1
|
Rodríguez-Durán J, Gallardo JP, Alba Soto CD, Gómez KA, Potenza M. The Kinetoplastid-Specific Protein TcCAL1 Plays Different Roles During In Vitro Differentiation and Host-Cell Invasion in Trypanosoma cruzi. Front Cell Infect Microbiol 2022; 12:901880. [PMID: 35846750 PMCID: PMC9280158 DOI: 10.3389/fcimb.2022.901880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/27/2022] [Indexed: 11/13/2022] Open
Abstract
In the pathogen Typanosoma cruzi, the calcium ion (Ca2+) regulates key processes for parasite survival. However, the mechanisms decoding Ca2+ signals are not fully identified or understood. Here, we investigate the role of a hypothetical Ca2+-binding protein named TcCAL1 in the in vitro life cycle of T. cruzi. Results showed that the overexpression of TcCAL1 fused to a 6X histidine tag (TcCAL1-6xHis) impaired the differentiation of epimastigotes into metacyclic trypomastigotes, significantly decreasing metacyclogenesis rates. When the virulence of transgenic metacyclic trypomastigotes was explored in mammalian cell invasion assays, we found that the percentage of infection was significantly higher in Vero cells incubated with TcCAL1-6xHis-overexpressing parasites than in controls, as well as the number of intracellular amastigotes. Additionally, the percentage of Vero cells with adhered metacyclic trypomastigotes significantly increased in samples incubated with TcCAL1-6xHis-overexpressing parasites compared with controls. In contrast, the differentiation rates from metacyclic trypomastigotes to axenic amastigotes or the epimastigote proliferation in the exponential phase of growth have not been affected by TcCAL1-6xHis overexpression. Based on our findings, we speculate that TcCAL1 exerts its function by sequestering intracellular Ca2+ by its EF-hand motifs (impairing metacyclogenesis) and/or due to an unknown activity which could be amplified by the ion binding (promoting cell invasion). This work underpins the importance of studying the kinetoplastid-specific proteins with unknown functions in pathogen parasites.
Collapse
Affiliation(s)
- Jessica Rodríguez-Durán
- Laboratorio de Biología e Inmunología de las Infecciones por Tripanosomátidos, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular “Dr. Héctor Torres”—CONICET, Buenos Aires, Argentina
| | - Juan Pablo Gallardo
- Laboratorio de Biología e Inmunología de las Infecciones por Tripanosomátidos, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular “Dr. Héctor Torres”—CONICET, Buenos Aires, Argentina
| | - Catalina Dirney Alba Soto
- Instituto de Microbiología y Parasitología Médica, Departamento de Microbiología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Karina Andrea Gómez
- Laboratorio de Biología e Inmunología de las Infecciones por Tripanosomátidos, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular “Dr. Héctor Torres”—CONICET, Buenos Aires, Argentina
| | - Mariana Potenza
- Laboratorio de Biología e Inmunología de las Infecciones por Tripanosomátidos, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular “Dr. Héctor Torres”—CONICET, Buenos Aires, Argentina
- *Correspondence: Mariana Potenza, ;
| |
Collapse
|
2
|
Extensive Translational Regulation through the Proliferative Transition of Trypanosoma cruzi Revealed by Multi-Omics. mSphere 2021; 6:e0036621. [PMID: 34468164 PMCID: PMC8550152 DOI: 10.1128/msphere.00366-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Trypanosoma cruzi is the etiological agent for Chagas disease, a neglected parasitic disease in Latin America. Gene transcription control governs the eukaryotic cell replication but is absent in trypanosomatids; thus, it must be replaced by posttranscriptional regulatory events. We investigated the entrance into the T. cruzi replicative cycle using ribosome profiling and proteomics on G1/S epimastigote cultures synchronized with hydroxyurea. We identified 1,784 translationally regulated genes (change > 2, false-discovery rate [FDR] < 0.05) and 653 differentially expressed proteins (change > 1.5, FDR < 0.05), respectively. A major translational remodeling accompanied by an extensive proteome change is found, while the transcriptome remains largely unperturbed at the replicative entrance of the cell cycle. The differentially expressed genes comprise specific cell cycle processes, confirming previous findings while revealing candidate cell cycle regulators that undergo previously unnoticed translational regulation. Clusters of genes showing a coordinated regulation at translation and protein abundance share related biological functions such as cytoskeleton organization and mitochondrial metabolism; thus, they may represent posttranscriptional regulons. The translatome and proteome of the coregulated clusters change in both coupled and uncoupled directions, suggesting that complex cross talk between the two processes is required to achieve adequate protein levels of different regulons. This is the first simultaneous assessment of the transcriptome, translatome, and proteome of trypanosomatids, which represent a paradigm for the absence of transcriptional control. The findings suggest that gene expression chronology along the T. cruzi cell cycle is controlled mainly by translatome and proteome changes coordinated using different mechanisms for specific gene groups. IMPORTANCE Trypanosoma cruzi is an ancient eukaryotic unicellular parasite causing Chagas disease, a potentially life-threatening illness that affects 6 to 7 million people, mostly in Latin America. The antiparasitic treatments for the disease have incomplete efficacy and adverse reactions; thus, improved drugs are needed. We study the mechanisms governing the replication of the parasite, aiming to find differences with the human host, valuable for the development of parasite-specific antiproliferative drugs. Transcriptional regulation is essential for replication in most eukaryotes, but in trypanosomatids, it must be replaced by subsequent gene regulation steps since they lack transcription initiation control. We identified the genome-wide remodeling of mRNA translation and protein abundance during the entrance to the replicative phase of the cell cycle. We found that translation is strongly regulated, causing variation in protein levels of specific cell cycle processes, representing the first simultaneous study of the translatome and proteome in trypanosomatids.
Collapse
|
3
|
Rodríguez Durán J, Muñoz-Calderón A, Gómez KA, Potenza M. In vitro differentiation of Trypanosoma cruzi epimastigotes into metacyclic trypomastigotes using a biphasic medium. STAR Protoc 2021; 2:100703. [PMID: 34505085 PMCID: PMC8417395 DOI: 10.1016/j.xpro.2021.100703] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The pathogen Trypanosoma cruzi differentiates from epimastigotes (E) into infective metacyclic trypomastigotes (MTs) to invade the mammalian cell. This process, called metacyclogenesis, is mimicked in vitro by nutrient starvation or incubation with minimal media. Here, we describe an alternative protocol for metacyclogenesis by incubating E forms in a biphasic medium supplemented with human blood. Although time consuming, this procedure yields fully differentiated MTs without the presence of intermediate forms, even for cultures that have been maintained as E for years.
Collapse
Affiliation(s)
- Jessica Rodríguez Durán
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI-CONICET), Ciudad Autónoma de Buenos Aires, Buenos Aires, C1428ADN, Argentina
| | - Arturo Muñoz-Calderón
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI-CONICET), Ciudad Autónoma de Buenos Aires, Buenos Aires, C1428ADN, Argentina
| | - Karina Andrea Gómez
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI-CONICET), Ciudad Autónoma de Buenos Aires, Buenos Aires, C1428ADN, Argentina
| | - Mariana Potenza
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI-CONICET), Ciudad Autónoma de Buenos Aires, Buenos Aires, C1428ADN, Argentina
| |
Collapse
|
4
|
Valsecchi WM, Delfino JM, Santos J, Fernández Villamil SH. Zoledronate repositioning as a potential trypanocidal drug. Trypanosoma cruzi HPRT an alternative target to be considered. Biochem Pharmacol 2021; 188:114524. [PMID: 33741333 DOI: 10.1016/j.bcp.2021.114524] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 01/01/2023]
Abstract
Chagas disease is caused by the protozoan parasite Trypanosoma cruzi and affects 7 million people worldwide. Considering the side effects and drug resistance shown by current treatments, the development of new anti-Chagas therapies is an urgent need. T. cruzi hypoxanthine phosphoribosyltransferase (TcHPRT), the key enzyme of the purine salvage pathway, is essential for the survival of trypanosomatids. Previously, we assessed the inhibitory effect of different bisphosphonates (BPs), HPRT substrate analogues, on the activity of the isolated enzyme. BPs are used as a treatment for bone diseases and growth inhibition studies on T. cruzi have associated BPs action with the farnesyl diphosphate synthase inhibition. Here, we demonstrated significant growth inhibition of epimastigotes in the presence of BPs and a strong correlation with our previous results on the isolated TcHPRT, suggesting this enzyme as a possible and important target for these drugs. We also found that the parasites exhibited a delay at S phase in the presence of zoledronate pointing out enzymes involved in the cell cycle, such as TcHPRT, as intracellular targets. Moreover, we validated that micromolar concentrations of zoledronate are capable to interfere with the progression of cell infection by this parasite. Altogether, our findings allow us to propose the repositioning of zoledronate as a promising candidate against Chagas disease and TcHPRT as a new target for future rational design of antiparasitic drugs.
Collapse
Affiliation(s)
- W M Valsecchi
- Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires (UBA), Argentina; Instituto de Química y Fisicoquímica Biológicas (IQUIFIB-CONICET), Argentina.
| | - J M Delfino
- Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires (UBA), Argentina; Instituto de Química y Fisicoquímica Biológicas (IQUIFIB-CONICET), Argentina
| | - J Santos
- Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires (UBA), Argentina; Instituto de Química y Fisicoquímica Biológicas (IQUIFIB-CONICET), Argentina
| | - S H Fernández Villamil
- Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires (UBA), Argentina; Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI-CONICET), Argentina.
| |
Collapse
|
5
|
Santos CMBD, Ludwig A, Kessler RL, Rampazzo RDCP, Inoue AH, Krieger MA, Pavoni DP, Probst CM. Trypanosoma cruzi transcriptome during axenic epimastigote growth curve. Mem Inst Oswaldo Cruz 2018; 113:e170404. [PMID: 29668769 PMCID: PMC5907844 DOI: 10.1590/0074-02760170404] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 01/29/2018] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Trypanosoma cruzi is an important protozoan parasite and the causative agent of Chagas disease. A critical step in understanding T. cruzi biology is the study of cellular and molecular features exhibited during its growth curve. OBJECTIVES We aimed to acquire a global view of the gene expression profile of T. cruzi during epimastigote growth. METHODS RNA-Seq analysis of total and polysomal/granular RNA fractions was performed along the 10 days T. cruzi epimastigote growth curve in vitro, in addition to cell viability and cell cycle analyses. We also analysed the polysome profile and investigated the presence of granular RNA by FISH and western blotting. FINDINGS We identified 1082 differentially expressed genes (DEGs), of which 220 were modulated in both fractions. According to the modulation pattern, DEGs were grouped into 12 clusters and showed enrichment of important gene ontology (GO) terms. Moreover, we showed that by the sixth day of the growth curve, polysomal content declined greatly and the RNA granules content appeared to increase, suggesting that a portion of mRNAs isolated from the sucrose gradient during late growth stages was associated with RNA granules and not only polyribosomes. Furthermore, we discuss several modulated genes possibly involved in T. cruzi growth, mainly during the stationary phase, such as genes related to cell cycle, pathogenesis, metabolic processes and RNA-binding proteins.
Collapse
Affiliation(s)
| | - Adriana Ludwig
- Instituto Carlos Chagas, Fundação Oswaldo Cruz, Curitiba, PR, Brasil
| | | | | | | | | | | | | |
Collapse
|
6
|
Chávez S, Eastman G, Smircich P, Becco LL, Oliveira-Rizzo C, Fort R, Potenza M, Garat B, Sotelo-Silveira JR, Duhagon MA. Transcriptome-wide analysis of the Trypanosoma cruzi proliferative cycle identifies the periodically expressed mRNAs and their multiple levels of control. PLoS One 2017; 12:e0188441. [PMID: 29182646 PMCID: PMC5705152 DOI: 10.1371/journal.pone.0188441] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 11/07/2017] [Indexed: 12/02/2022] Open
Abstract
Trypanosoma cruzi is the protozoan parasite causing American trypanosomiasis or Chagas disease, a neglected parasitosis with important human health impact in Latin America. The efficacy of current therapy is limited, and its toxicity is high. Since parasite proliferation is a fundamental target for rational drug design, we sought to progress into its understanding by applying a genome-wide approach. Treating a TcI linage strain with hydroxyurea, we isolated epimastigotes in late G1, S and G2/M cell cycle stages at 70% purity. The sequencing of each phase identified 305 stage-specific transcripts (1.5-fold change, p≤0.01), coding for conserved cell cycle regulated proteins and numerous proteins whose cell cycle dependence has not been recognized before. Comparisons with the parasite T. brucei and the human host reveal important differences. The meta-analysis of T. cruzi transcriptomic and ribonomic data indicates that cell cycle regulated mRNAs are subject to sub-cellular compartmentalization. Compositional and structural biases of these genes- including CAI, GC content, UTR length, and polycistron position- may contribute to their regulation. To discover nucleotide motifs responsible for the co-regulation of cell cycle regulated genes, we looked for overrepresented motifs at their UTRs and found a variant of the cell cycle sequence motif at the 3' UTR of most of the S and G2 stage genes. We additionally identified hairpin structures at the 5' UTRs of a high proportion of the transcripts, suggesting that periodic gene expression might also rely on translation initiation in T. cruzi. In summary, we report a comprehensive list of T. cruzi cell cycle regulated genes, including many previously unstudied proteins, we show evidence favoring a multi-step control of their expression, and we identify mRNA motifs that may mediate their regulation. Our results provide novel information of the T. cruzi proliferative proteins and the integrated levels of their gene expression control.
Collapse
Affiliation(s)
- Santiago Chávez
- Laboratory of Molecular Interactions, School of Sciences, Universidad de la República, Montevideo, Uruguay
- Department of Genetics, School of Medicine, Universidad de la República, Montevideo, Uruguay
| | - Guillermo Eastman
- Department of Genomics, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Pablo Smircich
- Laboratory of Molecular Interactions, School of Sciences, Universidad de la República, Montevideo, Uruguay
- Department of Genetics, School of Medicine, Universidad de la República, Montevideo, Uruguay
| | - Lorena Lourdes Becco
- Laboratory of Molecular Interactions, School of Sciences, Universidad de la República, Montevideo, Uruguay
| | - Carolina Oliveira-Rizzo
- Laboratory of Molecular Interactions, School of Sciences, Universidad de la República, Montevideo, Uruguay
- Department of Genetics, School of Medicine, Universidad de la República, Montevideo, Uruguay
| | - Rafael Fort
- Laboratory of Molecular Interactions, School of Sciences, Universidad de la República, Montevideo, Uruguay
- Department of Genetics, School of Medicine, Universidad de la República, Montevideo, Uruguay
| | - Mariana Potenza
- Institute for Research in Genetic Engineering and Molecular Biology 'Dr. N.H. Torres', Buenos Aires, Argentina
| | - Beatriz Garat
- Laboratory of Molecular Interactions, School of Sciences, Universidad de la República, Montevideo, Uruguay
| | - José Roberto Sotelo-Silveira
- Department of Genomics, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
- Department of Cell and Molecular Biology, School of Sciences, Universidad de la República, Montevideo, Uruguay
| | - María Ana Duhagon
- Laboratory of Molecular Interactions, School of Sciences, Universidad de la República, Montevideo, Uruguay
- Department of Genetics, School of Medicine, Universidad de la República, Montevideo, Uruguay
- * E-mail:
| |
Collapse
|
7
|
Di Renzo MA, Laverrière M, Schenkman S, Wehrendt DP, Tellez-Iñón MT, Potenza M. Characterization of TcCYC6 from Trypanosoma cruzi, a gene with homology to mitotic cyclins. Parasitol Int 2016; 65:196-204. [DOI: 10.1016/j.parint.2015.12.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 12/14/2015] [Accepted: 12/16/2015] [Indexed: 11/30/2022]
|
8
|
Zuma AA, Mendes IC, Reignault LC, Elias MC, de Souza W, Machado CR, Motta MCM. How Trypanosoma cruzi handles cell cycle arrest promoted by camptothecin, a topoisomerase I inhibitor. Mol Biochem Parasitol 2014; 193:93-100. [DOI: 10.1016/j.molbiopara.2014.02.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 01/21/2014] [Accepted: 02/03/2014] [Indexed: 10/25/2022]
|