Indexed: 05/31/2023]
Abstract
Two aspartate protease encoding complementary deoxyribonucleic acids (cDNA) were characterised from the small intestine (posterior midgut) of Triatoma infestans and the corresponding genes were named TiCatD and TiCatD2. The deduced 390 and 393 amino acid sequences of both enzymes contain two regions characteristic for cathepsin D proteases and the conserved catalytic aspartate residues forming the catalytic dyad, but only TiCatD2 possesses an entire C-terminal proline loop. The amino acid sequences of TiCatD and TiCatD2 show 51-58% similarity to other insect cathepsin D-like proteases and, respectively, 88 and 58% similarity to the aspartate protease ASP25 from T. infestans available in the GenBank database. In phylogenetic analysis, TiCatD and ASP25 clearly separate from cathepsin D-like sequences of other insects, TiCatD2 groups with cathepsin D-like proteases with proline loop. The activity of purified TiCatD and TiCatD2 was highest between pH 2 and 4, respectively, and hence, deviate from the pH values of the lumen of the small intestine, which varied in correlation with the time after feeding between pH 5.2 and 6.7 as determined by means of micro pH electrodes. Both cathepsins, TiCatD and TiCatD2, were purified from the lumen of the small intestine using pepstatin affinity chromatography and identified by nanoLC-ESI-MS/MS analysis as those encoded by the cDNAs. The proteolytic activity of the purified enzymes is highest at pH 3 and the respective genes are expressed in the both regions of the midgut, stomach (anterior midgut) and small intestine, not in the rectum, salivary glands, Malpighian tubules or haemocytes. The temporal expression pattern of both genes in the small intestine after feeding revealed a feeding dependent regulation for TiCatD but not for TiCatD2.
Collapse
Affiliation(s)
- Carsten Balczun
- Zoology/Parasitology Group, Ruhr-Universität, Universitätsstrasse 150, 44780 Bochum, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Waniek PJ, Pacheco Costa JE, Jansen AM, Costa J, Araújo CAC. Cathepsin L of Triatoma brasiliensis (Reduviidae, Triatominae): sequence characterization, expression pattern and zymography. JOURNAL OF INSECT PHYSIOLOGY 2012; 58:178-187. [PMID: 22100382 DOI: 10.1016/j.jinsphys.2011.11.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2011] [Revised: 11/06/2011] [Accepted: 11/08/2011] [Indexed: 05/31/2023]
Abstract
Triatoma brasiliensis is considered one of the main vectors of Chagas disease commonly found in semi-arid areas of northeastern Brazil. These insects use proteases, such as carboxypeptidase B, aminopeptidases and different cathepsins for blood digestion. In the present study, two genes encoding cathepsin L from the midgut of T. brasiliensis were identified and characterized. Mature T. brasiliensis cathepsin L-like proteinases (TBCATL-1, TBCATL-2) showed a high level of identity to the cathepsin L-like proteinases of other insects, with highest similarity to Rhodnius prolixus. Both cathepsin L transcripts were highly abundant in the posterior midgut region, the main region of the blood digestion. Determination of the pH in the whole intestine of unfed T. brasiliensis revealed alkaline conditions in the anterior midgut region (stomach) and acidic conditions in the posterior midgut region (small intestine). Gelatine in-gel zymography showed the activity of at least four distinct proteinases in the small intestine and the cysteine proteinase inhibitors transepoxysuccinyl-l-leucylamido-(4-guanidino)butane (E-64) and cathepsin B inhibitor and N-(l-3-trans-propylcarbamoyl-oxirane-2-carbonyl)-l-isoleucyl-l-proline (CA-074) were employed to characterize enzymatic activity. E-64 fully inhibited cysteine proteinase activity, whereas in the samples treated with CA-074 residual proteinase activity was detectable. Thus, proteolytic activity could at least partially be ascribed to cathepsin L. Western blot analysis using specific anti cathepsin L antibodies confirmed the presence of cathepsin L in the lumen of the small intestine of the insects.
Collapse
Affiliation(s)
- Peter J Waniek
- Laboratório de Biologia de Tripanosomatídeos, FIOCRUZ, Avenida Brasil, 4365 Manguinhos, Rio de Janeiro, Brazil.
| | | | | | | | | |
Collapse
|
28
|
Garcia ES, Castro DP, Figueiredo MB, Azambuja P. Immune homeostasis to microorganisms in the guts of triatomines (Reduviidae)--a review. Mem Inst Oswaldo Cruz 2011; 105:605-10. [PMID: 20835604 DOI: 10.1590/s0074-02762010000500001] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Accepted: 05/12/2010] [Indexed: 01/29/2023] Open
Abstract
Bacteria, fungi and parasites are in constant contact with the insect gut environment and can influence different aspects of the host gut physiology. Usually, some of these microorganisms develop and survive in the digestive tract. Therefore, the gut environment must be able to tolerate certain populations of these organisms for the establishment of interactions between non-pathogenic bacteria, parasites and the gut. This review provides a brief overview of the biological and molecular mechanisms that microorganisms use to interact with the gut epithelia in mosquitoes and speculates on their significances for the development of bacteria and Trypanosoma cruzi in the guts of triatomines.
Collapse
Affiliation(s)
- Eloi S Garcia
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brasil.
| | | | | | | |
Collapse
|
29
|
Garcia ES, Genta FA, de Azambuja P, Schaub GA. Interactions between intestinal compounds of triatomines and Trypanosoma cruzi. Trends Parasitol 2011; 26:499-505. [PMID: 20801082 DOI: 10.1016/j.pt.2010.07.003] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Revised: 07/12/2010] [Accepted: 07/13/2010] [Indexed: 01/05/2023]
Abstract
Triatomine bugs are vectors of Trypanosoma cruzi, the etiologic agent of Chagas disease, a devastating disease that disables and leads to the death of many people in Latin America. In this review, factors from the insect vector are described, including digestive enzymes, hemolysins, agglutinins, microbiota and especially antimicrobial factors, which are potentially involved in regulating the development of T. cruzi in the gut. Differential regulation of parasite populations shows that some triatomine defense reactions discriminate not only between molecular signals specific for trypanosome infections but also between different strains of T. cruzi.
Collapse
Affiliation(s)
- Eloi S Garcia
- Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Manguinhos, CEP, Rio de Janeiro, Brazil
| | | | | | | |
Collapse
|
30
|
Rocha LLV, Neves CA, Zanuncio JC, Serrão JÉ. Digestive cells in the midgut of Triatoma vitticeps (Stal, 1859) in different starvation periods. C R Biol 2010; 333:405-15. [DOI: 10.1016/j.crvi.2010.02.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Revised: 01/27/2010] [Accepted: 02/01/2010] [Indexed: 10/19/2022]
|
31
|
Waniek PJ, Castro HC, Sathler PC, Miceli L, Jansen AM, Araújo CAC. Two novel defensin-encoding genes of the Chagas disease vector Triatoma brasiliensis (Reduviidae, Triatominae): gene expression and peptide-structure modeling. JOURNAL OF INSECT PHYSIOLOGY 2009; 55:840-8. [PMID: 19505471 DOI: 10.1016/j.jinsphys.2009.05.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Revised: 05/25/2009] [Accepted: 05/26/2009] [Indexed: 05/24/2023]
Abstract
Defensins are cysteine-rich peptides involved in the innate immunity of insects and many other organisms. In the present study, two novel defensin-encoding cDNAs and the respective genomic DNAs (def3 and def4) of Triatoma brasiliensis were identified and their tissue-specific and temporal expression was characterized. Both of the deduced mature peptides consisted of 43 amino acid residues and were highly similar to previously identified triatomine defensins (81.4-100%). Semi-quantitative RT-PCR data showed that def3 was constitutively expressed in the fat body and was induced in salivary glands and the small intestine at 5 and 3 days after feeding (daf), respectively. The def4 mRNA level was highly up-regulated in the stomach and fat-body tissues at 5 and 3 daf, respectively. The three-dimensional structures of these defensins were predicted using a homology modeling approach with Def-AAA, the defensin from Anopheles gambiae, as template (62-74% identity). A map of the electrostatic potential of these models revealed that, despite their similar folding patterns, mature Def2 and Def4 have a more cationic structure than is the case for Def1 and Def3. Such differences may orient the antimicrobial profile of these defensins against distinct targets in different organs of the insect.
Collapse
Affiliation(s)
- Peter J Waniek
- Laboratório de Biologia de Tripanosomatídeos, Instituto Oswaldo Cruz-IOC/FIOCRUZ, Av. Brasil 4365, Zip Code: 21045-900, Rio de Janeiro, Brazil.
| | | | | | | | | | | |
Collapse
|
32
|
Araújo CAC, Waniek PJ, Jansen AM. Development of a Trypanosoma cruzi (TcI) isolate in the digestive tract of an unfamiliar vector, Triatoma brasiliensis (Hemiptera, Reduviidae). Acta Trop 2008; 107:195-9. [PMID: 18579102 DOI: 10.1016/j.actatropica.2008.05.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2007] [Revised: 05/07/2008] [Accepted: 05/29/2008] [Indexed: 11/18/2022]
Abstract
Triatoma brasiliensis is an important vector of Trypanosoma cruzi, commonly found in semi-arid areas of north-eastern Brazil. T. cruzi (TcI) is a widely distributed genotype in all biomes of Brazil. To evaluate selective pressures exerted by a vector species on the development of TcI derived from a different biome (Atlantic Rainforest), T. brasiliensis larvae were infected with the MDID/BR/1994/C48 isolate. Parasite densities of T. cruzi were determined in three regions of the gut at 3, 5 and 10 days after feeding. Percentages of the different stages of the flagellate were identified in Giemsa stained smears. The TcI isolate possessed always significantly higher densities in the rectum than in the small intestine. Epimastigotes reached their highest percentage at 3 days after feeding in the small intestine and trypomastigotes at 10 days after feeding in the rectal wall. Additionally, high metacyclogenesis rates in the T. brasiliensis gut showed competence of this TcI strain to complete its life cycle in this unfamiliar vector species.
Collapse
Affiliation(s)
- Catarina A C Araújo
- Laboratório de Biologia de Tripanosomatídeos, Instituto Oswaldo Cruz-IOC/FIOCRUZ, Av. Brasil 4365, Rio de Janeiro, Brazil.
| | | | | |
Collapse
|
33
|
Choumet V, Carmi-Leroy A, Laurent C, Lenormand P, Rousselle JC, Namane A, Roth C, Brey PT. The salivary glands and saliva of Anopheles gambiae as an essential step in the Plasmodium life cycle: a global proteomic study. Proteomics 2007; 7:3384-94. [PMID: 17849406 DOI: 10.1002/pmic.200700334] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Proteins synthesized in the salivary glands of the Anopheles gambiae mosquito are thought to be important in the life cycle of the malaria parasite Plasmodium. To describe A. gambiae salivary gland and saliva contents, we combined several techniques: 1-DE, 2-DE and LC MS/MS. This study has identified five saliva proteins and 122 more proteins from the salivary glands, including the first proteomic description for 89 of these salivary gland proteins. Since the invasion and sporozoite maturation take place during the process of salivary glands ageing, the effect of salivary gland age on salivary component composition was examined. LC MS/MS profiling of young versus old salivary gland proteomes suggests that there is an over-representation of proteins involved in signaling and proteins related to the immune response in the proteins from older mosquitoes. The iTRAQ labeling was used for a comparative proteomic analysis of salivary gland samples from infected or Plasmodium berghei-free mosquitoes. The expression levels of five secreted proteins were altered when the parasite was present. These observations will serve as a basis for future work concerning the possible role of these proteins in the interaction between A. gambiae, Plasmodium and the mammalian host.
Collapse
Affiliation(s)
- Valérie Choumet
- Unité de Biochimie et de Biologie Moléculaire des Insectes, Institut Pasteur, Paris cedex 15, France.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Ursic-Bedoya RJ, Lowenberger CA. Rhodnius prolixus: identification of immune-related genes up-regulated in response to pathogens and parasites using suppressive subtractive hybridization. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2007; 31:109-20. [PMID: 16824597 DOI: 10.1016/j.dci.2006.05.008] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2006] [Revised: 05/16/2006] [Accepted: 05/18/2006] [Indexed: 05/10/2023]
Abstract
We report the identification of immune-related molecules from the fat body, and intestine of Rhodnius prolixus, an important vector of Chagas disease. Insects were challenged by introducing pathogens or Trypanosoma cruzi, the parasite that causes Chagas disease, into the hemocoel. RNA from intestines, or fat body were isolated 24h after stimulation. We used suppressive subtractive hybridization to identify immune-related genes, generated three subtracted libraries, sequenced the clones and assembled the sequences. The functional annotation revealed expressed sequence tags (ESTs) generated in response to various stimuli in all tissues, and included pathogen recognition molecules, regulatory molecules, and effector molecules.
Collapse
Affiliation(s)
- Raul J Ursic-Bedoya
- Department of Biological Sciences, Simon Fraser University, 8888 University Dr., Burnaby, BC, Canada V5A1S6.
| | | |
Collapse
|
35
|
Garcia ES, Ratcliffe NA, Whitten MM, Gonzalez MS, Azambuja P. Exploring the role of insect host factors in the dynamics of Trypanosoma cruzi-Rhodnius prolixus interactions. JOURNAL OF INSECT PHYSIOLOGY 2007; 53:11-21. [PMID: 17141801 DOI: 10.1016/j.jinsphys.2006.10.006] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2006] [Revised: 10/11/2006] [Accepted: 10/16/2006] [Indexed: 05/12/2023]
Abstract
Members of the subfamily Triatominae, family Reduviidae, comprise a large number of insect species of which some are vectors of Trypanosoma cruzi, the causative agent of Chagas' disease. This article outlines research on the process of transformation and the dynamics of developmental stages of Trypanosoma cruzi in the triatomine insect hosts. Special attention is given to the interactions of parasites with gut molecules, and the gut environment, and with host developmental physiology and intestinal organization. The vector insect's permissiveness to Trypanosoma cruzi, which develops in the vector gut, largely depends on the host nutritional state, the parasite strain, trypanolytic compounds, digestive enzymes, lectins, resident bacteria in the gut and the endocrine system of the insect vector. Finally, the mechanisms of these interactions and their significance for Trypanosoma cruzi transmission are discussed.
Collapse
Affiliation(s)
- Eloi S Garcia
- Department of Biochemistry and Molecular Biology, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil 4365, Rio de Janeiro 21045-900, RJ, Brazil
| | | | | | | | | |
Collapse
|
36
|
Botto-Mahan C, Cattan PE, Medel R. Chagas disease parasite induces behavioural changes in the kissing bug Mepraia spinolai. Acta Trop 2006; 98:219-23. [PMID: 16780784 DOI: 10.1016/j.actatropica.2006.05.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2006] [Revised: 03/22/2006] [Accepted: 05/03/2006] [Indexed: 11/16/2022]
Abstract
Parasites have been shown to manipulate the feeding behaviour of their invertebrate vectors, which results in an increased probability of transmission to definitive hosts. Most evidence for this hypothesis comes from protozoan species with salivary transmission but evidence for stercorarian parasite transmission is lacking. We present experimental evidence that infection of the kissing bug Mepraia spinolai (Hemiptera; Reduviidae) with the protozoan Trypanosoma cruzi reduced the time to detect potential hosts in comparison to control insects. Infected bugs bit about twice more often than uninfected nymphs and defecated 8 min after the last blood meal whereas uninfected bugs needed 11 min. The behaviour of male and female nymphs did not differ significantly. Since all of these traits relate to parasite transmission, we suggest that parasite-mediated changes in the foraging and defecation behaviour of M. spinolai may promote the spread of T. cruzi toward definitive hosts.
Collapse
Affiliation(s)
- Carezza Botto-Mahan
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile.
| | | | | |
Collapse
|