1
|
Barroeta-Echegaray E, Fonseca-Liñán R, Argüello-García R, Rodríguez-Muñoz R, Bermúdez-Cruz RM, Nava P, Ortega-Pierres MG. Giardia duodenalis enolase is secreted as monomer during trophozoite-epithelial cell interactions, activates plasminogen and induces necroptotic damage. Front Cell Infect Microbiol 2022; 12:928687. [PMID: 36093180 PMCID: PMC9452966 DOI: 10.3389/fcimb.2022.928687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 08/09/2022] [Indexed: 12/01/2022] Open
Abstract
Enolase, a multifunctional protein expressed by multiple pathogens activates plasminogen to promote proteolysis on components of the extracellular matrix, an important event in early host-pathogen interactions. A secreted form of enolase that is released upon the interaction of trophozoites with epithelial cells has been detected in the secretome of G. duodenalis. However, the role of enolase in the host-pathogen interactions remains largely unknown. In this work, the effects of G. duodenalis enolase (Gd-eno) on the epithelial cell model (IEC-6) were analyzed. Firstly, the coding sequence of Giardia enolase was cloned and the recombinant protein used to raise antibodies that were then used to define the localization and role of enolase in epithelial cell-trophozoite interactions. Gd-eno was detected in small cytoplasmic vesicles as well as at the surface and is enriched in the region of the ventral disk of Giardia trophozoites. Moreover, the blocking of the soluble monomeric form of the enzyme, which is secreted upon interaction with IEC-6 cells by the anti-rGd-eno antibodies, significantly inhibited trophozoite attachment to intestinal IEC-6 cell monolayers. Further, rGd-eno was able to bind human plasminogen (HsPlg) and enhanced plasmin activity in vitro when the trophozoites were incubated with the intrinsic plasminogen activators of epithelial cells. In IEC-6 cells, rGd-eno treatment induced a profuse cell damage characterized by copious vacuolization, intercellular separation and detachment from the substrate; this effect was inhibited by either anti-Gd-eno Abs or the plasmin inhibitor ϵ- aminocaproic acid. Lastly, we established that in epithelial cells rGd-eno treatment induced a necroptotic-like process mediated by tumor necrosis factor α (TNF-α) and the apoptosis inducing factor (AIF), but independent of caspase-3. All together, these results suggest that Giardia enolase is a secreted moonlighting protein that stimulates a necroptotic-like process in IEC-6 epithelial cells via plasminogen activation along to TNFα and AIF activities and must be considered as a virulence factor.
Collapse
Affiliation(s)
- Elisa Barroeta-Echegaray
- Department of Genetics and Molecular Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Rocío Fonseca-Liñán
- Department of Genetics and Molecular Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Raúl Argüello-García
- Department of Genetics and Molecular Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Rafael Rodríguez-Muñoz
- Department of Physiology, Biophysics and Neurosciences, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Rosa María Bermúdez-Cruz
- Department of Genetics and Molecular Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Porfirio Nava
- Department of Physiology, Biophysics and Neurosciences, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - M. Guadalupe Ortega-Pierres
- Department of Genetics and Molecular Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
- *Correspondence: M. Guadalupe Ortega-Pierres,
| |
Collapse
|
2
|
Jiménez M, Cervantes-García D, Córdova-Dávalos LE, Pérez-Rodríguez MJ, Gonzalez-Espinosa C, Salinas E. Responses of Mast Cells to Pathogens: Beneficial and Detrimental Roles. Front Immunol 2021; 12:685865. [PMID: 34211473 PMCID: PMC8240065 DOI: 10.3389/fimmu.2021.685865] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/28/2021] [Indexed: 12/19/2022] Open
Abstract
Mast cells (MCs) are strategically located in tissues close to the external environment, being one of the first immune cells to interact with invading pathogens. They are long living effector cells equipped with different receptors that allow microbial recognition. Once activated, MCs release numerous biologically active mediators in the site of pathogen contact, which induce vascular endothelium modification, inflammation development and extracellular matrix remodeling. Efficient and direct antimicrobial mechanisms of MCs involve phagocytosis with oxidative and non-oxidative microbial destruction, extracellular trap formation, and the release of antimicrobial substances. MCs also contribute to host defense through the attraction and activation of phagocytic and inflammatory cells, shaping the innate and adaptive immune responses. However, as part of their response to pathogens and under an impaired, sustained, or systemic activation, MCs may contribute to tissue damage. This review will focus on the current knowledge about direct and indirect contribution of MCs to pathogen clearance. Antimicrobial mechanisms of MCs are addressed with special attention to signaling pathways involved and molecular weapons implicated. The role of MCs in a dysregulated host response that can increase morbidity and mortality is also reviewed and discussed, highlighting the complexity of MCs biology in the context of host-pathogen interactions.
Collapse
Affiliation(s)
- Mariela Jiménez
- Laboratory of Immunology, Department of Microbiology, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
| | - Daniel Cervantes-García
- Laboratory of Immunology, Department of Microbiology, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico.,Cátedras CONACYT, National Council of Science and Technology, Mexico City, Mexico
| | - Laura E Córdova-Dávalos
- Laboratory of Immunology, Department of Microbiology, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
| | - Marian Jesabel Pérez-Rodríguez
- Department of Pharmacobiology, Centro de Investigación y de Estudios Avanzados (Cinvestav), Unidad Sede Sur, Mexico City, Mexico
| | - Claudia Gonzalez-Espinosa
- Department of Pharmacobiology, Centro de Investigación y de Estudios Avanzados (Cinvestav), Unidad Sede Sur, Mexico City, Mexico
| | - Eva Salinas
- Laboratory of Immunology, Department of Microbiology, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
| |
Collapse
|
3
|
Faria CP, Neves BM, Lourenço Á, Cruz MT, Martins JD, Silva A, Pereira S, Sousa MDC. Giardia lamblia Decreases NF-κB p65 RelA Protein Levels and Modulates LPS-Induced Pro-Inflammatory Response in Macrophages. Sci Rep 2020; 10:6234. [PMID: 32277133 PMCID: PMC7148380 DOI: 10.1038/s41598-020-63231-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 03/20/2020] [Indexed: 11/09/2022] Open
Abstract
The protozoan Giardia lamblia is the most common cause of parasitic gastrointestinal infection worldwide. The parasite developed sophisticated, yet not completely disclosed, mechanisms to escape immune system and growth in the intestine. To further understand the interaction of G. lamblia with host immune cells, we investigated the ability of parasites to modulate the canonical activation of mouse macrophages (Raw 264.7 cell line) and human monocyte-derived macrophages triggered by the TLR4 agonist, lipopolysaccharide (LPS). We observed that G. lamblia impairs LPS-evoked pro-inflammatory status in these macrophage-like cells through inhibition of cyclooxygenase-2 and inducible nitric oxide synthase expression and subsequent NO production. This effect was in part due to the activity of three G. lamblia proteases, a 135 kDa metalloprotease and two cysteine proteases with 75 and 63 kDa, that cleave the p65RelA subunit of the nuclear factor-kappa B (NF-κB). Moreover, Tnf and Ccl4 transcription was increased in the presence of the parasite. Overall, our data indicates that G. lamblia modulates macrophages inflammatory response through impairment of the NF-κB, thus silencing a crucial signaling pathway of the host innate immune response.
Collapse
Affiliation(s)
- Clarissa Perez Faria
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.,Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Bruno Miguel Neves
- Department of Medical Sciences and Institute of Biomedicine - iBiMED, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Ágata Lourenço
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.,Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Maria Teresa Cruz
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.,Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - João D Martins
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Ana Silva
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Sónia Pereira
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.,Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Maria do Céu Sousa
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal. .,Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
4
|
Li Z, Peirasmaki D, Svärd S, Åbrink M. Giardia excretory-secretory proteins modulate the enzymatic activities of mast cell chymase and tryptase. Mol Immunol 2019; 114:535-544. [PMID: 31518857 DOI: 10.1016/j.molimm.2019.07.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 07/22/2019] [Accepted: 07/25/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Mast cells are involved in the host immune response controlling infection with the non-invasive intestinal protozoan parasite Giardia intestinalis. Experimental infections in rodents with G. intestinalis showed increased intestinal expression of mucosal and connective mast cell specific proteases suggesting that both mucosal and connective tissue mast cells are recruited and activated during infection. During infection Giardia excretory-secretory proteins (ESPs) with immunomodulatory capacity are released. However, studies investigating potential interactions between Giardia ESPs and the connective tissue mast cell specific serine proteases, i.e. human chymase and mouse mast cell protease (mMCP)-4 and, human and mouse tryptase (mMCP-6) remain scarce. RESULTS We first investigated if soluble Giardia proteins (sGPs), which over-lap extensively in protein content with ESP fractions, from the isolates GS, WB and H3, could induce mast cell activation. sGPs induced a minor activation of bone marrow derived mucosal-like mast cells, as indicated by increased IL-6 secretion and no degranulation. Furthermore, sGPs were highly resistant to degradation by human tryptase while human chymase degraded a 65 kDa sGP and, wild-type mouse ear tissue extracts degraded several protein bands in the 10 to 75 kDa range. In striking contrast, sGPs and ESPs were found to increase the enzymatic activity of human and mouse tryptase and to reduce the activity of human and mouse chymase. CONCLUSION Our finding suggests that Giardia ssp. via enhancement or reduction of mast cell protease activity may modulate mast cell-driven intestinal immune responses. ESP-mediated modulation of the mast cell specific proteases may also increase degradation of tight junctions, which may be beneficial for Giardia ssp. during infection.
Collapse
Affiliation(s)
- Zhiqiang Li
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, SE-75007 Uppsala, Sweden
| | - Dimitra Peirasmaki
- Department of Cell and Molecular Biology, Uppsala University, SE-75124 Uppsala, Sweden
| | - Staffan Svärd
- Department of Cell and Molecular Biology, Uppsala University, SE-75124 Uppsala, Sweden
| | - Magnus Åbrink
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, SE-75007 Uppsala, Sweden.
| |
Collapse
|
5
|
Muñoz-Cruz S, Gomez-García A, Matadamas-Martínez F, Alvarado-Torres JA, Meza-Cervantez P, Arriaga-Pizano L, Yépez-Mulia L. Giardia lamblia: identification of molecules that contribute to direct mast cell activation. Parasitol Res 2018; 117:2555-2567. [DOI: 10.1007/s00436-018-5944-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 05/24/2018] [Indexed: 12/01/2022]
|
6
|
Modeling long-term host cell-Giardia lamblia interactions in an in vitro co-culture system. PLoS One 2013; 8:e81104. [PMID: 24312526 PMCID: PMC3849038 DOI: 10.1371/journal.pone.0081104] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 10/09/2013] [Indexed: 12/30/2022] Open
Abstract
Globally, there are greater than 700,000 deaths per year associated with diarrheal disease. The flagellated intestinal parasite, Giardia lamblia, is one of the most common intestinal pathogens in both humans and animals throughout the world. While attached to the gastrointestinal epithelium, Giardia induces epithelial cell apoptosis, disrupts tight junctions, and increases intestinal permeability. The underlying cellular and molecular mechanisms of giardiasis, including the role lamina propria immune cells, such as macrophages, play in parasite control or clearance are poorly understood. Thus far, one of the major obstacles in ascertaining the mechanisms of Giardia pathology is the lack of a functionally relevant model for the long-term study of the parasite in vitro. Here we report on the development of an in vitro co-culture model which maintains the basolateral-apical architecture of the small intestine and allows for long-term survival of the parasite. Using transwell inserts, Caco-2 intestinal epithelial cells and IC-21 macrophages are co-cultured in the presence of Giardia trophozoites. Using the developed model, we show that Giardia trophozoites survive over 21 days and proliferate in a combination media of Caco-2 cell and Giardia medium. Giardia induces apoptosis of epithelial cells through caspase-3 activation and macrophages do not abrogate this response. Additionally, macrophages induce Caco-2 cells to secrete the pro-inflammatory cytokines, GRO and IL-8, a response abolished by Giardia indicating parasite induced suppression of the host immune response. The co-culture model provides additional complexity and information when compared to a single-cell model. This model will be a valuable tool for answering long-standing questions on host-parasite biology that may lead to discovery of new therapeutic interventions.
Collapse
|
7
|
Abdel-Hafeez EH, Belal US, Abdellatif MZM, Naoi K, Norose K. Breast-feeding protects infantile diarrhea caused by intestinal protozoan infections. THE KOREAN JOURNAL OF PARASITOLOGY 2013; 51:519-24. [PMID: 24327776 PMCID: PMC3857498 DOI: 10.3347/kjp.2013.51.5.519] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 08/20/2013] [Accepted: 08/21/2013] [Indexed: 02/01/2023]
Abstract
This study investigated the effect of breast-feeding in protection against protozoan infection in infants with persistent diarrhea. Infants were classified into 2 groups; 161 breast-fed infants and the same number of non-breast-fed infants. Microscopic examinations of stool were done for detection of parasites and measuring the intensity of infection. Moreover, serum levels of IgE and TNF-α were measured by ELISA. Cryptosporidium spp., Entamoeba histolytica/Entamoeba dispar, Giardia lamblia, and Blastocystis sp. were demonstrated in infants with persistent diarrhea. The percentage of protozoan infections was significantly lower in breast-fed infants than that in the non-breast-fed infants. The levels of IgE and TNF-α were significantly lower in the breast-fed group than in the non-breast-fed group. There were significant positive associations between the serum levels of IgE and TNF-α and the intensity of parasite infection in the breast-fed group. It is suggested that breast-feeding has an attenuating effect on the rate and intensity of parasite infection.
Collapse
|
8
|
Li S, Li W, Yang Z, Song S, Yang J, Gong P, Zhang W, Liu K, Li J, Zhang G, Zhang X. Infection of cattle with Cryptosporidium parvum: mast cell accumulation in small intestine mucosa. Vet Pathol 2013; 50:842-8. [PMID: 23370094 DOI: 10.1177/0300985813476055] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mast cells might play an important role as the major effector cells in the immune response against Cryptosporidium parvum. C. parvum is a protozoan parasite that causes cryptosporidiosis in animals and humans worldwide. To investigate the interaction between C. parvum and mast cells during infection, nine 3-day-old male calves were orally challenged with 10(6) oocysts of C. parvum per calf. The distribution of mast cells in the mucosa of the small intestine was analyzed by toluidine blue staining. The concentrations of histamine and the cytokines interferon-γ, interleukin-4, interleukin-2, and interleukin-12 were measured in the serum, and the histamine levels were also determined from the intestinal contents. The following clinical signs were monitored: nausea, watery diarrhea, dehydration, and weight loss. Oocysts were shed in the feces during the infection period. C. parvum infection induced an increase in mast cell numbers in the mucosa of the small intestine in distinct temporal and spatial patterns. Infection with C. parvum can induce mastocytosis in the entire small intestinal mucosa in immune-competent calves, and the presence of the parasites influences the distribution profile of the mast cells.
Collapse
Affiliation(s)
- S Li
- College of Animal Science and Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Kalinna BH, Terrazas LI, Satoskar AR. A special issue on immunology and cell biology of protozoa. Exp Parasitol 2010; 126:281-2. [PMID: 20816388 DOI: 10.1016/j.exppara.2010.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|