1
|
Efficient Gene Knockout and Knockdown Systems in Neospora caninum Enable Rapid Discovery and Functional Assessment of Novel Proteins. mSphere 2022; 7:e0089621. [PMID: 35019667 PMCID: PMC8754167 DOI: 10.1128/msphere.00896-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The development of molecular genetics has greatly enhanced the study of the biology and pathology associated with parasites of the phylum Apicomplexa. While the molecular tools are highly developed for the apicomplexan Toxoplasma gondii, the closely related parasite Neospora caninum lacks efficient tools for genetic manipulation. To enable efficient homologous recombination in N. caninum, we targeted the Ku heterodimer DNA repair mechanism in the genomic reference strain, Nc-Liverpool (NcLiv), and show that deletion of Ku80 results in a destabilization and loss of its partner Ku70. Disruption of Ku80 generated parasites in which genes are efficiently epitope tagged and only short homology regions are required for gene knockouts. We used this improved strain to target novel nonessential genes encoding dense granule proteins that are unique to N. caninum or conserved in T. gondii. To expand the utility of this strain for essential genes, we developed the auxin-inducible degron system for N. caninum using parasite-specific promoters. As a proof of concept, we knocked down a novel nuclear factor in both N. caninum and T. gondii and showed that it is essential for survival of both parasites. Together, these efficient knockout and knockdown technologies will enable the field to unravel specific gene functions in N. caninum, which is likely to aid in the identification of targets responsible for the phenotypic differences observed between these two closely related apicomplexan parasites. IMPORTANCENeospora caninum is a parasite with veterinary relevance, inducing severe disease in dogs and reproductive disorders in ruminants, especially cattle, leading to major losses. The close phylogenetic relationship to Toxoplasma gondii and the lack of pathogenicity in humans drives an interest of the scientific community toward using N. caninum as a model to study the pathogenicity of T. gondii. To enable this comparison, it is important to develop efficient molecular tools for N. caninum, to gain accuracy and save time in genetic manipulation protocols. Here, we have developed base strains and protocols using the genomic reference strain of N. caninum to enable efficient knockout and knockdown assays in this model. We demonstrate that these tools are effective in targeting known and previously unexplored genes. Thus, these tools will greatly improve the study of this protozoan, as well as enhance its ability to serve as a model to understand other apicomplexan parasites.
Collapse
|
2
|
Pereira LM, Mota CM, Baroni L, Bronzon da Costa CM, Brochi JCV, Wainwright M, Mineo TWP, Braga GÚL, Yatsuda AP. Inhibitory action of phenothiazinium dyes against Neospora caninum. Sci Rep 2020; 10:7483. [PMID: 32366934 PMCID: PMC7198568 DOI: 10.1038/s41598-020-64454-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 04/13/2020] [Indexed: 12/11/2022] Open
Abstract
Neospora caninum is an Apicomplexan parasite related to important losses in livestock, causing abortions and decreased fertility in affected cows. Several chemotherapeutic strategies have been developed for disease control; however, no commercial treatment is available. Among the candidate drugs against neosporosis, phenothiazinium dyes, offer a low cost-efficient approach to parasite control. We report the anti-parasitic effects of the phenothiaziums Methylene Blue (MB), New Methylene Blue (NMB), 1,9–Dimethyl Methylene Blue (DMMB) and Toluidine Blue O (TBO) on N. caninum, using in vitro and in vivo models. The dyes inhibited parasite proliferation at nanomolar concentrations (0.019–1.83 μM) and a synergistic effect was achieved when Methylene Blue was combined with New Methylene Blue (Combination Index = 0.84). Moreover, the phenothiazinium dyes improved parasite clearance when combined with Pyrimethamine (Pyr). Combination of Methylene Blue + 1,9–Dimethyl Methylene Blue demonstrated superior efficacy compared to Pyrimethamine based counterparts in an in vivo model of infection. We also observed that Methylene Blue, New Methylene Blue and 1,9–Dimethyl Methylene Blue increased by 5000% the reactive oxygen species (ROS) levels in N. caninum tachyzoites. Phenothiazinium dyes represent an accessible group of candidates with the potential to compound future formulations for neosporosis control.
Collapse
Affiliation(s)
- Luiz Miguel Pereira
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av do Café, sn/n, 14040-903, Ribeirão Preto, SP, Brazil.,Núcleo de Apoio à Pesquisa em Produtos Naturais e Sintéticos, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Caroline Martins Mota
- Department of Immunology, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Brazil
| | - Luciana Baroni
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av do Café, sn/n, 14040-903, Ribeirão Preto, SP, Brazil
| | - Cássia Mariana Bronzon da Costa
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av do Café, sn/n, 14040-903, Ribeirão Preto, SP, Brazil
| | - Jade Cabestre Venancio Brochi
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av do Café, sn/n, 14040-903, Ribeirão Preto, SP, Brazil
| | - Mark Wainwright
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, L3 3AF, United Kingdom
| | - Tiago Wilson Patriarca Mineo
- Department of Immunology, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Brazil
| | - Gilberto Úbida Leite Braga
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av do Café, sn/n, 14040-903, Ribeirão Preto, SP, Brazil
| | - Ana Patrícia Yatsuda
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av do Café, sn/n, 14040-903, Ribeirão Preto, SP, Brazil. .,Núcleo de Apoio à Pesquisa em Produtos Naturais e Sintéticos, Universidade de São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
3
|
Arranz-Solís D, Regidor-Cerrillo J, Lourido S, Ortega-Mora LM, Saeij JPJ. Toxoplasma CRISPR/Cas9 constructs are functional for gene disruption in Neospora caninum. Int J Parasitol 2018; 48:597-600. [PMID: 29625127 DOI: 10.1016/j.ijpara.2018.03.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 01/17/2018] [Accepted: 03/05/2018] [Indexed: 01/21/2023]
Abstract
Herein we describe, to our knowledge for the first time the use of the clustered regularly interspaced short palindromic repeats/CRISPR-associated gene 9 (CRISPR/Cas9) system for genome editing of Neospora caninum, an apicomplexan parasite considered one of the main causes of abortion in cattle worldwide. By using plasmids containing the CRISPR/Cas9 components adapted to the closely related parasite Toxoplasma gondii, we successfully knocked out a green fluorescent protein (GFP) in an Nc-1 GFP-expressing strain, and efficiently disrupted the NcGRA7 gene in the Nc-Spain7 isolate by insertion of a pyrimethamine resistance cassette. The successful use of this technology in N. caninum lays the foundation for an efficient, targeted gene modification tool in this parasite.
Collapse
Affiliation(s)
- David Arranz-Solís
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, One Shields Ave., Davis 95616, CA, USA
| | - Javier Regidor-Cerrillo
- SALUVET, Animal Health Department, Veterinary Faculty, Complutense University of Madrid, Avda. Puerta de Hierro s/n, 28040 Madrid, Spain
| | - Sebastian Lourido
- Whitehead Institute for Biomedical Research, Cambridge, MA 02140, USA
| | - Luis Miguel Ortega-Mora
- SALUVET, Animal Health Department, Veterinary Faculty, Complutense University of Madrid, Avda. Puerta de Hierro s/n, 28040 Madrid, Spain
| | - Jeroen P J Saeij
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, One Shields Ave., Davis 95616, CA, USA.
| |
Collapse
|
4
|
Abstract
The development of molecular genetics has greatly enhanced the study of the biology and pathology associated with parasites of the phylum Apicomplexa. We have established a system specifically designed for Neospora caninum, and used this system as a heterologous platform for the expression of foreign genes. Plasmid constructs containing fluorescent proteins or targeted genes of Toxoplasma gondii, driven by N. caninum promoters, have yielded robust expression and correct trafficking of target gene products as assessed by immunofluorescence assays and Western blot analyses. Using this approach, we here demonstrated that N. caninum expressing T. gondii’s GRA15 and ROP16 kinase are biologically active and induced immunological phenotypes consistent with T. gondii strains. N. caninum expressing TgGRA15 differentially disturbed the NF-κB pathway, inducing an increased IL-12 production. On the other hand, N. caninum expressing TgROP16 induced host STAT3 phosphorylation and consequent reduction of IL-12 synthesis. These results indicate that heterologous gene expression in N. caninum is a useful tool for the study of specific gene functions and may allow the identification of antigenic targets responsible for the phenotypic differences observed between these two closely related apicomplexan parasites. Additionally, these observations may prove to be useful for the development of vaccine protocols to control toxoplasmosis and/or neosporosis.
Collapse
|
5
|
Bezerra MA, Pereira LM, Bononi A, Biella CA, Baroni L, Pollo-Oliveira L, Yatsuda AP. Constitutive expression and characterization of a surface SRS (NcSRS67) protein of Neospora caninum with no orthologue in Toxoplasma gondii. Parasitol Int 2017; 66:173-180. [PMID: 28108401 DOI: 10.1016/j.parint.2017.01.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 12/22/2016] [Accepted: 01/17/2017] [Indexed: 02/06/2023]
Abstract
Neospora caninum is a parasite of the Apicomplexa phylum responsible for abortion and losses of fertility in cattle. As part of its intracellular cycle, the first interaction of the parasite with the target cell is performed with the surface proteins known as the SRS superfamily (Surface Antigen Glycoprotein - Related Sequences). SAG related or SRS proteins have been a target of intense research due to its immunodominant pattern, exhibiting potential as diagnostic and/or vaccine candidates. The aim of this study was the cloning, expression and characterization of the gene NcSRS67 of N. caninum using a novel designed plasmid. The coding sequence of NcSRS67 (without the signal peptide and the GPI anchor) was cloned and expressed constitutively instead of the ccdB system of pCR-Blunt II-TOPO. The protein was purified in a nickel sepharose column and identified by mass spectrometry (MS/MS). The constitutive expression did not affect the final bacterial growth, with a similar OD 600nm compared to the non-transformed strains. The recombinant NcSRS67 was over expressed and the native form was detected by the anti-rNcSRS67 serum on 1D western blot as a single band of approximately 38kDa as predicted. On an in vitro assay, the inhibitory effect of the polyclonal antiserum anti-rNcSRS67 was nearly 20% on adhesion/invasion of host cells. The NcSRS67 native protein was localised on part of the surface of N. caninum tachyzoite when compared to the nucleus by confocal immunofluorescence.
Collapse
Affiliation(s)
- Marcos Alexandre Bezerra
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av do café, s/n, 14040-903 Ribeirão Preto, SP, Brazil
| | - Luiz Miguel Pereira
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av do café, s/n, 14040-903 Ribeirão Preto, SP, Brazil
| | - Aline Bononi
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av do café, s/n, 14040-903 Ribeirão Preto, SP, Brazil
| | - Carla Agostino Biella
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av do café, s/n, 14040-903 Ribeirão Preto, SP, Brazil
| | - Luciana Baroni
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av do café, s/n, 14040-903 Ribeirão Preto, SP, Brazil
| | - Leticia Pollo-Oliveira
- Núcleo de Apoio à Pesquisa em Produtos Naturais e Sintéticos, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Ana Patrícia Yatsuda
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av do café, s/n, 14040-903 Ribeirão Preto, SP, Brazil; Núcleo de Apoio à Pesquisa em Produtos Naturais e Sintéticos, Universidade de São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
6
|
Evaluation of methylene blue, pyrimethamine and its combination on an in vitro Neospora caninum model. Parasitology 2017; 144:827-833. [PMID: 28073383 DOI: 10.1017/s0031182016002584] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Neospora caninum is an apicomplexan parasite strongly related to reproductive problems in cattle. The neosporosis control is not well established and several fronts are under development, predominantly based on immune protection, immunomodulation and chemotherapy. The use of anti-malarial drugs as therapeutic sources has, in theory, considerable potential for any apicomplexan. Drugs such as methylene blue (MB) and pyrimethamine (Pyr) represent therapeutic options for malaria; thus, their use for neosporosis should be assessed. In this work, we tested the effects of MB and Pyr on N. caninum proliferation and clearance, using LacZ-tagged tachyzoites. The drugs inhibited at nanomolar dosages and its combination demonstrated an antagonistic interaction in proliferation assays, according to the Chou and Talalay method for drug combination index. However, the drug combination significantly improved the parasite in vitro clearance. The repositioning of well-established drugs opens a short-term strategy to obtain low-cost therapeutics approaches against neosporosis.
Collapse
|
7
|
Pereira LM, Yatsuda AP. The chloramphenicol acetyltransferase vector as a tool for stable tagging of Neospora caninum. Mol Biochem Parasitol 2014; 196:75-81. [PMID: 25127750 DOI: 10.1016/j.molbiopara.2014.08.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 07/03/2014] [Accepted: 08/04/2014] [Indexed: 11/16/2022]
Abstract
Neospora caninum is an obligate intracellular Apicomplexa, a phylum where one of the current methods for functional studies relies on molecular genetic tools. For Toxoplasma gondii, the first method described, in 1993, was based on resistance against chloramphenicol. As in T. gondii, we developed a vector constituted of the chloramphenicol acetyltransferase gene (CAT) flanked by the N. caninum dihydrofolate reductase-thymidylate synthase (DHFR-TS) 5' coding sequence flanking region. Five weeks after transfection and under the selection of chloramphenicol the expression of CAT increased compared to the wild type and the resistance was retained for more than one year. Between the stop codon of CAT and the 3' UTR of DHFR, a Lac-Z gene controlled by the N. caninum tubulin 5' coding sequence flanking region was ligated, resulting in a vector with a reporter gene (Ncdhfr-CAT/NcTub-tetO/Lac-Z). The stability was maintained through an episomal pattern for 14 months when the tachyzoites succumbed, which was an unexpected phenomenon compared to T. gondii. Stable parasites expressing the Lac-Z gene allowed the detection of tachyzoites after invasion by enzymatic reaction (CPRG) and were visualised macro- and microscopically by X-Gal precipitation and fluorescence. This work developed the first vector for stable expression of proteins based on chloramphenicol resistance and controlled exclusively by N. caninum promoters.
Collapse
Affiliation(s)
- Luiz Miguel Pereira
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av do Café, sn/n, 14040-903 Ribeirão Preto, SP, Brazil; Núcleo de Apoio à Pesquisa em Produtos Naturais e Sintéticos, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Ana Patrícia Yatsuda
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av do Café, sn/n, 14040-903 Ribeirão Preto, SP, Brazil; Núcleo de Apoio à Pesquisa em Produtos Naturais e Sintéticos, Universidade de São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
8
|
Mota CM, Ferreira MD, Costa LF, Barros PSC, Silva MV, Santiago FM, Mineo JR, Mineo TWP. Fluorescent ester dye-based assays for the in vitro measurement of Neospora caninum proliferation. Vet Parasitol 2014; 205:14-9. [PMID: 25095733 DOI: 10.1016/j.vetpar.2014.07.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 07/11/2014] [Accepted: 07/16/2014] [Indexed: 01/13/2023]
Abstract
Techniques for the measurement of parasite loads in different experimental models have evolved throughout the years. The quantification of stained slides using regular cytological stains is currently the most common technique. However, this modality of evaluation is labor-intensive, and the interpretation of the results is subjective because the successes of the assays mainly rely on the abilities of the professionals involved. Moreover, the novel genetic manipulation techniques that are commonly applied for closely related Toxoplasma gondii have not yet been developed for Neospora caninum. Thus, we aimed to develop a simple protocol for parasite quantification using pre-stained N. caninum tachyzoites and fluorescent probes based on ester compounds (i.e., CFSE and DDAO). For this purpose, we employed a quantification procedure based on flow cytometry analysis. Pre-stained parasites were also examined with a fluorescent microscope, which revealed that both dyes were detectable. Direct comparison of the numbers of CFSE+ and DDAO+ cells to the values obtained with classical cytology techniques yielded statistically comparable results that also accorded with genomic DNA amplification results. Although the fluorescence emitted by DDAO was more intense and provided better discrimination between the populations of parasitized cells, CFSE+ tachyzoites were detected for several days. In conclusion, this study describes a simple, fast, low-cost and reproducible protocol for N. caninum quantification that is based on parasite pre-staining with fluorescent ester-based probes.
Collapse
Affiliation(s)
- Caroline M Mota
- Laboratório de Imunoparasitologia "Dr. Mário Endsfeldz Camargo", Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Av. Amazonas s/n, Bloco 4C, Sala 4C01, Campus Umuarama, 38405-320 Uberlândia, Minas Gerais, Brazil
| | - Marcela D Ferreira
- Laboratório de Imunoparasitologia "Dr. Mário Endsfeldz Camargo", Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Av. Amazonas s/n, Bloco 4C, Sala 4C01, Campus Umuarama, 38405-320 Uberlândia, Minas Gerais, Brazil
| | - Lourenço F Costa
- Laboratório de Imunoparasitologia "Dr. Mário Endsfeldz Camargo", Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Av. Amazonas s/n, Bloco 4C, Sala 4C01, Campus Umuarama, 38405-320 Uberlândia, Minas Gerais, Brazil
| | - Patrício S C Barros
- Laboratório de Imunoparasitologia "Dr. Mário Endsfeldz Camargo", Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Av. Amazonas s/n, Bloco 4C, Sala 4C01, Campus Umuarama, 38405-320 Uberlândia, Minas Gerais, Brazil
| | - Murilo V Silva
- Laboratório de Imunoparasitologia "Dr. Mário Endsfeldz Camargo", Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Av. Amazonas s/n, Bloco 4C, Sala 4C01, Campus Umuarama, 38405-320 Uberlândia, Minas Gerais, Brazil
| | - Fernanda M Santiago
- Laboratório de Imunoparasitologia "Dr. Mário Endsfeldz Camargo", Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Av. Amazonas s/n, Bloco 4C, Sala 4C01, Campus Umuarama, 38405-320 Uberlândia, Minas Gerais, Brazil
| | - José R Mineo
- Laboratório de Imunoparasitologia "Dr. Mário Endsfeldz Camargo", Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Av. Amazonas s/n, Bloco 4C, Sala 4C01, Campus Umuarama, 38405-320 Uberlândia, Minas Gerais, Brazil
| | - Tiago W P Mineo
- Laboratório de Imunoparasitologia "Dr. Mário Endsfeldz Camargo", Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Av. Amazonas s/n, Bloco 4C, Sala 4C01, Campus Umuarama, 38405-320 Uberlândia, Minas Gerais, Brazil.
| |
Collapse
|