1
|
Summers S, Bhattacharyya T, Allan F, Stothard JR, Edielu A, Webster BL, Miles MA, Bustinduy AL. A review of the genetic determinants of praziquantel resistance in Schistosoma mansoni: Is praziquantel and intestinal schistosomiasis a perfect match? FRONTIERS IN TROPICAL DISEASES 2022. [DOI: 10.3389/fitd.2022.933097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Schistosomiasis is a neglected tropical disease (NTD) caused by parasitic trematodes belonging to the Schistosoma genus. The mainstay of schistosomiasis control is the delivery of a single dose of praziquantel (PZQ) through mass drug administration (MDA) programs. These programs have been successful in reducing the prevalence and intensity of infections. Due to the success of MDA programs, the disease has recently been targeted for elimination as a public health problem in some endemic settings. The new World Health Organization (WHO) treatment guidelines aim to provide equitable access to PZQ for individuals above two years old in targeted areas. The scale up of MDA programs may heighten the drug selection pressures on Schistosoma parasites, which could lead to the emergence of PZQ resistant schistosomes. The reliance on a single drug to treat a disease of this magnitude is worrying should drug resistance develop. Therefore, there is a need to detect and track resistant schistosomes to counteract the threat of drug resistance to the WHO 2030 NTD roadmap targets. Until recently, drug resistance studies have been hindered by the lack of molecular markers associated with PZQ resistance. This review discusses recent significant advances in understanding the molecular basis of PZQ action in S. mansoni and proposes additional genetic determinants associated with PZQ resistance. PZQ resistance will also be analyzed in the context of alternative factors that may decrease efficacy within endemic field settings, and the most recent treatment guidelines recommended by the WHO.
Collapse
|
2
|
de Souza IMM, Novaes RD, Gonçalves RV, Fialho FLB, Carvalho DT, de Souza TB, Dias DF, Lavorato SN, Souza RLM, Marques MJ, Castro AP. In vitro and in silico evaluation of the schistosomicidal activity of eugenol derivatives using biochemical, molecular, and morphological tools. J Venom Anim Toxins Incl Trop Dis 2022; 28:e20210108. [PMID: 35854812 PMCID: PMC9258719 DOI: 10.1590/1678-9199-jvatitd-2021-0108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 05/20/2022] [Indexed: 11/22/2022] Open
Abstract
Background Eugenol shows both antibacterial and antiparasitic activities, suggesting
that it might be evaluated as an option for the treatment of
praziquantel-resistant schistosome. Methods The in vitro activities of three eugenol derivatives (FB1,
FB4 and FB9) on adult worms from Schistosoma mansoni were
examined by fluorescence and scanning electron microscopy to analyze effects
on the excretory system and integument damage, respectively. Biochemical
tests with verapamil (a calcium channel antagonist) and ouabain (a
Na+/K+-ATPase pump inhibitor) were used to
characterize eugenol derivative interactions with calcium channels and the
Na+/K+-ATPase, while in silico
analysis identified potential Na+/K+-ATPase binding
sites. Results The compounds showed effective doses (ED50) of 0.324 mM (FB1),
0.167 mM (FB4), and 0.340 mM (FB9). In addition, FB4 (0.322 mM), which
showed the lowest ED50, ED90 and ED100 (p
< 0.05), caused the most damage to the excretory system and integument,
according to both fluorescence and scanning electron microscopy analysis.
The death of adult worms was delayed by ouabain treatment plus FB1 (192
versus 72 hours) and FB9 (192 versus
168 hours), but the response to FB4 was the same in the presence or absence
of ouabain. Besides, no changes were noted when all of the eugenol
derivatives were combined with verapamil. Moreover, FB1 and FB9 inhibited
Na+/K+-ATPase activity according to in
silico analysis but FB4 did not show a time-dependent
relationship and may act on targets other than the parasite Na+/K+-ATPase.
Conclusion Eugenol derivatives, mainly FB4 when compared to FB1 and FB9, seem to act
more effectively on the integument of adult S. mansoni
worms.
Collapse
Affiliation(s)
| | - Romulo Dias Novaes
- Institute of Biomedical Sciences, Federal University of Alfenas (Unifal), Alfenas, MG, Brazil
| | | | | | - Diogo Teixeira Carvalho
- School of Pharmaceutical Sciences, Federal University of Alfenas (Unifal), Alfenas, MG, Brazil
| | | | | | - Stefânia Neiva Lavorato
- Center of Biological Sciences and Health, Federal University of Western Bahia (Ufob), Barreiras, BA, Brazil
| | | | - Marcos José Marques
- Institute of Biomedical Sciences, Federal University of Alfenas (Unifal), Alfenas, MG, Brazil
| | - Aline Pereira Castro
- Institute of Biomedical Sciences, Federal University of Alfenas (Unifal), Alfenas, MG, Brazil.,Department of Pharmacy, University Center of Lavras (Unilavras), Lavras, MG, Brazil
| |
Collapse
|
3
|
Berger DJ, Crellen T, Lamberton PHL, Allan F, Tracey A, Noonan JD, Kabatereine NB, Tukahebwa EM, Adriko M, Holroyd N, Webster JP, Berriman M, Cotton JA. Whole-genome sequencing of Schistosoma mansoni reveals extensive diversity with limited selection despite mass drug administration. Nat Commun 2021; 12:4776. [PMID: 34362894 PMCID: PMC8346512 DOI: 10.1038/s41467-021-24958-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 07/06/2021] [Indexed: 02/07/2023] Open
Abstract
Control and elimination of the parasitic disease schistosomiasis relies on mass administration of praziquantel. Whilst these programmes reduce infection prevalence and intensity, their impact on parasite transmission and evolution is poorly understood. Here we examine the genomic impact of repeated mass drug administration on Schistosoma mansoni populations with documented reduced praziquantel efficacy. We sequenced whole-genomes of 198 S. mansoni larvae from 34 Ugandan children from regions with contrasting praziquantel exposure. Parasites infecting children from Lake Victoria, a transmission hotspot, form a diverse panmictic population. A single round of treatment did not reduce this diversity with no apparent population contraction caused by long-term praziquantel use. We find evidence of positive selection acting on members of gene families previously implicated in praziquantel action, but detect no high frequency functionally impactful variants. As efforts to eliminate schistosomiasis intensify, our study provides a foundation for genomic surveillance of this major human parasite.
Collapse
Affiliation(s)
- Duncan J Berger
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, UK.
- Department of Pathology and Pathogen Biology, Centre for Emerging, Endemic and Exotic Diseases, Royal Veterinary College, University of London, Herts, UK.
| | - Thomas Crellen
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, UK
- Imperial College London, Department of Infectious Disease Epidemiology, London, UK
- Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Poppy H L Lamberton
- Imperial College London, Department of Infectious Disease Epidemiology, London, UK
- Institute for Biodiversity, Animal Health, and Comparative Medicine, and Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, UK
| | - Fiona Allan
- The Natural History Museum, Department of Life Sciences, London, UK
| | - Alan Tracey
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, UK
| | - Jennifer D Noonan
- Institute of Parasitology, Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Quebec, Canada
| | - Narcis B Kabatereine
- Vector Borne & Neglected Tropical Disease Control Division, Ministry of Health, Kampala, Uganda
| | - Edridah M Tukahebwa
- Vector Borne & Neglected Tropical Disease Control Division, Ministry of Health, Kampala, Uganda
| | - Moses Adriko
- Vector Borne & Neglected Tropical Disease Control Division, Ministry of Health, Kampala, Uganda
| | - Nancy Holroyd
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, UK
| | - Joanne P Webster
- Department of Pathology and Pathogen Biology, Centre for Emerging, Endemic and Exotic Diseases, Royal Veterinary College, University of London, Herts, UK.
- Imperial College London, Department of Infectious Disease Epidemiology, London, UK.
| | - Matthew Berriman
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, UK.
| | - James A Cotton
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, UK.
| |
Collapse
|
4
|
Nono JK, Fu K, Mpotje T, Varrone G, Aziz NA, Mosala P, Hlaka L, Kamdem SD, Xu D, Spangenberg T, Brombacher F. Investigating the antifibrotic effect of the antiparasitic drug Praziquantel in in vitro and in vivo preclinical models. Sci Rep 2020; 10:10638. [PMID: 32606340 PMCID: PMC7327036 DOI: 10.1038/s41598-020-67514-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 05/13/2020] [Indexed: 11/09/2022] Open
Abstract
Tissue fibrosis underlies the majority of human mortality to date with close to half of all reported deaths having a fibrotic etiology. The progression of fibrosis is very complex and reputed irreversible once established. Although some preventive options are being reported, therapeutic options are still scarce and in very high demand, given the rise of diseases linked to fibroproliferative disorders. Our work explored four platforms, complementarily, in order to screen preventive and therapeutic potentials of the antiparasitic drug Praziquantel as a possible antifibrotic. We applied the mouse CCl4-driven liver fibrosis model, the mouse chronic schistosomiasis liver fibrosis model, as well as novel 2D and 3D human cell-based co-culture of human hepatocytes, KCs (Kupffer cells), LECs (Liver Endothelial Cells), HSCs (Hepatic Stellate Cells) and/or myofibroblasts to mimic in vivo fibrotic responses and dynamics. Praziquantel showed some effect on fibrosis marker when preventively administered before severe establishment of fibrosis. However, it failed to potently reverse already established fibrosis. Together, we provided a novel sophisticated multi-assay screening platform to test preventive and therapeutic antifibrotic candidates. We further demonstrated a direct preventive potential of Praziquantel against the onset of fibrosis and the confirmation of its lack of therapeutic potential in reversing already established fibrosis.
Collapse
Affiliation(s)
- Justin Komguep Nono
- Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Faculty of Health Sciences, University of Cape Town, Cape Town, 7925, South Africa.,International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Cape Town, 7925, South Africa.,The Medical Research Centre, Institute of Medical Research and Medicinal Plant Studies, Ministry of Scientific Research and Innovation, Yaoundé, Cameroon
| | - Kai Fu
- Translational Innovation Platform Immunology, EMD Serono Research and Development Institute, Inc., 45A Middlesex Turnpike, Billerica, MA, 01821, USA.,The Center for Infectious Disease Research, Seattle, WA, 98109, USA
| | - Thabo Mpotje
- Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Faculty of Health Sciences, University of Cape Town, Cape Town, 7925, South Africa.,International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Cape Town, 7925, South Africa
| | - Georgianna Varrone
- Translational Innovation Platform Immunology, EMD Serono Research and Development Institute, Inc., 45A Middlesex Turnpike, Billerica, MA, 01821, USA.,The Center for Infectious Disease Research, Seattle, WA, 98109, USA
| | - Nada Abdel Aziz
- Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Faculty of Health Sciences, University of Cape Town, Cape Town, 7925, South Africa.,International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Cape Town, 7925, South Africa.,Chemistry Department, Faculty of Science, Cairo University, Cairo, Egypt
| | - Paballo Mosala
- Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Faculty of Health Sciences, University of Cape Town, Cape Town, 7925, South Africa.,International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Cape Town, 7925, South Africa
| | - Lerato Hlaka
- Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Faculty of Health Sciences, University of Cape Town, Cape Town, 7925, South Africa.,International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Cape Town, 7925, South Africa
| | - Severin Donald Kamdem
- Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Faculty of Health Sciences, University of Cape Town, Cape Town, 7925, South Africa.,International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Cape Town, 7925, South Africa
| | - Daigen Xu
- Translational Innovation Platform Immunology, EMD Serono Research and Development Institute, Inc., 45A Middlesex Turnpike, Billerica, MA, 01821, USA.,The Center for Infectious Disease Research, Seattle, WA, 98109, USA
| | - Thomas Spangenberg
- Global Health Institute of Merck, Ares Trading S.A. a subsidiary of Merck KGaA Darmstadt Germany, Eysins, Switzerland.
| | - Frank Brombacher
- Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Faculty of Health Sciences, University of Cape Town, Cape Town, 7925, South Africa. .,International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Cape Town, 7925, South Africa.
| |
Collapse
|
5
|
Thomas CM, Timson DJ. The Mechanism of Action of Praziquantel: Can New Drugs Exploit Similar Mechanisms? Curr Med Chem 2020; 27:676-696. [DOI: 10.2174/0929867325666180926145537] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 04/06/2018] [Accepted: 08/20/2018] [Indexed: 11/22/2022]
Abstract
Praziquantel (PZQ) is the drug of choice for treating infection with worms from the
genus Schistosoma. The drug is effective, cheap and has few side effects. However, despite its
use in millions of patients for over 40 years its molecular mechanism of action remains elusive.
Early studies demonstrated that PZQ disrupts calcium ion homeostasis in the worm and
the current consensus is that it antagonises voltage-gated calcium channels. It is hypothesised
that disruption of these channels results in uncontrolled calcium ion influx leading to uncontrolled
muscle contraction and paralysis. However, other experimental studies have suggested
a role for myosin regulatory light chains and adenosine uptake in the drug’s mechanism of
action. Assuming voltage-gated calcium channels do represent the main molecular target of
PZQ, the precise binding site for the drug remains to be identified. Unlike other commonly
used anti-parasitic drugs, there are few definitive reports of resistance to PZQ in the literature.
The lack of knowledge about PZQ’s molecular mechanism(s) undermines our ability to predict
how resistance might arise and also hinder our attempts to develop alternative antischistosomal
drugs which exploit the same target(s). Some PZQ derivatives have been identified
which also kill or paralyse schistosomes in culture. However, none of these are in widespread
clinical use. There is a pressing need for fundamental research into the molecular mechanism(
s) of action of PZQ. Such research would enable new avenues for antischsistosomal
drug discovery.
Collapse
Affiliation(s)
- Charlotte M. Thomas
- School of Biological Sciences, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - David J. Timson
- School of Biological Sciences, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| |
Collapse
|
6
|
de Almeida Júnior ASA, de Oliveira JF, da Silva AL, da Rocha RET, Junior NCP, Gouveia ALA, da Silva RMF, de Azevedo Albuquerque MCP, Brayner FA, Alves LC, do Carmo Alves de Lima M. In vitro activity, ultrastructural studies and in silico pharmacokinetic properties of indol-3-yl-thiosemicarbazones derivatives and analogues against juvenile and adult worms of S. mansoni. Eur J Pharm Sci 2019; 138:104985. [PMID: 31283945 DOI: 10.1016/j.ejps.2019.104985] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/21/2019] [Accepted: 07/03/2019] [Indexed: 12/13/2022]
Abstract
The present work aimed to carry out in vitro biological assays of indol-3-yl derivatives thiosemicarbazones (2a-e) and 4-thiazolidinones (3a-d) against juvenile and adult worms of S. mansoni, as well as the in silico determination of pharmacokinetic parameters for the prediction of the oral bioavailability of these derivatives. All compounds were initially screened at a concentration of 200 μM against S. mansoni adult worms and the results evidenced the good activity of compounds 2b, 2d and 3b, which caused 100% mortality after 24, 48 and 72 h, respectively. Subsequent studies with these same compounds revealed that compound 2b was able to reduce the viability of the parasites by 85% and 83% at concentrations of 200 and 100 μM, respectively. In relation to the juvenile worms, all compounds (2b, 2d and 3b) were able to cause mortality, but compound 2b demonstrated better activity causing 100% mortality in 48 h. Additionally, it was possible to observe reduction in the viability of juvenile worms of 85%, 81% and 64% at concentrations of 200, 100 and 50 μM, respectively. Several ultrastructural damages were observed when adult and juvenile S. mansoni worms were exposed to compound 2b (200 μM) that was characterized by extensive destruction by the integument, which may justify the mortality rate of cultured parasites. In the DNA interaction assay, fragmentation of the genetic material of adult worms when treated with compound 2b (200 μM) was evidenced, indicating the apoptosis process as mechanism of parasite death. Regarding pharmacokinetic properties, all derivatives are according to the required parameters, predicting good oral bioavailability for the studied compounds. The results presented in this study reveal the good activity of compound 2b in both adult and juvenile worms of S. mansoni, pointing this compound as promising in the development of further studies on schistosomicidal activity.
Collapse
Affiliation(s)
- Antônio Sérgio Alves de Almeida Júnior
- Universidade Federal de Pernambuco (UFPE), Departamento de Antibióticos, 50670-901 Recife, PE, Brazil; Instituto Aggeu Magalhães, Fundação Oswaldo Cruz (IAM-FIOCRUZ), 50670-420 Recife, PE, Brazil
| | | | - Anekécia Lauro da Silva
- Universidade Federal do Vale do São Francisco (UNIVASF), Departamento de Medicina, 48607-190 Paulo Afonso, BA, Brazil
| | | | | | | | | | | | - Fábio André Brayner
- Instituto Aggeu Magalhães, Fundação Oswaldo Cruz (IAM-FIOCRUZ), 50670-420 Recife, PE, Brazil
| | - Luiz Carlos Alves
- Instituto Aggeu Magalhães, Fundação Oswaldo Cruz (IAM-FIOCRUZ), 50670-420 Recife, PE, Brazil
| | | |
Collapse
|
7
|
Meng R, Zhang D, Ji J, Hu L, Sun D, Wang H. Enantioselective Plasma Pharmacokinetic Study of a Novel Anti- Sichistosomiasis Agent P96 in Rat by Liquid Chromatography-tandem Mass Spectrometry. CURR PHARM ANAL 2019. [DOI: 10.2174/1573412914666180608093636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
2-Cyclopentanecarbonyl-1,2,3,6,7,11b-hexahydro-pyrazino[2,1- a]isoquinolin-
4-one (P96), was found to be a novel drug candidate with one chiral center to treat schistosomiasis
caused by Schistosoma japonicum.
</P><P>
Objective: To study pharmacokinetic characteristics, a simple, rapid and sensitive liquid chromatography-
tandem mass spectrometry (LC-MS/MS) method was developed and fully validated for the quantification
analysis of P96 in rat plasma.
Methods:
Chromatographic separation was performed on a C18 column with gradient eluted mobile
phase composed of acetonitrile and water at a flow rate of 0.5 mL/min. Detection was performed on a
triple-quadrupole tandem mass spectrometer using positive mode electrospray ionization in the multiple
reactions monitoring (MRM) mode.
Results:
Excellent linearity was observed in the range of 3-900 ng/mL with the lower limit of quantification
of 3 ng/mL in rat plasma for P96. The intra- and inter-day precisions exhibited less than 6.6%.
Mean recoveries ranged from 96.9% to 102.4%. This method was applied to investigate the enantioselective
differences on the pharmacokinetics between (R,S)-P96 and its enantiomers in rats after oral
administration. The enantioselective differences of (R)-P96, (S)-P96 and (R,S)-P96 were found and
compared.
Conclusion:
The established method was found to be accurate, precise, and sensitive and can be applied
to investigate the stereoselective differences on pharmacokinetics between rac-P96 and its enantiomers.
Collapse
Affiliation(s)
- Ran Meng
- School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Danlu Zhang
- School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Jianbo Ji
- School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Lingyun Hu
- Shandong Cancer Hospital Affiliated to Shandong University, Jinan 250117, China
| | - Dequn Sun
- Marine College, Shandong University at Weihai, Weihai 264209, China
| | - Haina Wang
- School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| |
Collapse
|
8
|
Xiao SH, Sun J, Chen MG. Pharmacological and immunological effects of praziquantel against Schistosoma japonicum: a scoping review of experimental studies. Infect Dis Poverty 2018; 7:9. [PMID: 29409536 PMCID: PMC5801800 DOI: 10.1186/s40249-018-0391-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 01/19/2018] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Chemotherapy for schistosomiasis has been around for 100 years. During the past century, great efforts have been made to develop new antischistosomal drugs from antimonials to nonantimonials, and some of these have been used extensively in clinical treatment. With the exception of a few drugs, such as oxamniquine and metrifonate, most of the antischistosomals developed in the pre-praziquantel period have variable limitations with respect to safety and efficacy. Although oxamniquine and metrifonate have been used for schistosomiasis control, they are only effective against Schistosoma mansoni and S. haematobium, respectively. Currently, praziquantel is the only drug used for treatment of all five species of human schistosomes. In this review, the pharmacological and immunological effects of praziquantel against S. japonicum are summarized and discussed. MAIN TEXT From the end of the 1970s until the 2000s, scientists have conducted a series of experimental studies on the effects of praziquantel against S. japonicum. These have included examining its unique pharmacological action on schistosomes, the characteristics in susceptibility of the different developmental stages of schistosomes to the drug, the relationship between plasma concentration of the drug and efficacy, the impact of host factors on cidal action of the drug, prevention and early treatment of schistosomal infection, as well as praziquantel-resistant schistosomiasis. CONCLUSION The effects of praziquantel against S. japonicum, as elucidated by the experimental studies that are reviewed in this paper, may have some reference significance for the development of new antischistosomals.
Collapse
Affiliation(s)
- Shu-Hua Xiao
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology, Ministry of Health, WHO Collaborating Centre for Tropical Diseases, Shanghai, 200025 People’s Republic of China
| | - Jun Sun
- Institute for Infectious Disease and Vaccine Development, Tongji University School of Medicine, Shanghai, 200092 People’s Republic of China
| | - Ming-Gang Chen
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology, Ministry of Health, WHO Collaborating Centre for Tropical Diseases, Shanghai, 200025 People’s Republic of China
| |
Collapse
|
9
|
Praziquantel for Schistosomiasis: Single-Drug Metabolism Revisited, Mode of Action, and Resistance. Antimicrob Agents Chemother 2017; 61:AAC.02582-16. [PMID: 28264841 DOI: 10.1128/aac.02582-16] [Citation(s) in RCA: 236] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Schistosomiasis, a major neglected tropical disease, affects more than 250 million people worldwide. Treatment of schistosomiasis has relied on the anthelmintic drug praziquantel (PZQ) for more than a generation. PZQ is the drug of choice for the treatment of schistosomiasis; it is effective against all major forms of schistosomiasis, although it is less active against juvenile than mature parasites. A pyrazino-isoquinoline derivative, PZQ is not considered to be toxic and generally causes few or transient, mild side effects. Increasingly, mass drug administration targeting populations in sub-Saharan Africa where schistosomiasis is endemic has led to the appearance of reduced efficacy of PZQ, which portends the selection of drug-resistant forms of these pathogens. The synthesis of improved derivatives of PZQ is attracting attention, e.g., in the (i) synthesis of drug analogues, (ii) rational design of pharmacophores, and (iii) discovery of new compounds from large-scale screening programs. This article reviews reports from the 1970s to the present on the metabolism and mechanism of action of PZQ and its derivatives against schistosomes.
Collapse
|
10
|
Dong L, Duan W, Chen J, Sun H, Qiao C, Xia CM. An artemisinin derivative of praziquantel as an orally active antischistosomal agent. PLoS One 2014; 9:e112163. [PMID: 25386745 PMCID: PMC4227710 DOI: 10.1371/journal.pone.0112163] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Accepted: 10/13/2014] [Indexed: 12/21/2022] Open
Abstract
Background Schistosomiasis is a major health problem in tropical and sub-tropical areas caused by species of trematode belonging to the genus Schistosoma. The treatment and control of this disease has been relying on the use of a single drug praziquantel. However, the drug resistance concern urged the development of new drugs against schistosoma. Here, we report our systematic biological evaluation of DW-3-15, a new lead compound developed based on our conjugation design rationale as an effective anti-schistosomal agent. Methodology/Principal Findings The antischistosomal activity of DW-3-15 was systematically evaluated in S. japonicum infected mouse model for its stage-sensitivity and dose response. The results revealed that DW-3-15 exhibited 60–85% worm reduction rate against different development stage of worm. Scanning electron microscopy (SEM) observation indicated that DW-3-15 may damage to the tegument of male schistosomes. Conclusions/Significance Our results demonstrated that DW-3-15 showed potent anti-schistosomal activities in vivo. The results strongly support our conjugation design strategy of artemisinin analogs and further development of DW-3-15 as a new lead compound as anti-schistosomal agent.
Collapse
Affiliation(s)
- Lanlan Dong
- College of Medical Science, Soochow University, Suzhou, China
| | - Wenwen Duan
- College of Medical Science, Soochow University, Suzhou, China
| | - Jinglei Chen
- College of Medical Science, Soochow University, Suzhou, China
| | - Huan Sun
- College of Medical Science, Soochow University, Suzhou, China
| | - Chunhua Qiao
- College of Medical Science, Soochow University, Suzhou, China
- * E-mail: (CQ); (CX)
| | - Chao-ming Xia
- College of Medical Science, Soochow University, Suzhou, China
- * E-mail: (CQ); (CX)
| |
Collapse
|
11
|
Zheng Y, Dong L, Hu C, Zhao B, Yang C, Xia C, Sun D. Development of chiral praziquantel analogues as potential drug candidates with activity to juvenile Schistosoma japonicum. Bioorg Med Chem Lett 2014; 24:4223-6. [DOI: 10.1016/j.bmcl.2014.07.039] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Revised: 06/17/2014] [Accepted: 07/14/2014] [Indexed: 12/31/2022]
|
12
|
Cioli D, Pica-Mattoccia L, Basso A, Guidi A. Schistosomiasis control: praziquantel forever? Mol Biochem Parasitol 2014; 195:23-9. [DOI: 10.1016/j.molbiopara.2014.06.002] [Citation(s) in RCA: 259] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 06/07/2014] [Accepted: 06/13/2014] [Indexed: 12/21/2022]
|
13
|
Chen J, Sun W, Yang J, Sun H, Wang Z, Dong L, Qiao C, Xia CM. Development of a novel class of pyrrolo-[1,2,5]benzothiadiazepine derivatives as potential anti-schistosomal agents. Bioorg Med Chem Lett 2013; 23:3785-7. [DOI: 10.1016/j.bmcl.2013.04.085] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 04/24/2013] [Accepted: 04/30/2013] [Indexed: 10/26/2022]
|
14
|
Wang ZX, Chen JL, Qiao C. Praziquantel Derivatives with Antischistosomal Activity: Aromatic Ring Modification. Chem Biol Drug Des 2013; 82:216-25. [DOI: 10.1111/cbdd.12153] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2012] [Revised: 02/19/2013] [Accepted: 04/15/2013] [Indexed: 11/28/2022]
Affiliation(s)
- Zhi-xia Wang
- College of Pharmaceutical Science; Soochow University; 199 RenAi Road; Suzhou; 215123; Jiangsu; China
| | - Jing-lei Chen
- College of Pharmaceutical Science; Soochow University; 199 RenAi Road; Suzhou; 215123; Jiangsu; China
| | - Chunhua Qiao
- College of Pharmaceutical Science; Soochow University; 199 RenAi Road; Suzhou; 215123; Jiangsu; China
| |
Collapse
|
15
|
Thétiot-Laurent SAL, Boissier J, Robert A, Meunier B. Chemotherapie gegen Schistosomiasis. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201208390] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
16
|
Thétiot-Laurent SAL, Boissier J, Robert A, Meunier B. Schistosomiasis chemotherapy. Angew Chem Int Ed Engl 2013; 52:7936-56. [PMID: 23813602 DOI: 10.1002/anie.201208390] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Indexed: 01/08/2023]
Abstract
After malaria, schistosomiasis (or bilharzia) is the second most prevalent disease in Africa, and is occurring in over 70 countries in tropical and subtropical regions. It is estimated that 600 million people are at risk of infection, 200 million people are infected, and at least 200,000 deaths per year are associated with the disease. All schistosome species are transmitted through contact with fresh water that is infested with free-swimming forms of the parasite, which is known as cercariae and produced by snails. When located in the blood vessels of the host, larval and adult schistosomes digest red cells to acquire amino acids for growth and development. Vaccine candidates have been unsuccessful up to now. Against such devastating parasitic disease, the antischistosomal arsenal is currently limited to a single drug, praziquantel, which has been used for more than 35 years. Because the question of the reduction of the activity of praziquantel was raised recently, it is thus urgent to create new and safe antischistosomal drugs that should be combined with praziquantel to develop efficient bitherapies.
Collapse
Affiliation(s)
- Sophie A-L Thétiot-Laurent
- Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, BP 44099, 31077 Toulouse cedex 4, France
| | | | | | | |
Collapse
|
17
|
Abstract
Schistosomes are parasitic flatworms that cause schistosomiasis, a neglected tropical disease that affects hundreds of millions worldwide. Treatment and control of schistosomiasis relies almost entirely on the single drug praziquantel (PZQ), making the prospect of emerging drug resistance particularly worrisome. This review will survey reports of PZQ (and other drug) resistance in schistosomes and other platyhelminths, and explore mechanisms by which drug resistance might develop. Newer genomic and post-genomic strategies that offer the promise of better understanding of how drug resistance might arise in these organisms will be discussed. These approaches could also lead to insights into the mode of action of these drugs and potentially provide markers for monitoring the emergence of resistance.
Collapse
|
18
|
Transcriptional responses of in vivo praziquantel exposure in schistosomes identifies a functional role for calcium signalling pathway member CamKII. PLoS Pathog 2013; 9:e1003254. [PMID: 23555262 PMCID: PMC3610926 DOI: 10.1371/journal.ppat.1003254] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 02/04/2013] [Indexed: 01/24/2023] Open
Abstract
Treatment for clinical schistosomiasis has relied centrally on the broad spectrum anthelmintic praziquantel; however, there is limited information on its mode of action or the molecular response of the parasite. This paper presents a transcriptional and functional approach to defining the molecular responses of schistosomes to praziquantel. Differential gene expression in Schistosoma japonicum was investigated by transcriptome-wide microarray analysis of adult worms perfused from infected mice after 0.5 to 24 hours after oral administration of sub-lethal doses of praziquantel. Genes up-regulated initially in male parasites were associated with "Tegument/Muscle Repair" and "Lipid/Ion Regulation" functions and were followed by "Drug Resistance" and "Ion Regulation" associated genes. Prominent responses induced in female worms included up-regulation of "Ca(2+) Regulation" and "Drug Resistance" genes and later by transcripts of "Detoxification" and "Pathogen Defense" mechanisms. A subset of highly over-expressed genes, with putative drug resistance/detoxification roles or Ca(2+)-dependant/modulatory functions, were validated by qPCR. The leading candidate among these was CamKII, a putative calcium/calmodulin-dependent protein kinase type II delta chain. RNA interference was employed to knockdown CamKII in S. japonicum to determine the role of CamKII in the response to praziquantel. After partial-knockdown, schistosomes were analysed using IC50 concentrations (50% worm motility) and quantitative monitoring of parasite movement. When CamKII transcription was reduced by 50-69% in S. japonicum, the subsequent effect of an IC50 dosage of praziquantel was exacerbated, reducing motility from 47% to 27% in female worms and from 61% to 23% in males. These observations indicated that CamKII mitigates the effects of praziquantel, probably through stabilising Ca(2+) fluxes within parasite muscles and tegument. Together, these studies comprehensively charted transcriptional changes upon exposure to praziquantel and, notably, identified CamKII as potentially central to the, as yet undefined, mode of action of praziquantel.
Collapse
|
19
|
El Ridi RAF, Tallima HAM. Novel therapeutic and prevention approaches for schistosomiasis: review. J Adv Res 2012; 4:467-78. [PMID: 25685454 PMCID: PMC4293887 DOI: 10.1016/j.jare.2012.05.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2012] [Revised: 05/12/2012] [Accepted: 05/15/2012] [Indexed: 01/23/2023] Open
Abstract
Schistosomiasis is a debilitating disease affecting approximately 600 million people in 74 developing countries, with 800 million, mostly children at risk. To circumvent the threat of having praziquantel (PZQ) as the only drug used for treatment, several PZQ derivatives were synthesized, and drugs destined for other parasites were used with success. A plethora of plant-derived oils and extracts were found to effectively kill juvenile and adult schistosomes, yet none was progressed to pre- and clinical studies except an oleo-gum resin extracted from the stem of Commiphora molmol, myrrh, which action was challenged in several trials. We have proposed an essential fatty acid, a component of our diet and cells, the polyunsaturated fatty acid arachidonic acid (ARA) as a remedy for schistosomiasis, due to its ability to activate the parasite tegument-bound neutral sphingomyelinase, with subsequent hydrolysis of the apical lipid bilayer sphingomyelin molecules, allowing access of specific antibody molecules, and eventual worm attrition. This concept was convincingly supported using larval and adult Schistosoma mansoni and Schistosoma haematobium worms in in vitro experiments, and in vivo studies in inbred mice and outbred hamsters. Even if ARA proves to be an entirely effective and safe therapy for schistosomiasis, it will not prevent reinfection, and accordingly, the need for developing an effective vaccine remains an urgent priority. Our studies have supported the status of S. mansoni calpain, glutathione-S-transferase, aldolase, triose phosphate isomerase, glyceraldehyde 3-phosphate dehydrogenase, enolase, and 2-cys peroxiredoxin as vaccine candidates, as they are larval excreted-secreted products and, contrary to the surface membrane molecules, are entirely accessible to the host immune system effector elements. We have proposed that the use of these molecules, in conjunction with Th2 cytokines-inducing adjuvants for recruiting and activating eosinophils and basophils, will likely lead to development and implementation of a sterilizing vaccine in a near future.
Collapse
Affiliation(s)
- Rashika A F El Ridi
- Zoology Department, Faculty of Science, Cairo University, Cairo 12613, Egypt
| | - Hatem A-M Tallima
- Zoology Department, Faculty of Science, Cairo University, Cairo 12613, Egypt
| |
Collapse
|
20
|
Duan WW, Qiu SJ, Zhao Y, Sun H, Qiao C, Xia CM. Praziquantel derivatives exhibit activity against both juvenile and adult Schistosoma japonicum. Bioorg Med Chem Lett 2012; 22:1587-90. [PMID: 22264473 DOI: 10.1016/j.bmcl.2011.12.133] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 12/20/2011] [Accepted: 12/29/2011] [Indexed: 10/14/2022]
|
21
|
Wu W, Wang W, Huang YX. New insight into praziquantel against various developmental stages of schistosomes. Parasitol Res 2011; 109:1501-1507. [PMID: 21984370 DOI: 10.1007/s00436-011-2670-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Accepted: 09/27/2011] [Indexed: 10/17/2022]
Abstract
Praziquantel, due to high efficacy, excellent tolerability, few and transient side effects, simple administration, and competitive cost, is virtually the only drug of choice for treatment of human schistosomiasis. Treatment of schistosomiasis has shown great advances with the introduction of the drug into the therapeutic arsenal in areas that are endemic for the parasite. However, the drug presents various efficacies against different developmental stages of schistosomes, appearing an oddity intermitted mode. The present review article reviews the effects and mechanism of action of praziquantel against schistosomes briefly and suggests the research on this oddity phenomenon.
Collapse
Affiliation(s)
- Wei Wu
- Jiangsu Institute of Parasitic Diseases, 117 Yangxiang, Meiyuan, Wuxi 214064, People's Republic of China
| | | | | |
Collapse
|
22
|
Affiliation(s)
- Alexander Dömling
- Departments of Pharmacy, Chemistry and Computational Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | | |
Collapse
|
23
|
In vitro and in vivo activities of arachidonic acid against Schistosoma mansoni and Schistosoma haematobium. Antimicrob Agents Chemother 2010; 54:3383-9. [PMID: 20479203 DOI: 10.1128/aac.00173-10] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The development of arachidonic acid (ARA) for treatment of schistosomiasis is an entirely novel approach based on a breakthrough discovery in schistosome biology revealing that activation of parasite tegument-bound neutral sphingomyelinase (nSMase) by unsaturated fatty acids, such as ARA, induces exposure of parasite surface membrane antigens to antibody binding and eventual attrition of developing schistosomula and adult worms. Here, we demonstrate that 5 mM ARA leads to irreversible killing of ex vivo 1-, 3-, 4-, 5-, and 6-week-old Schistosoma mansoni and 9-, 10-, and 12-week-old Schistosoma haematobium worms within 3 to 4 h, depending on the parasite age, even when the worms were maintained in up to 50% fetal calf serum. ARA-mediated worm attrition was prevented by nSMase inhibitors, such as CaCl(2) and GW4869. Scanning and transmission electron microscopy revealed that ARA-mediated worm killing was associated with spine destruction, membrane blebbing, and disorganization of the apical membrane structure. ARA-mediated S. mansoni and S. haematobium worm attrition was reproduced in vivo in a series of 6 independent experiments using BALB/c or C57BL/6 mice, indicating that ARA in a pure form (Sigma) or included in infant formula (Nestle) consistently led to 40 to 80% decrease in the total worm burden. Arachidonic acid is already marketed for human use in the United States and Canada for proper development of newborns and muscle growth of athletes; thus, ARA has potential as a safe and cost-effective addition to antischistosomal therapy.
Collapse
|
24
|
Pierson L, Mousley A, Devine L, Marks NJ, Day TA, Maule AG. RNA interference in a cestode reveals specific silencing of selected highly expressed gene transcripts. Int J Parasitol 2010; 40:605-15. [DOI: 10.1016/j.ijpara.2009.10.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Revised: 10/23/2009] [Accepted: 10/26/2009] [Indexed: 01/31/2023]
|
25
|
Recent advances in the discovery of haem-targeting drugs for malaria and schistosomiasis. Molecules 2009; 14:2868-87. [PMID: 19701131 PMCID: PMC6254801 DOI: 10.3390/molecules14082868] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Revised: 07/20/2009] [Accepted: 07/22/2009] [Indexed: 01/29/2023] Open
Abstract
Haem is believed to be the target of some of the historically most important antimalarial drugs, most notably chloroquine. This target is almost ideal as haem is host-derived and the process targeted, haemozoin formation, is a physico-chemical process with no equivalent in the host. The result is that the target remains viable despite resistance to current drugs, which arises from mutations in parasite membrane transport proteins. Recent advances in high-throughput screening methods, together with a better understanding of the interaction of existing drugs with this target, have created new prospects for discovering novel haem-targeting chemotypes and for target-based structural design of new drugs. Finally, the discovery that Schistosoma mansoni also produces haemozoin suggests that new drugs of this type may be chemotherapeutic not only for malaria, but also for schistosomiasis. These recent developments in the literature are reviewed.
Collapse
|
26
|
Praziquantel: its use in control of schistosomiasis in sub-Saharan Africa and current research needs. Parasitology 2009; 136:1825-35. [PMID: 19281637 DOI: 10.1017/s0031182009000493] [Citation(s) in RCA: 153] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Treatment with praziquantel (PZQ) has become virtually the sole basis of schistosomiasis control in sub-Saharan Africa and elsewhere, and the drug is reviewed here in the context of the increasing rate that it is being used for this purpose. Attention is drawn to our relative lack of knowledge about the mechanisms of action of PZQ at the molecular level, the need for more work to be done on schistosome isolates that have been collected recently from endemic areas rather than those maintained in laboratory conditions for long periods, and our reliance for experimental work mainly on Schistosoma mansoni, little work having been done on S. haematobium. There is no evidence that resistance to PZQ has been induced in African schistosomes as a result of its large-scale use on that continent to date, but there is also no assurance that PZQ and/or schistosomes are in any way unique and that resistant organisms will not be selected as a result of widespread drug usage. The failure of PZQ to produce complete cures in populations given a routine treatment should therefore solicit considerable concern. With few alternatives to PZQ currently available and/or on the horizon, methods to monitor drug-susceptibility in African schistosomes need to be devised and used to help ensure that this drug remains effective for as long a time as possible.
Collapse
|
27
|
Abdul-Ghani R, Loutfy N, el-Sahn A, Hassan A. Current chemotherapy arsenal for schistosomiasis mansoni: alternatives and challenges. Parasitol Res 2009; 104:955-65. [PMID: 19255786 DOI: 10.1007/s00436-009-1371-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2009] [Accepted: 02/04/2009] [Indexed: 11/25/2022]
Abstract
Schistosomiasis still represents a major health problem in many tropical and subtropical countries despite continuing control efforts. Due to the unavailability of a vaccine that is practically applicable to humans, the use of chemotherapy is the mainstay of schistosomiasis-associated morbidity control. This paper attempts to review the antischistosomal drugs currently used in the treatment of intestinal schistosomiasis caused by Schistosoma mansoni. Their antischistosomal properties, advantages, and disadvantages as well as issues regarding the evidence for drug resistance and combination studies are reviewed in a simple manner. The recent trends towards the identification of specific chemotherapeutic targets for the treatment of schistosomes are also discussed briefly.
Collapse
Affiliation(s)
- Rashad Abdul-Ghani
- Department of Medical Parasitology, Faculty of Medicine and Health Sciences, Sana'a University, Sana'a, Yemen.
| | | | | | | |
Collapse
|
28
|
Aragon AD, Imani RA, Blackburn VR, Cupit PM, Melman SD, Goronga T, Webb T, Loker ES, Cunningham C. Towards an understanding of the mechanism of action of praziquantel. Mol Biochem Parasitol 2009; 164:57-65. [PMID: 19100294 PMCID: PMC2886009 DOI: 10.1016/j.molbiopara.2008.11.007] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2008] [Revised: 11/07/2008] [Accepted: 11/07/2008] [Indexed: 11/27/2022]
Abstract
Although praziquantel (PZQ) has been used to treat schistosomiasis for over 20 years its mechanism of action remains unknown. We have developed an assay based on the transcriptional response of Schistosoma mansoni PR-1 to heat shock to confirm that while 6-week post-infection (p.i.) schistosomes are sensitive to PZQ, 4-week p.i. schistosomes are not. Further, we have used this assay to demonstrate that in mice this sensitivity develops between days 37 and 40 p.i. When PZQ is linked to the fluorophore BODIPY to aid microscopic visualization, it appears to enter the cells of intact 4 and 6-week p.i. schistosomes as well as mammalian NIH 3T3 cells with ease suggesting that the differential effects of PZQ is not based on cell exclusion. A transcriptomal analysis of gene expression between 4 and 6 weeks p.i. revealed 607 up-regulated candidate genes whose products are potential PZQ targets. A comparison of this gene list with that of genes expressed by PZQ sensitive miracidia reduced this target list to 247 genes, including a number involved in aerobic metabolism and cytosolic calcium regulation. Finally, we also report the effect of an in vitro sub-lethal exposure of PZQ on the transcriptome of S. mansoni PR-1. Annotation of genes differentially regulated by PZQ exposure suggests that schistosomes may undergo a transcriptomic response similar to that observed during oxidative stress.
Collapse
Affiliation(s)
- Anthony D. Aragon
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Reza A. Imani
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Vint R. Blackburn
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Pauline M. Cupit
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Sandra D. Melman
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Tinopiwa Goronga
- Chemical Biology & Therapeutics, St Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Thomas Webb
- Chemical Biology & Therapeutics, St Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Eric S. Loker
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Charles Cunningham
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| |
Collapse
|
29
|
Doenhoff MJ, Cioli D, Utzinger J. Praziquantel: mechanisms of action, resistance and new derivatives for schistosomiasis. Curr Opin Infect Dis 2008; 21:659-67. [PMID: 18978535 DOI: 10.1097/qco.0b013e328318978f] [Citation(s) in RCA: 535] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
PURPOSE OF REVIEW Praziquantel (PZQ) is the only drug being used to treat human schistosomiasis on a large scale. This review focuses on current knowledge about the mechanisms of action of PZQ, prospects for PZQ resistance, possible future alternative drugs and on exhortations that control of schistosomiasis and other so-called neglected tropical diseases becomes more integrated. RECENT FINDINGS Schistosome calcium ion (Ca2+) channels are the only moiety so far identified as the molecular target of PZQ, but the evidence remains indirect. In the presence of cytochalasin D worms survive high concentrations of PZQ and experiments with cytochalasin D also indicated that PZQ induced worm death and Ca2+ influx are not correlated. Despite PZQ being widely used, there is no clinically relevant evidence for resistance to date, but worryingly low-cure rates have been recorded in some studies in Africa. Artemisinins and the related 1,2,4-trioxolanes are new promising antischistosomal compounds, as are inhibitors of a schistosome-specific bifunctional enzyme, thioredoxin-glutathione reductase. SUMMARY Use of PZQ will increase in the foreseeable future, whether given alone or coadministered with other anthelminthics in integrated control programmes. PZQ resistance remains a threat and its prevention requires adequate monitoring of current mass drug administration programmes and development of new schistosomicides.
Collapse
Affiliation(s)
- Michael J Doenhoff
- School of Biology, University of Nottingham, University Park, Nottingham, UK.
| | | | | |
Collapse
|
30
|
Clinical therapy of schistosomiasis mansoni: the Brazilian contribution. Acta Trop 2008; 108:72-8. [PMID: 18617155 DOI: 10.1016/j.actatropica.2008.05.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2007] [Revised: 05/07/2008] [Accepted: 05/12/2008] [Indexed: 11/21/2022]
Abstract
The review gives a detailed account of the history of drug development, treatment and drug resistance for clinical therapy of schistosomiasis mansoni, specially emphasizing the importance of Brazilian contribution on antischistosomal chemotherapy, as well as on the control of this parasitic disease.
Collapse
|
31
|
Pica-Mattoccia L, Orsini T, Basso A, Festucci A, Liberti P, Guidi A, Marcatto-Maggi AL, Nobre-Santana S, Troiani AR, Cioli D, Valle C. Schistosoma mansoni: Lack of correlation between praziquantel-induced intra-worm calcium influx and parasite death. Exp Parasitol 2008; 119:332-5. [DOI: 10.1016/j.exppara.2008.03.012] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2008] [Revised: 03/10/2008] [Accepted: 03/10/2008] [Indexed: 11/16/2022]
|
32
|
Simeonov A, Jadhav A, Sayed AA, Wang Y, Nelson ME, Thomas CJ, Inglese J, Williams DL, Austin CP. Quantitative high-throughput screen identifies inhibitors of the Schistosoma mansoni redox cascade. PLoS Negl Trop Dis 2008; 2:e127. [PMID: 18235848 PMCID: PMC2217675 DOI: 10.1371/journal.pntd.0000127] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2007] [Accepted: 10/16/2007] [Indexed: 11/28/2022] Open
Abstract
Schistosomiasis is a tropical disease associated with high morbidity and mortality, currently affecting over 200 million people worldwide. Praziquantel is the only drug used to treat the disease, and with its increased use the probability of developing drug resistance has grown significantly. The Schistosoma parasites can survive for up to decades in the human host due in part to a unique set of antioxidant enzymes that continuously degrade the reactive oxygen species produced by the host's innate immune response. Two principal components of this defense system have been recently identified in S. mansoni as thioredoxin/glutathione reductase (TGR) and peroxiredoxin (Prx) and as such these enzymes present attractive new targets for anti-schistosomiasis drug development. Inhibition of TGR/Prx activity was screened in a dual-enzyme format with reducing equivalents being transferred from NADPH to glutathione via a TGR-catalyzed reaction and then to hydrogen peroxide via a Prx-catalyzed step. A fully automated quantitative high-throughput (qHTS) experiment was performed against a collection of 71,028 compounds tested as 7- to 15-point concentration series at 5 µL reaction volume in 1536-well plate format. In order to generate a robust data set and to minimize the effect of compound autofluorescence, apparent reaction rates derived from a kinetic read were utilized instead of end-point measurements. Actives identified from the screen, along with previously untested analogues, were subjected to confirmatory experiments using the screening assay and subsequently against the individual targets in secondary assays. Several novel active series were identified which inhibited TGR at a range of potencies, with IC50s ranging from micromolar to the assay response limit (∼25 nM). This is, to our knowledge, the first report of a large-scale HTS to identify lead compounds for a helminthic disease, and provides a paradigm that can be used to jump-start development of novel therapeutics for other neglected tropical diseases. Schistosomiasis, also known as bilharzia, is a tropical disease associated with high morbidity and mortality, currently affecting over 200 million people worldwide. Praziquantel is the only drug used to treat the disease, and with its increased use the probability of developing resistance has grown significantly. The Schistosoma parasites can survive for up to decades in the human host due in part to a unique set of antioxidant enzymes that continuously degrade the reactive oxygen species produced by the host's innate immune response. Two principal components of this defense system, thioredoxin/glutathione reductase (TGR) and peroxiredoxin (Prx2), have been recently identified and validated as targets for anti-schistosomiasis drug development. In search of inhibitors of this critical redox cascade, we optimized and performed a highly miniaturized automated screen of 71,028 compounds arrayed as 7- to 15-point dilution sets. We identified novel structural series of TGR inhibitors, several of which are highly potent and should serve both as mechanistic tools for probing redox pathways in S. mansoni and as starting points for developing much-needed new treatments for schistosomiasis. The paradigm presented here effectively bridges the gap between academic target identification and the first steps of drug development, and should be applicable to a variety of other important neglected diseases.
Collapse
Affiliation(s)
- Anton Simeonov
- NIH Chemical Genomics Center, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Ajit Jadhav
- NIH Chemical Genomics Center, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Ahmed A. Sayed
- Department of Biological Sciences, Illinois State University, Normal, Illinois, United States of America
| | - Yuhong Wang
- NIH Chemical Genomics Center, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Michael E. Nelson
- NIH Chemical Genomics Center, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Craig J. Thomas
- NIH Chemical Genomics Center, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - James Inglese
- NIH Chemical Genomics Center, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - David L. Williams
- Department of Biological Sciences, Illinois State University, Normal, Illinois, United States of America
- * E-mail: (DLW); (CPA)
| | - Christopher P. Austin
- NIH Chemical Genomics Center, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail: (DLW); (CPA)
| |
Collapse
|
33
|
Tallima H, El Ridi R. Re: is actin the praziquantel receptor? Int J Antimicrob Agents 2007; 30:566-7. [PMID: 17900872 DOI: 10.1016/j.ijantimicag.2007.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2007] [Accepted: 08/20/2007] [Indexed: 11/18/2022]
|
34
|
Pica-Mattoccia L, Ruppel A, Xia CM, Cioli D. Praziquantel and the benzodiazepine Ro 11-3128 do not compete for the same binding sites in schistosomes. Parasitology 2007; 135:47-54. [PMID: 17767796 DOI: 10.1017/s0031182007003514] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
SUMMARYThe benzodiazepine Ro 11-3128 (methyl-clonazepam) presents several similarities with praziquantel with regard to its anti-schistosomal mode of action, since both drugs cause spastic paralysis, calcium influx and tegumental disruption in the parasites. In order to know whether the two compounds share the same binding sites in the schistosomes, we performed in vivo and in vitro competition experiments. We took advantage of the fact that Ro 11-3128 is active against immature Schistosoma mansoni (whereas praziquantel is inactive), and praziquantel is active against S. japonicum (which is insensitive to Ro 11-3128). An excess of praziquantel did not inhibit the activity of Ro 11-3128 against immature S. mansoni and an excess of Ro 11-3128 did not inhibit the activity of praziquantel against S. japonicum, suggesting that the schistosome binding sites of the two drugs are different. On the other hand, cytochalasin D, an agent known to perturb – among other things – calcium channel function, was capable of inhibiting the schistosomicidal activity of both praziquantel and Ro 11-3128, thus adding another element of similarity between the two anti-schistosomal agents. A similar, albeit partial, inhibition of the schistosomicidal activity of the two drugs was exerted by some of the classical calcium channel blockers. Taken together, these results suggest that praziquantel and Ro 11-3128, although binding to different schistosome receptor sites, may use the same basic anti-schistosomal effector mechanisms.
Collapse
|
35
|
Caffrey CR. Chemotherapy of schistosomiasis: present and future. Curr Opin Chem Biol 2007; 11:433-9. [PMID: 17652008 DOI: 10.1016/j.cbpa.2007.05.031] [Citation(s) in RCA: 203] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2007] [Revised: 05/23/2007] [Accepted: 05/29/2007] [Indexed: 12/12/2022]
Abstract
Schistosomiasis is a chronic parasitic disease in tropical and subtropical regions and is associated with a variety of clinical syndromes that may lead to severe morbidity. Over the past 25 years, therapy and control of schistosomiasis has come to rely heavily on one drug, praziquantel (PZQ). This reliance is of concern should widespread treatment failure arise, particularly as measures are being undertaken to increase PZQ's availability. This review summarizes the use, possible modes of action and limitations of PZQ, and recent attempts to derive synthetic analogs. Alternative artemisinin-based chemotherapies that have shown applicability in certain disease settings are also similarly examined. Looking forward, the review highlights some of the more experimental anti-schistosomals being evaluated (e.g. the trioxolanes), including those where knowledge of the parasite target (e.g. cysteine proteases and hemozoin formation) is more defined.
Collapse
Affiliation(s)
- Conor R Caffrey
- Sandler Center for Basic Research in Parasitic Diseases, Byers Hall N508, University of California San Francisco, 1700 4th Street, San Francisco, CA 94158-2330, United States.
| |
Collapse
|
36
|
Kusel JR, Al-Adhami BH, Doenhoff MJ. The schistosome in the mammalian host: understanding the mechanisms of adaptation. Parasitology 2007; 134:1477-526. [PMID: 17572930 DOI: 10.1017/s0031182007002971] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
SUMMARYIn this review, we envisage the host environment, not as a hostile one, since the schistosome thrives there, but as one in which the relationship between the two organisms consists of constant communication, through signalling mechanisms involving sense organs, surface glycocalyx, surface membrane and internal organs of the parasite, with host fluids and cells. The surface and secretions of the schistosome egg have very different properties from those of other parasite stages, but adapted for the dispersal of the eggs and for the preservation of host liver function. We draw from studies of mammalian cells and other organisms to indicate how further work might be carried out on the signalling function of the surface glycocalyx, the raft structure of the surface and existence of pores in the surface membrane, the repair of the surface membrane, the role of the membrane structure in ion channel function (including recent work on the actin cytoskeleton and calcium channels) and the possible role of P-glycoproteins in the adaptation of the parasite to its environment. We are speculative in some areas, such as the suggestions that variability in surface properties of schistosomes may relate to the existence of membrane rafts and that parasite communities may exhibit quorum sensing. This speculative approach is adopted with the hope that future work on the whole organisms and their interactions will be encouraged.
Collapse
Affiliation(s)
- J R Kusel
- Glasgow Biomedical Research Centre, University of Glasgow, Glasgow G12 8TA, UK.
| | | | | |
Collapse
|
37
|
Abstract
Evaluation of: Pica-Mattoccia L, Valle C, Basso A et al.: Cytochalasin D abolishes the schistosomicidal activity of praziquantel. Exp. Parasitol. 115(4), 344–351 (2007). Parasitic flatworms of the genus Schistosoma are the causative agents of schistosomiasis, a widespread tropical disease that affects hundreds of millions of people worldwide. The current drug of choice against schistosomiasis is praziquantel. For some time, it has been known that praziquantel disrupts calcium homeostasis within the parasite. However, in the three decades since its introduction, the precise mode of praziquantel action has remained undefined. In this report, Pica-Mattoccia and colleagues use pharmacological agents to help further dissect the molecular target of this drug.
Collapse
|
38
|
Angelucci F, Basso A, Bellelli A, Brunori M, Pica Mattoccia L, Valle C. The anti-schistosomal drug praziquantel is an adenosine antagonist. Parasitology 2007; 134:1215-21. [PMID: 17428352 DOI: 10.1017/s0031182007002600] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The mechanism of action of praziquantel (PZQ), the drug of choice against schistosomiasis, is still unclear. Since exposure of schistosomes to the drug is associated with calcium influx and muscular contraction, calcium channels have been suggested as the target, although direct combination of PZQ with their subunits was never demonstrated. We report a hitherto unknown effect of PZQ, namely the inhibition of nucleoside uptake, as observed in living worms using radio-isotope labelled adenosine and uridine. This effect is clearly seen in schistosomes but is absent in mammalian cells in culture. Moreover it is a specific pharmacological effect seen exclusively with the active levo-R(-)stereo isomer of the drug, and is shared by at least one benzodiazepine having antischistosomal activity. This novel effect acquires significance given that schistosomes cannot synthesize purine nucleosides de novo. A possible relationship between this novel effect and the known action of PZQ on calcium channels is discussed, since adenosine is known to bind to specific receptors and to behave as an indirect antagonist of calcium release in mammalian cells. If calcium channels were correlated with adenosine receptors also in schistosomes, as they are in mammals, this would support the hypothesis that PZQ-induced calcium influx may be correlated to adenosine receptor blockade.
Collapse
Affiliation(s)
- F Angelucci
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto Pasteur - Fondazione Cenci Bolognetti, Università di Roma Sapienza, Piazzale Aldo Moro 5, 00185 Roma, Italy
| | | | | | | | | | | |
Collapse
|
39
|
Calcium channel antagonists: clinical uses--past, present and future. Biochem Pharmacol 2007; 74:1-9. [PMID: 17276408 DOI: 10.1016/j.bcp.2007.01.016] [Citation(s) in RCA: 173] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2006] [Revised: 01/09/2007] [Accepted: 01/09/2007] [Indexed: 12/29/2022]
Abstract
The calcium channel antagonists are a mature group of drugs directed at cardiovascular diseases including hypertension, angina, peripheral vascular disorders and some arrhythmic conditions. Their sites and mechanisms of actions have been well explored over the past two decades and their interactions at the alpha(1) subunit of L-type channels (Ca(V)1.1-1.4) have made them valuable molecular tools for channel classification and localization. With the realization that other members of the voltage-gated calcium channel family exist--Ca(V)2.1-2.3 and Ca(V)3.1-3.3--considerable effort has been directed to drug discovery at these channel types where therapeutic prospects exist for a variety of disorders including pain, epilepsy, affective disorders, neurodegenerative disorders, etc. In contrast to the situation with the L-type channel antagonists success in developing small molecule antagonists of therapeutic utility for these other channel types has thus far been lacking. The reasons for this are explored and potential new directions are indicated including male fertility, bone growth, immune disorders, cancer and schistosomiasis.
Collapse
|