1
|
Vicente TT, Arsalani S, Quiel MS, Fernandes GSP, da Silva KR, Fukada SY, Gualdi AJ, Guidelli ÉJ, Baffa O, Carneiro AAO, Ramos AP, Pavan TZ. Improving the Theranostic Potential of Magnetic Nanoparticles by Coating with Natural Rubber Latex for Ultrasound, Photoacoustic Imaging, and Magnetic Hyperthermia: An In Vitro Study. Pharmaceutics 2024; 16:1474. [PMID: 39598597 PMCID: PMC11597301 DOI: 10.3390/pharmaceutics16111474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/13/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND/OBJECTIVES Magnetic nanoparticles (MNPs) have gained attention in theranostics for their ability to combine diagnostic imaging and therapeutic capabilities in a single platform, enhancing targeted treatment and monitoring. Surface coatings are essential for stabilizing MNPs, improving biocompatibility, and preventing oxidation that could compromise their functionality. Natural rubber latex (NRL) offers a promising coating alternative due to its biocompatibility and stability-enhancing properties. While NRL-coated MNPs have shown potential in applications such as magnetic resonance imaging, their effectiveness in theranostics, particularly magnetic hyperthermia (MH) and photoacoustic imaging (PAI), remains underexplored. METHODS In this study, iron oxide nanoparticles were synthesized via coprecipitation, using NRL as the coating agent. The samples were labeled by NRL amount used during synthesis: NRL-100 for 100 μL and NRL-400 for 400 μL. RESULTS Characterization results showed that NRL-100 and NRL-400 samples exhibited improved stability with zeta potentials of -27 mV and -30 mV, respectively and higher saturation magnetization values of 79 emu/g and 88 emu/g of Fe3O4. Building on these findings, we evaluated the performance of these nanoparticles in biomedical applications, including magnetomotive ultrasound (MMUS), PAI, and MH. NRL-100 and NRL-400 samples showed greater displacements and higher contrast in MMUS than uncoated samples (5, 8, and 9 µm) at 0.5 wt%. In addition, NRL-coated samples demonstrated an improved signal-to-noise ratio (SNR) in PAI. SNR values were 24.72 (0.51), 31.44 (0.44), and 33.81 (0.46) dB for the phantoms containing uncoated MNPs, NRL-100, and NRL-400, respectively. Calorimetric measurements for MH confirmed the potential of NRL-coated MNPs as efficient heat-generating agents, showing values of 43 and 40 W/g for NRL-100 and NRL-400, respectively. CONCLUSIONS Overall, NRL-coated MNPs showed great promise as contrast agents in MMUS and PAI imaging, as well as in MH applications.
Collapse
Affiliation(s)
- Thiago T. Vicente
- Department of Physics, FFCLRP, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto 14040-901, São Paulo, Brazil; (T.T.V.); (S.A.); (M.S.Q.); (G.S.P.F.); (É.J.G.); (O.B.); (A.A.O.C.)
| | - Saeideh Arsalani
- Department of Physics, FFCLRP, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto 14040-901, São Paulo, Brazil; (T.T.V.); (S.A.); (M.S.Q.); (G.S.P.F.); (É.J.G.); (O.B.); (A.A.O.C.)
- UT Southwestern Medical Center, Biomedical Engineering Department, Dallas, TA 75235-7323, USA
| | - Mateus S. Quiel
- Department of Physics, FFCLRP, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto 14040-901, São Paulo, Brazil; (T.T.V.); (S.A.); (M.S.Q.); (G.S.P.F.); (É.J.G.); (O.B.); (A.A.O.C.)
| | - Guilherme S. P. Fernandes
- Department of Physics, FFCLRP, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto 14040-901, São Paulo, Brazil; (T.T.V.); (S.A.); (M.S.Q.); (G.S.P.F.); (É.J.G.); (O.B.); (A.A.O.C.)
| | - Keteryne R. da Silva
- Department of BioMolecular Sciences, FCFRP, University of São Paulo, Av. Professor Doutor Zeferino Vaz, sn, Ribeirão Preto 14040-901, São Paulo, Brazil; (K.R.d.S.); (S.Y.F.)
| | - Sandra Y. Fukada
- Department of BioMolecular Sciences, FCFRP, University of São Paulo, Av. Professor Doutor Zeferino Vaz, sn, Ribeirão Preto 14040-901, São Paulo, Brazil; (K.R.d.S.); (S.Y.F.)
| | - Alexandre J. Gualdi
- Department of Physics, Federal University of São Carlos, Rod. Washington Luiz, km 235, São Carlos 13565-905, São Paulo, Brazil;
| | - Éder J. Guidelli
- Department of Physics, FFCLRP, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto 14040-901, São Paulo, Brazil; (T.T.V.); (S.A.); (M.S.Q.); (G.S.P.F.); (É.J.G.); (O.B.); (A.A.O.C.)
| | - Oswaldo Baffa
- Department of Physics, FFCLRP, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto 14040-901, São Paulo, Brazil; (T.T.V.); (S.A.); (M.S.Q.); (G.S.P.F.); (É.J.G.); (O.B.); (A.A.O.C.)
| | - Antônio A. O. Carneiro
- Department of Physics, FFCLRP, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto 14040-901, São Paulo, Brazil; (T.T.V.); (S.A.); (M.S.Q.); (G.S.P.F.); (É.J.G.); (O.B.); (A.A.O.C.)
| | - Ana Paula Ramos
- Department of Chemistry, FFCLRP, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto 14040-901, São Paulo, Brazil;
| | - Theo Z. Pavan
- Department of Physics, FFCLRP, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto 14040-901, São Paulo, Brazil; (T.T.V.); (S.A.); (M.S.Q.); (G.S.P.F.); (É.J.G.); (O.B.); (A.A.O.C.)
| |
Collapse
|
2
|
Guerra RO, do Carmo Neto JR, da Silva PEF, Franco PIR, Barbosa RM, de Albuquerque Martins T, Costa-Madeira J, de Assunção TSF, de Oliveira CJF, Machado JR, Silva Teixeira LDA, Rodrigues WF, Júnior VR, Silva ACA, da Silva MV. Metallic nanoparticles and treatment of cutaneous leishmaniasis: A systematic review. J Trace Elem Med Biol 2024; 83:127404. [PMID: 38364464 DOI: 10.1016/j.jtemb.2024.127404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 01/22/2024] [Accepted: 01/29/2024] [Indexed: 02/18/2024]
Abstract
BACKGROUND Cutaneous leishmaniasis (LC) is an infectious vector-borne disease caused by parasites belonging to the genus Leishmania. Metallic nanoparticles (MNPs) have been investigated as alternatives for the treatment of LC owing to their small size and high surface area. Here, we aimed to evaluate the effect of MNPs in the treatment of LC through experimental, in vitro and in vivo investigations. METHODS The databases used were MEDLINE/ PubMed, Scopus, Web of Science, Embase, and Science Direct. Manual searches of the reference lists of the included studies and grey literature were also performed. English language and experimental in vitro and in vivo studies using different Leishmania species, both related to MNP treatment, were included. This study was registered in PROSPERO (CRD42021248245). RESULTS A total of 93 articles were included. Silver nanoparticles are the most studied MNPs, and L. tropica is the most studied species. Among the mechanisms of action of MNPs in vitro, we highlight the production of reactive oxygen species, direct contact of MNPs with the biomolecules of the parasite, and release of metal ions. CONCLUSION MNPs may be considered a promising alternative for the treatment of LC, but further studies are needed to define their efficacy and safety.
Collapse
Affiliation(s)
- Rhanoica Oliveira Guerra
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirão Preto, SP, Brazil
| | - José Rodrigues do Carmo Neto
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiania, Goiás, Brazil.
| | - Priscilla Elias Ferreira da Silva
- Post Graduation Course of Tropical Medicine and Infectology, Institute of Healthy Science´s, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Pablo Igor Ribeiro Franco
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiania, Goiás, Brazil
| | - Rafaela Miranda Barbosa
- Department of Basic and Applied Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Tarcísio de Albuquerque Martins
- Post-Graduation Course of Healthy Science, Institute of Healthy Science, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Juliana Costa-Madeira
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirão Preto, SP, Brazil
| | - Thais Soares Farnesi de Assunção
- Post Graduation Course of Tropical Medicine and Infectology, Institute of Healthy Science´s, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | | | - Juliana Reis Machado
- Department of General Pathology, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Luciana de Almeida Silva Teixeira
- Department of Internal Medicine, Institute of Healthy Science, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Wellington Francisco Rodrigues
- Post-Graduation Course of Healthy Science, Institute of Healthy Science, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Virmondes Rodrigues Júnior
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences, Brazil
| | - Anielle Christine Almeida Silva
- Laboratory of New Nanostructured and Functional Materials, Physics Institute, Federal University of Alagoas, Maceió, Alagoas, Brazil
| | - Marcos Vinicius da Silva
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences, Brazil.
| |
Collapse
|
3
|
Borges FA, de Camargo Drago B, Baggio LO, de Barros NR, Sant'Ana Pegorin Brasil G, Scontri M, Mussagy CU, da Silva Ribeiro MC, Milori DMBP, de Morais CP, Marangoni BS, Nicolodelli G, Mecwan M, Mandal K, Guerra NB, Menegatti CR, Herculano RD. Metronidazole-loaded gold nanoparticles in natural rubber latex as a potential wound dressing. Int J Biol Macromol 2022; 211:568-579. [PMID: 35533848 DOI: 10.1016/j.ijbiomac.2022.05.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 12/19/2022]
Abstract
Gold nanoparticles (AuNPs) have shown interesting properties and specific biofunctions, providing benefits and new opportunities for controlled release systems. In this research, we demonstrated the use of natural rubber latex (NRL) from Hevea brasiliensis as a carrier of AuNPs and the antibiotic metronidazole (MET). We prepared AuNP-MET-NRL and characterized by physicochemical, biological and in vitro release assays. The effect of AuNPs on MET release was evaluated using UV-Vis and Laser-Induced Breakdown Spectroscopy (LIBS) techniques. AuNPs synthesized by Turkevich and Frens method resulted in a spherical shape with diameters of 34.8 ± 5.5 nm. We verified that there was no emergence or disappearance of new vibrational bands. Qualitatively and quantitatively, we showed that the MET crystals dispersed throughout the NRL. The Young's modulus and elongation values at dressing rupture were in the range appropriate for human skin application. 64.70% of the AuNP-MET complex was released within 100 h, exhibiting a second-order exponential release profile. The LIBS technique allowed monitoring of the AuNP release, indicating the Au emission peak reduction at 267.57 nm over time. Moreover, the dressing displayed an excellent hemocompatibility and fibroblast cell viability. These results demonstrated that the AuNP-MET-NRL wound dressing is a promising approach for dermal applications.
Collapse
Affiliation(s)
- Felipe Azevedo Borges
- São Paulo State University (UNESP), Bioengineering & Biomaterials Group, School of Pharmaceutical Sciences, Araraquara, SP, Brazil
| | - Bruno de Camargo Drago
- São Paulo State University (UNESP), Bioengineering & Biomaterials Group, School of Pharmaceutical Sciences, Araraquara, SP, Brazil; São Paulo State University (UNESP), Post-Graduate Program in Biotechnology, Institute of Chemistry, Araraquara, SP, Brazil
| | - Luís Otávio Baggio
- São Paulo State University (UNESP), Department of Biotechnology, School of Sciences, Humanities and Languages, Assis, SP, Brazil
| | - Natan Roberto de Barros
- Terasaki Institute for Biomedical Innovation (TIBI), 11507 W Olympic Blvd., Los Angeles, USA
| | - Giovana Sant'Ana Pegorin Brasil
- São Paulo State University (UNESP), Bioengineering & Biomaterials Group, School of Pharmaceutical Sciences, Araraquara, SP, Brazil; São Paulo State University (UNESP), Post-Graduate Program in Biotechnology, Institute of Chemistry, Araraquara, SP, Brazil
| | - Mateus Scontri
- São Paulo State University (UNESP), Bioengineering & Biomaterials Group, School of Pharmaceutical Sciences, Araraquara, SP, Brazil
| | - Cassamo Ussemane Mussagy
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Chile
| | | | | | | | - Bruno Spolon Marangoni
- Federal University of Mato Grosso do Sul (UFMS), Institute of Physics, Campo Grande, MS, Brazil
| | - Gustavo Nicolodelli
- Federal University of Santa Catarina (UFSC), Department of Physics, Center for Physical Sciences and Mathematics (CFM), Florianópolis, SC, Brazil
| | - Marvin Mecwan
- Terasaki Institute for Biomedical Innovation (TIBI), 11507 W Olympic Blvd., Los Angeles, USA
| | - Kalpana Mandal
- Terasaki Institute for Biomedical Innovation (TIBI), 11507 W Olympic Blvd., Los Angeles, USA
| | - Nayrim Brizuela Guerra
- Area of Exact Sciences and Engineering, University of Caxias do Sul (UCS), Caxias do Sul, RS, Brazil
| | | | - Rondinelli Donizetti Herculano
- São Paulo State University (UNESP), Bioengineering & Biomaterials Group, School of Pharmaceutical Sciences, Araraquara, SP, Brazil; São Paulo State University (UNESP), Department of Biotechnology, School of Sciences, Humanities and Languages, Assis, SP, Brazil; Terasaki Institute for Biomedical Innovation (TIBI), 11507 W Olympic Blvd., Los Angeles, USA.
| |
Collapse
|
4
|
Tangboriboon N, Samattai S, Takkire R, Phasuksom K, Rotjanasuworapong K, Sirivat A. Natural rubber composite film embedded with bio-ionic filler from eggshell as soft compliant electrode. J RUBBER RES 2022. [DOI: 10.1007/s42464-022-00150-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
Guerra RO, do Carmo Neto JR, de Albuquerque Martins T, Farnesi-de-Assunção TS, Junior VR, de Oliveira CJF, Silva ACA, da Silva MV. Metallic Nanoparticles: A New Frontier in the Fight Against Leishmaniasis. Curr Med Chem 2022; 29:4547-4573. [DOI: 10.2174/0929867329666220225111052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/29/2021] [Accepted: 01/01/2022] [Indexed: 11/22/2022]
Abstract
Abstract:
Leishmaniasis is a cutaneous, mucocutaneous, or visceral parasitic disease caused by protozoa of the Leishmania genus. According to the World Health Organization, Leishmaniasis causes approximately 20–40 thousand deaths annually, and Brazil, India, and some countries in Africa are the most affected by this neglected disease. In addition to parasite’s ability to evade the host’s immune system, the incidence of vectors, the genetics of different hosts, and the large number of deaths are mainly due to failures in conventional treatments that have high toxicity, low effectiveness, and prolonged therapeutic regimens. Thus, the development of new alternative therapeutics with more effective and safer actions has become one of the main challenges for researchers studying leishmaniasis. Among the many research and tested options, metallic nanoparticles, such as gold, silver, zinc oxide, and titanium dioxide, have been shown to be one of the most promising therapeutic tool because they are easily prepared and chemically modified, have a broad spectrum of action, low toxicity, and can generate reactive oxygen species and other immune responses that favor their use against different species of Leishmania. This review explores the progress of the use of metallic nanoparticles as a new tool in the treatment of leishmaniasis, as well as discusses the gaps in knowledge that need to be addressed to consolidate a safe, effective, and definitive therapeutic intervention against these infections.
Collapse
Affiliation(s)
- Rhanoica Oliveira Guerra
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences of Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - José Rodrigues do Carmo Neto
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goias, Goiania, GO, Brazil
| | - Tarcísio de Albuquerque Martins
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences of Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Thaís Soares Farnesi-de-Assunção
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences of Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Virmondes Rodrigues Junior
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences of Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Carlo José Freire de Oliveira
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences of Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Anielle Christine Almeida Silva
- Laboratório de Novos Materiais Nanoestruturados e Funcionais (LNMIS), Physics Institute, Federal University of Alagoas, Maceió, Alagoas, Brazil
| | - Marcos Vinicius da Silva
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences of Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| |
Collapse
|
6
|
Kammona O, Tsanaktsidou E. Nanotechnology-aided diagnosis, treatment and prevention of leishmaniasis. Int J Pharm 2021; 605:120761. [PMID: 34081999 DOI: 10.1016/j.ijpharm.2021.120761] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/10/2021] [Accepted: 05/27/2021] [Indexed: 02/06/2023]
Abstract
Leishmaniasis is a prevalent parasitic infection belonging to neglected tropical diseases. It is caused by Leishmania protozoan parasites transmitted by sandflies and it is responsible for increased morbidity/mortality especially in low- and middle-income countries. The lack of cheap, portable, easy to use diagnostic tools exhibiting high efficiency and specificity impede the early diagnosis of the disease. Furthermore, the typical anti-leishmanial agents are cytotoxic, characterized by low patient compliance and require long-term regimen and usually hospitalization. In addition, due to the intracellular nature of the disease, the existing treatments exhibit low bioavailability resulting in low therapeutic efficacy. The above, combined with the common development of resistance against the anti-leishmanial agents, denote the urgent need for novel therapeutic strategies. Furthermore, the lack of effective prophylactic vaccines hinders the control of the disease. The development of nanoparticle-based biosensors and nanocarrier-aided treatment and vaccination strategies could advance the diagnosis, therapy and prevention of leishmaniasis. The present review intends to highlight the various nanotechnology-based approaches pursued until now to improve the detection of Leishmania species in biological samples, decrease the side effects and increase the efficacy of anti-leishmanial drugs, and induce enhanced immune responses, specifically focusing on the outcome of their preclinical and clinical evaluation.
Collapse
Affiliation(s)
- Olga Kammona
- Chemical Process and Energy Resources Institute, Centre for Research and Technology Hellas, P.O. Box 60361, 57001 Thessaloniki, Greece.
| | - Evgenia Tsanaktsidou
- Chemical Process and Energy Resources Institute, Centre for Research and Technology Hellas, P.O. Box 60361, 57001 Thessaloniki, Greece
| |
Collapse
|
7
|
Guerra NB, Sant'Ana Pegorin G, Boratto MH, de Barros NR, de Oliveira Graeff CF, Herculano RD. Biomedical applications of natural rubber latex from the rubber tree Hevea brasiliensis. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 126:112126. [PMID: 34082943 DOI: 10.1016/j.msec.2021.112126] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/14/2021] [Accepted: 04/18/2021] [Indexed: 12/13/2022]
Abstract
The past decades have witnessed tremendous progress in biomaterials in terms of functionalities and applications. To realize various functions such as tissue engineering, tissue repair, and controlled release of therapeutics, a biocompatible and biologically active material is often needed. However, it is a difficult task to find either synthetic or natural materials suitable for in vivo applications. Nature has provided us with the natural rubber latex from the rubber tree Hevea brasiliensis, a natural polymer that is biocompatible and has been proved as inducing tissue repair by enhancing the vasculogenesis process, guiding and recruiting cells responsible for osteogenesis, and acting as a solid matrix for controlled drug release. It would be extremely useful if medical devices can be fabricated with materials that have these biological properties. Recently, various types of natural rubber latex-based biomedical devices have been developed to enhance tissue repair by taking advantage of its biological properties. Most of them were used to enhance tissue repair in chronic wounds and critical bone defects. Others were used to design drug release systems to locally release therapeutics in a sustained and controlled manner. Here, we summarize recent progress made in these areas. Specifically, we compare various applications and their performance metrics. We also discuss critical problems with the use of natural rubber latex in biomedical applications and highlight future opportunities for biomedical devices produced either with pre-treated natural rubber latex or with proteins purified from the natural rubber latex.
Collapse
Affiliation(s)
- Nayrim Brizuela Guerra
- Area of Exact Sciences and Engineering, University of Caxias do Sul (UCS), Caxias do Sul, Rio Grande do Sul, BR
| | - Giovana Sant'Ana Pegorin
- Department of Biotechnology and Bioprocess Engineering, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Km01 Araraquara-Jaú Road, Araraquara, São Paulo, Brazil
| | - Miguel Henrique Boratto
- Department of Physics, São Paulo State University (UNESP), School of Sciences, Bauru, São Paulo, Brazil
| | - Natan Roberto de Barros
- Terasaki Institute for Biomedical Innovation (TIBI), 11570 West Olympic Boulevard, Los Angeles, CA 90064, USA.
| | | | - Rondinelli Donizetti Herculano
- Department of Biotechnology and Bioprocess Engineering, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Km01 Araraquara-Jaú Road, Araraquara, São Paulo, Brazil
| |
Collapse
|
8
|
Sharma G, Kalra SK, Tejan N, Ghoshal U. Nanoparticles based therapeutic efficacy against Acanthamoeba: Updates and future prospect. Exp Parasitol 2020; 218:108008. [PMID: 32979343 DOI: 10.1016/j.exppara.2020.108008] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 09/17/2020] [Accepted: 09/23/2020] [Indexed: 12/15/2022]
Abstract
Acanthamoeba sp. is a free living amoeba that causes severe, painful and fatal infections, viz. Acanthamoeba keratitis and granulomatous amoebic encephalitis among humans. Antimicrobial chemotherapy used against Acanthamoeba is toxic to human cells and show side effects as well. Infections due to Acanthamoeba also pose challenges towards currently used antimicrobial treatment including resistance and transformation of trophozoites to resistant cyst forms that can lead to recurrence of infection. Therapeutic agents targeting central nervous system infections caused by Acanthamoeba should be able to cross blood-brain barrier. Nanoparticles based drug delivery put forth an effective therapeutic method to overcome the limitations of currently used antimicrobial chemotherapy. In recent years, various researchers investigated the effectiveness of nanoparticles conjugated drug and/or naturally occurring plant compounds against both trophozoites and cyst form of Acanthamoeba. In the current review, a reasonable effort has been made to provide a comprehensive overview of various nanoparticles tested for their efficacy against Acanthamoeba. This review summarizes the noteworthy details of research performed to elucidate the effect of nanoparticles conjugated drugs against Acanthamoeba.
Collapse
Affiliation(s)
- Geetansh Sharma
- Faculty of Applied Sciences & Biotechnology, Shoolini University of Biotechnology & Management Sciences, Bajhol, District Solan, H.P, 173229, India
| | - Sonali K Kalra
- Faculty of Applied Sciences & Biotechnology, Shoolini University of Biotechnology & Management Sciences, Bajhol, District Solan, H.P, 173229, India.
| | - Nidhi Tejan
- Department of Microbiology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Raebareili Road, Lucknow, U.P, 226014, India
| | - Ujjala Ghoshal
- Department of Microbiology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Raebareili Road, Lucknow, U.P, 226014, India
| |
Collapse
|
9
|
Santos NM, Gomes AS, Cavalcante DGSM, Santos LF, Teixeira SR, Cabrera FC, Job AE. Green synthesis of colloidal gold nanoparticles using latex from Hevea brasiliensis and evaluation of their in vitro cytotoxicity and genotoxicity. IET Nanobiotechnol 2019; 13:307-315. [PMID: 31053694 PMCID: PMC8676345 DOI: 10.1049/iet-nbt.2018.5225] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 11/12/2018] [Accepted: 12/06/2018] [Indexed: 09/08/2024] Open
Abstract
Latex extracted from Hevea brasiliensis tree has been used as a green alternative for preparing gold nanoparticles (Au NPs); however, no study evaluating the cytotoxic and genotoxic potential of Au NPs synthesised using H. brasiliensis has been published. The present study aimed to synthesise and characterise colloidal Au NPs using latex from H. brasiliensis and to evaluate their in vitro cytotoxicity and genotoxicity. Ideal conditions for the green synthesis of Au NPs were studied. In vitro cytotoxicity and genotoxicity of Au NPs in CHO-K1 cells was also evaluated. Our findings indicated that the ideal synthesis conditions of pH, temperature, reduction time, and concentrations of latex and HAuCl4 were 7.0, 85°C, 120 min, 3.3 mg/mL, and 5.0 mmol/L, respectively. LC5024 h of Au NPs was 119.164 ± 5.31 μg/mL. Lowest concentration of Au NPs tested presented minimal cytotoxicity and genotoxicity. However, high concentrations of Au NPs promoted DNA damage and cell death via apoptosis. On the basis of these findings, the authors optimised the use of an aqueous solution of H. brasiliensis latex as a reducing/stabilising agent for the green synthesis of Au NPs. Low concentrations of these NPs are biocompatible in normal cell types, suggesting that these NPs may be used in biological applications.
Collapse
Affiliation(s)
- Natália M Santos
- Faculdade de Ciências e Tecnologia FCT/UNESP, Departamento de Física, Presidente Prudente, Rua Cyro Bueno, 40, Jd. Morumbi, 19060-560, SP, Brasil
| | - Andressa S Gomes
- Faculdade de Ciências e Tecnologia FCT/UNESP, Departamento de Física, Presidente Prudente, Rua Cyro Bueno, 40, Jd. Morumbi, 19060-560, SP, Brasil
| | - Dalita G S M Cavalcante
- Faculdade de Ciências e Tecnologia FCT/UNESP, Departamento de Física, Presidente Prudente, Rua Cyro Bueno, 40, Jd. Morumbi, 19060-560, SP, Brasil
| | - Luis F Santos
- Faculdade de Ciências e Tecnologia FCT/UNESP, Departamento de Física, Presidente Prudente, Rua Cyro Bueno, 40, Jd. Morumbi, 19060-560, SP, Brasil
| | - Silvio R Teixeira
- Faculdade de Ciências e Tecnologia FCT/UNESP, Departamento de Física, Presidente Prudente, Rua Cyro Bueno, 40, Jd. Morumbi, 19060-560, SP, Brasil
| | - Flávio C Cabrera
- Faculdade de Ciências e Tecnologia FCT/UNESP, Departamento de Física, Presidente Prudente, Rua Cyro Bueno, 40, Jd. Morumbi, 19060-560, SP, Brasil
| | - Aldo Eloizo Job
- Faculdade de Ciências e Tecnologia FCT/UNESP, Departamento de Física, Presidente Prudente, Rua Cyro Bueno, 40, Jd. Morumbi, 19060-560, SP, Brasil.
| |
Collapse
|
10
|
Yonashiro Marcelino M, Azevedo Borges F, Martins Costa AF, de Lacorte Singulani J, Ribeiro NV, Barcelos Costa-Orlandi C, Garms BC, Soares Mendes-Giannini MJ, Herculano RD, Fusco-Almeida AM. Antifungal activity of fluconazole-loaded natural rubber latex against Candida albicans. Future Microbiol 2018; 13:359-367. [DOI: 10.2217/fmb-2017-0154] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Aim: This work aimed to produce a membrane based on fluconazole-loaded natural rubber latex (NRL), and study their interaction, drug release and antifungal susceptibility against Candida albicans. Materials & methods: Fluconazole-loaded NRL membrane was obtained by casting method. Results: The Fourier Transform Infrared Spectroscopy showed no modifications either in NRL or fluconazole after the incorporation. Mechanical test presented low Young's modulus and high strain, indicating the membranes have sufficient elasticity for biomedical application. The bio-membrane was able to release the drug and inhibit the growth of C. albicans as demonstrated by disk diffusion and macrodilution assays. Conclusion: The biomembrane was able to release fluconazole and inhibit the growth of C. albicans, representing a promising biomaterial for skin application.
Collapse
Affiliation(s)
- Mônica Yonashiro Marcelino
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, Clinical Analysis, Rodovia Araraquara Jaú, Km 01 - s/, Araraquara, São Paulo, Brazil
| | - Felipe Azevedo Borges
- São Paulo State University (UNESP), Institute of Chemistry, Araraquara, Biochemistry & Chemical Technology, Araraquara, São Paulo, Brazil
| | - Ana Flávia Martins Costa
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, Bioprocesses & Biotechnology, Araraquara, São Paulo, Brazil
| | - Junya de Lacorte Singulani
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, Clinical Analysis, Rodovia Araraquara Jaú, Km 01 - s/, Araraquara, São Paulo, Brazil
| | - Nathan Vinícius Ribeiro
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, Bioprocesses & Biotechnology, Araraquara, São Paulo, Brazil
| | - Caroline Barcelos Costa-Orlandi
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, Clinical Analysis, Rodovia Araraquara Jaú, Km 01 - s/, Araraquara, São Paulo, Brazil
| | - Bruna Cambraia Garms
- São Paulo State University (UNESP), Institute of Chemistry, Araraquara, Biochemistry & Chemical Technology, Araraquara, São Paulo, Brazil
| | - Maria José Soares Mendes-Giannini
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, Clinical Analysis, Rodovia Araraquara Jaú, Km 01 - s/, Araraquara, São Paulo, Brazil
| | - Rondinelli Donizetti Herculano
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, Bioprocesses & Biotechnology, Araraquara, São Paulo, Brazil
| | - Ana Marisa Fusco-Almeida
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, Clinical Analysis, Rodovia Araraquara Jaú, Km 01 - s/, Araraquara, São Paulo, Brazil
| |
Collapse
|
11
|
Benelli G. Gold nanoparticles - against parasites and insect vectors. Acta Trop 2018; 178:73-80. [PMID: 29092797 DOI: 10.1016/j.actatropica.2017.10.021] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 10/16/2017] [Accepted: 10/26/2017] [Indexed: 01/13/2023]
Abstract
Nanomaterials are currently considered for many biological, biomedical and environmental purposes, due to their outstanding physical and chemical properties. The synthesis of gold nanoparticles (Au NPs) is of high interest for research in parasitology and entomology, since these nanomaterials showed promising applications, ranging from detection techniques to drug development, against a rather wide range of parasites of public health relevance, as well as on insect vectors. Here, I reviewed current knowledge about the bioactivity of Au NPs on selected insect species of public health relevance, including major mosquito vectors, such as Aedes aegypti, Anopheles stephensi and Culex quinquefasciatus. The toxicity of Au NPs against helminths was reviewed, covering Schistosoma mansoni trematodes as well as Raillietina cestodes. Furthermore, I summarized the information available on the antiparasitic role of Au NPs in the fight against malaria, leishmaniosis, toxoplasmosis, trypanosomiasis, cryptosporidiosis, and microsporidian parasites affecting human and animals health. Besides, I examined the employ of Au NPs as biomarkers, tools for diagnostics and adjuvants for the induction of transmission blocking immunity in malaria vaccine research. In the final section, major challenges and future outlooks for further research are discussed, with special reference to the pressing need of further knowledge about the effect of Au NPs on other arthropod vectors, such as ticks, tsetse flies, tabanids, sandflies and blackflies, and related ecotoxicology assays.
Collapse
|
12
|
Gélvez APC, Farias LHS, Pereira VS, da Silva ICM, Costa AC, Dias CGBT, Costa RMR, da Silva SHM, Rodrigues APD. Biosynthesis, characterization and leishmanicidal activity of a biocomposite containing AgNPs-PVP-glucantime. Nanomedicine (Lond) 2018; 13:373-390. [PMID: 29338557 DOI: 10.2217/nnm-2017-0285] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
AIM Development of functionalized nanocomposites containing AgNPs-PVP-Glucantime® to evaluate their leishmanicidal activity as a novel method for improving the pharmacological properties of the drug Glucantime® against extracellular promastigotes and intracellular amastigotes of Leishmania amazonensis in vitro to treat cutaneous leishmaniasis. MATERIALS & METHODS The silver nanoparticles and nanocomposites prepared containing silver nanoparticles, polyvinylpyrrolidone and different amounts of Glucantime were characterized using transmission electron microscopy, x-ray diffraction, energy-dispersive x-ray spectroscopy and ζ potential analysis; in addition, the in vitro cytotoxicity was evaluated. RESULTS The nanocomposites showed an inhibitory effect on the cellular viability of promastigote forms, with values of 47.06, 51.71 and 65.67% for nanocomposite1, nanocomposite2 and nanocomposite3, respectively, as well as a dose-dependent decrease in the infectivity index, with values of 33.33 and 23% for nanocomposite2 and nanocomposite3, respectively. CONCLUSION The proposed nanocomposite reveals leishmanial activity and the absence of cytotoxicity in macrophages. Further investigations will be conducted in vivo.
Collapse
Affiliation(s)
- Ana Patricia Cacua Gélvez
- Postgraduate Program in Biology of Infectious & Parasitic Agents, Federal University of Pará, Belém, Pará, Brazil.,Laboratory of Electron Microscopy, Evandro Chagas Institute, Ministry of Health, Belém, Pará, Brazil
| | | | - Victor Soares Pereira
- Department of Mechanical Engineering, Federal University of Pará, Belém, Pará, Brazil
| | | | - Ana Carolina Costa
- Physico-Chemical Drug Quality Control Laboratory, Federal University of Pará, Belém, Pará, Brazil
| | | | | | | | | |
Collapse
|
13
|
Eco-friendly natural rubber–silver (NR–Ag) composites for photo-assisted degradation of methyl orange dye. IRANIAN POLYMER JOURNAL 2018. [DOI: 10.1007/s13726-017-0580-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
14
|
Tao J, He D, Tang B, Kong L, Luo Y, Zhao P, Gong W, Peng Z. In situ synthesis of natural rubber latex-supported gold nanoparticles for flexible SERS substrates. RSC Adv 2015. [DOI: 10.1039/c5ra05681k] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Natural rubber latex (NRL) from Hevea brasiliensis was used as a matrix to synthesize gold nanoparticles (AuNPs), leading to an organic–inorganic hybrid latex of NRL-supported AuNPs (AuNPs@NRL).
Collapse
Affiliation(s)
- Jinlong Tao
- Chinese Agricultural Ministry Key Laboratory of Tropical Crop Product Processing
- Agricultural Product Processing Research Institute
- Chinese Academy of Tropical Agricultural Sciences
- Zhanjiang 524001
- PR China
| | - Dongning He
- Chinese Agricultural Ministry Key Laboratory of Tropical Crop Product Processing
- Agricultural Product Processing Research Institute
- Chinese Academy of Tropical Agricultural Sciences
- Zhanjiang 524001
- PR China
| | - Bin Tang
- Institute for Frontier Materials
- Deakin University
- Geelong
- Australia
- School of Textile Science and Engineering
| | - Lingxue Kong
- Institute for Frontier Materials
- Deakin University
- Geelong
- Australia
| | - Yongyue Luo
- Chinese Agricultural Ministry Key Laboratory of Tropical Crop Product Processing
- Agricultural Product Processing Research Institute
- Chinese Academy of Tropical Agricultural Sciences
- Zhanjiang 524001
- PR China
| | - Pengfei Zhao
- Chinese Agricultural Ministry Key Laboratory of Tropical Crop Product Processing
- Agricultural Product Processing Research Institute
- Chinese Academy of Tropical Agricultural Sciences
- Zhanjiang 524001
- PR China
| | - Wei Gong
- Chinese Agricultural Ministry Key Laboratory of Tropical Crop Product Processing
- Agricultural Product Processing Research Institute
- Chinese Academy of Tropical Agricultural Sciences
- Zhanjiang 524001
- PR China
| | - Zheng Peng
- Chinese Agricultural Ministry Key Laboratory of Tropical Crop Product Processing
- Agricultural Product Processing Research Institute
- Chinese Academy of Tropical Agricultural Sciences
- Zhanjiang 524001
- PR China
| |
Collapse
|
15
|
Cabrera FC, Agostini DLS, Dos Santos RJ, Guimarães FEG, Guerrero AR, Aroca RF, Job AE. Organic acids and protein compounds causing the photoluminescence properties of natural rubber membranes and the quenching phenomena from Au nanoparticle incorporation. LUMINESCENCE 2014; 29:1047-52. [PMID: 24760547 DOI: 10.1002/bio.2657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 01/29/2014] [Accepted: 02/02/2014] [Indexed: 11/09/2022]
Abstract
Natural rubber membranes were fabricated using latex from Hevea brasiliensis trees (clone RRIM 600) by casting, and controlling the time and temperature of thermal treatment. Three temperatures were used: 65, 80 and 120 °C and the corresponding annealing times of 6, 8, 10 and 12 h. The centrifugation of the latex produces the constituent phases: solid rubber (F1), serum or protein components (F2) and bottom fraction (F3). The photoluminescence properties could be correlated with organic acid components of latex. Natural rubber membranes were used as the active substrate (reducing agent) for the incorporation of colloidal Au nanoparticles synthesized by in situ reduction at different times. The intensity of photoluminescence bands assigned to the natural rubber decreases with the increase in amount of nanoparticles present on the membrane surface. It can be assumed that Au nanoparticles may be formed by reduction of the Au cation reacting with functional groups that are directly related to photoluminescence properties. However, the quenching of fluorescence may be attributed to the formation of a large amount of metal nanostructures on the natural rubber surface.
Collapse
Affiliation(s)
- Flávio C Cabrera
- Faculdade de Ciências e Tecnologia, UNESP, Departamento de Física, Química e Biologia, CP 467, CEP 19060-080, Presidente Prudente, SP, Brasil
| | | | | | | | | | | | | |
Collapse
|
16
|
Natural Rubber Latex: Study of a Novel Carrier for Casearia sylvestris Swartz Delivery. ACTA ACUST UNITED AC 2014. [DOI: 10.1155/2014/241297] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Natural rubber latex (NRL) from Hevea brasiliensis has showed interesting biomedical properties as improving wound healing, cell adherence, tissue formation, and angiogenesis. It is used for biosynthesis of nanoparticles, sensors and prosthesis and for drug delivery systems (for drugs, plant extracts, and nanoparticles). To enhance its wound healing properties was incorporated Casearia sylvestris Swartz extract, whose pharmacological activity includes anti-inflammatory, analgesic, antiseptic, antiulcer, and antitumor due to its casearins and phenols. Results showed the prolonged release of its compounds (35 days) and the mechanism of release is super case II (n>1) by Korsmeyer-Peppas model. Although SEM shows different sizes of clusters at the surface, the release is homogeneous through the biomembrane. FTIR shows no interaction between the matrix and the extract, with computation of the presence of some casearins.
Collapse
|
17
|
Faita F, Dotto M, França L, Cabrera F, Job A, Bechtold I. Characterization of natural rubber membranes using scaling laws analysis. Eur Polym J 2014. [DOI: 10.1016/j.eurpolymj.2013.11.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
18
|
de Siqueira AF, Cabrera FC, Pagamisse A, Job AE. Segmentation of scanning electron microscopy images from natural rubber samples with gold nanoparticles using starlet wavelets. Microsc Res Tech 2013; 77:71-8. [PMID: 24222197 DOI: 10.1002/jemt.22314] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 10/11/2013] [Accepted: 10/27/2013] [Indexed: 11/08/2022]
Affiliation(s)
- Alexandre Fioravante de Siqueira
- DFQB-Departamento de Física; Química e Biologia, FCT-Faculdade de Ciências e Tecnologia, Univ Estadual Paulista, Rua Roberto Simonsen, 305, 19060-900 Presidente Prudente São Paulo Brazil
| | - Flávio Camargo Cabrera
- DFQB-Departamento de Física; Química e Biologia, FCT-Faculdade de Ciências e Tecnologia, Univ Estadual Paulista, Rua Roberto Simonsen, 305, 19060-900 Presidente Prudente São Paulo Brazil
| | - Aylton Pagamisse
- DMC-Departamento de Matemática e Computação; FCT-Faculdade de Ciências e Tecnologia, Univ Estadual Paulista, Rua Roberto Simonsen, 305, 19060-900 Presidente Prudente São Paulo Brazil
| | - Aldo Eloizo Job
- DFQB-Departamento de Física; Química e Biologia, FCT-Faculdade de Ciências e Tecnologia, Univ Estadual Paulista, Rua Roberto Simonsen, 305, 19060-900 Presidente Prudente São Paulo Brazil
| |
Collapse
|
19
|
Cabrera FC, Agostini DLS, dos Santos RJ, Teixeira SR, Rodríguez-Pérez MA, Job AE. Characterization of natural rubber/gold nanoparticles SERS-active substrate. J Appl Polym Sci 2013. [DOI: 10.1002/app.39153] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|