1
|
Santos HLC. Free-living amoebae: a journey into historical aspects and to current discoveries. Mem Inst Oswaldo Cruz 2025; 120:e240246. [PMID: 40008701 PMCID: PMC11852317 DOI: 10.1590/0074-02760240246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 10/31/2024] [Indexed: 02/27/2025] Open
Abstract
Free-living amoebas (FLA) are ubiquitous protists found in the environment. They have shown exceptional resistance to environmental challenges and play significant roles in controlling microbial populations through their predatory behaviour and microbicidal activity in both soil and aquatic ecosystems environments. However, although rare, a limited group of FLA can cause serious infections in the central nervous system and other diseases, particularly in immunocompromised individuals with high mortality rates. They can also cause keratitis in otherwise healthy individuals. This review offers a comprehensive overview of freshwater naked amoebae but does not cover all aspects in detail. Its goal is to provide a historical context for our current understanding while addressing the most critical elements of FLA biology, their pathogenic potential, and their interactions with important human pathogens.
Collapse
Affiliation(s)
- Helena Lúcia Carneiro Santos
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Doenças Parasitárias, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
2
|
Aykur M, Selver OB, Dagci H, Palamar M. Vermamoeba vermiformis as the etiological agent in a patient with suspected non-Acanthamoeba keratitis. Parasitol Res 2024; 123:323. [PMID: 39254717 DOI: 10.1007/s00436-024-08347-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 09/04/2024] [Indexed: 09/11/2024]
Abstract
Vermamoeba vermiformis (V. vermiformis) is one of the most common free-living amoeba (FLA) and is frequently found in environments such as natural freshwater areas, surface waters, soil, and biofilms. V. vermiformis has been reported as a pathogen with pathogenic potential for humans and animals. The aim is to report a case of non-Acanthamoeba keratitis in which V. vermiformis was the etiological agent, identified by culture and molecular techniques. Our case was a 48-year-old male patient with a history of trauma to his eye 10 days ago. The patient complained of eye redness and purulent discharge. A slit-lamp examination of the eye revealed a central corneal ulcer with peripheral infiltration extending into the deep stroma. The corneal scraping sample taken from the patient was cultured on a non-nutritious agar plate (NNA). Amoebae were evaluated according to morphological evaluation criteria. It was investigated by PCR method and confirmed by DNA sequence analysis. Although no bacterial or fungal growth was detected in the routine microbiological evaluation of the corneal scraping sample that was cultured, amoeba growth was detected positively in the NNA culture. Meanwhile, Acanthamoeba was detected negative by real-time PCR. However, V. vermiformis was detected positive with the specific PCR assay. It was confirmed by DNA sequence analysis to be considered an etiological pathogenic agent. Thus, topical administration of chlorhexidine gluconate %0.02 (8 × 1) was initiated. Clinical regression was observed 72 h after chlorhexidine initiation, and complete resolution of keratitis with residual scarring was noticed in 5 weeks. In conclusion, corneal infections due to free-living amoebae can occur, especially in poor hygiene. Although Acanthamoeba is the most common keratitis due to amoeba, V. vermiformis is also assumed to associate keratitis in humans. Clinicians should also be aware of other amoebic agents, such as V. vermiformis, in keratitis patients.
Collapse
Affiliation(s)
- Mehmet Aykur
- Department of Parasitology, Tokat Gaziosmanpaşa University Medical School, Central, PO Box 60030, Tokat, 60100, Turkey.
- Department of Parasitology, Ege University Medical School, İzmir, Turkey.
| | - Ozlem Barut Selver
- Department of Ophthalmology, Ege University Medical School, İzmir, Turkey
| | - Hande Dagci
- Department of Parasitology, Ege University Medical School, İzmir, Turkey
| | - Melis Palamar
- Department of Ophthalmology, Ege University Medical School, İzmir, Turkey
| |
Collapse
|
3
|
Nisar MA, Ross KE, Brown MH, Bentham R, Xi J, Hinds J, Jamieson T, Leterme SC, Whiley H. The composition of planktonic prokaryotic communities in a hospital building water system depends on both incoming water and flow dynamics. WATER RESEARCH 2023; 243:120363. [PMID: 37494744 DOI: 10.1016/j.watres.2023.120363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/28/2023]
Abstract
In recent years, the frequency of nosocomial infections has increased. Hospital water systems support the growth of microbes, especially opportunistic premise plumbing pathogens. In this study, planktonic prokaryotic communities present in water samples taken from hospital showers and hand basins, collected over three different sampling phases, were characterized by 16S rRNA gene amplicon sequencing. Significant differences in the abundance of various prokaryotic taxa were found through univariate and multivariate analysis. Overall, the prokaryotic communities of hospital water were taxonomically diverse and dominated by biofilm forming, corrosion causing, and potentially pathogenic bacteria. The phyla Proteobacteria, Actinobacteriota, Bacteroidota, Planctomycetota, Firmicutes, and Cyanobacteria made up 96% of the relative abundance. The α-diversity measurements of prokaryotic communities showed no difference in taxa evenness and richness based on sampling sites (shower or hand basins), sampling phases (months), and presence or absence of Vermamoeba vermiformis. However, β-diversity measurements showed significant clustering of prokaryotic communities based on sampling phases, with the greatest difference observed between the samples collected in phase 1 vs phase 2/3. Importantly, significant difference was observed in prokaryotic communities based on flow dynamics of the incoming water. The Pielou's evenness diversity index revealed a significant difference (Kruskal Wallis, p < 0.05) and showed higher species richness in low flow regime (< 13 minutes water flushing per week and ≤ 765 flushing events per six months). Similarly, Bray-Curtis dissimilarity index found significant differences (PERMANOVA, p < 0.05) in the prokaryotic communities of low vs medium/high flow regimes. Furthermore, linear discriminant analysis effect size showed that several biofilm forming (e.g., Pseudomonadales), corrosion causing (e.g., Desulfobacterales), extremely environmental stress resistant (e.g., Deinococcales), and potentially pathogenic (e.g., Pseudomonas) bacterial taxa were in higher amounts under low flow regime conditions. This study demonstrated that a hospital building water system consists of a complex microbiome that is shaped by incoming water quality and the building flow dynamics arising through usage.
Collapse
Affiliation(s)
- Muhammad Atif Nisar
- College of Science and Engineering, Flinders University, Bedford Park, SA, Australia
| | - Kirstin E Ross
- College of Science and Engineering, Flinders University, Bedford Park, SA, Australia
| | - Melissa H Brown
- College of Science and Engineering, Flinders University, Bedford Park, SA, Australia; ARC Training Centre for Biofilm Research and Innovation, Flinders University, Bedford Park, SA, Australia
| | - Richard Bentham
- College of Science and Engineering, Flinders University, Bedford Park, SA, Australia
| | - James Xi
- Enware Australia Pty Ltd, Caringbah, NSW, Australia
| | - Jason Hinds
- Enware Australia Pty Ltd, Caringbah, NSW, Australia
| | - Tamar Jamieson
- College of Science and Engineering, Flinders University, Bedford Park, SA, Australia; Institute for Nanoscience and Technology, Flinders University, Bedford Park, SA, Australia
| | - Sophie C Leterme
- College of Science and Engineering, Flinders University, Bedford Park, SA, Australia; ARC Training Centre for Biofilm Research and Innovation, Flinders University, Bedford Park, SA, Australia; Institute for Nanoscience and Technology, Flinders University, Bedford Park, SA, Australia
| | - Harriet Whiley
- College of Science and Engineering, Flinders University, Bedford Park, SA, Australia; ARC Training Centre for Biofilm Research and Innovation, Flinders University, Bedford Park, SA, Australia.
| |
Collapse
|
4
|
Geballa-Koukoulas K, La Scola B, Blanc G, Andreani J. Diversity of Giant Viruses Infecting Vermamoeba vermiformis. Front Microbiol 2022; 13:808499. [PMID: 35602053 PMCID: PMC9116030 DOI: 10.3389/fmicb.2022.808499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 03/18/2022] [Indexed: 11/28/2022] Open
Abstract
The discovery of Acanthamoeba polyphaga mimivirus in 2003 using the free-living amoeba Acanthamoeba polyphaga caused a paradigm shift in the virology field. Twelve years later, using another amoeba as a host, i.e., Vermamoeba vermiformis, novel isolates of giant viruses have been discovered. This amoeba–virus relationship led scientists to study the evolution of giant viruses and explore the origins of eukaryotes. The purpose of this article is to review all the giant viruses that have been isolated from Vermamoeba vermiformis, compare their genomic features, and report the influence of these viruses on the cell cycle of their amoebal host. To date, viruses putatively belonging to eight different viral taxa have been described: 7 are lytic and 1 is non-lytic. The comparison of giant viruses infecting Vermamoeba vermiformis has suggested three homogenous groups according to their size, the replication time inside the host cell, and the number of encoding tRNAs. This approach is an attempt at determining the evolutionary origins and trajectories of the virus; therefore, more giant viruses infecting Vermamoeba must be discovered and studied to create a comprehensive knowledge on these intriguing biological entities.
Collapse
Affiliation(s)
- Khalil Geballa-Koukoulas
- MEPHI, APHM, IRD 198, Aix Marseille University, IHU-Méditerranée Infection, Marseille, France
- Aix Marseille Université, Université de Toulon, CNRS, IRD, MIO UM 110, Marseille, France
- *Correspondence: Khalil Geballa-Koukoulas,
| | - Bernard La Scola
- MEPHI, APHM, IRD 198, Aix Marseille University, IHU-Méditerranée Infection, Marseille, France
| | - Guillaume Blanc
- Aix Marseille Université, Université de Toulon, CNRS, IRD, MIO UM 110, Marseille, France
| | - Julien Andreani
- MEPHI, APHM, IRD 198, Aix Marseille University, IHU-Méditerranée Infection, Marseille, France
- Julien Andreani,
| |
Collapse
|
5
|
Potgieter N, van der Loo C, Barnard TG. Co-Existence of Free-Living Amoebae and Potential Human Pathogenic Bacteria Isolated from Rural Household Water Storage Containers. BIOLOGY 2021; 10:biology10121228. [PMID: 34943143 PMCID: PMC8698325 DOI: 10.3390/biology10121228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/07/2021] [Accepted: 11/08/2021] [Indexed: 12/24/2022]
Abstract
Simple Summary In many households in rural communities, water needed for drinking and cooking is fetched from rivers, fountains, or boreholes shared by the community. The water is then stored in various storage containers for several days without treatment and exposed to several conditions that could potentially contaminate the water and cause diseases. If the storage containers are not regularly and properly cleaned, biofilms can form inside the containers. Several microorganisms can be found inside the biofilm that can potentially cause diseases in humans. One such group of organisms is called free-living amoebae, which graze on the bacteria found inside the biofilm. Several of these potentially harmful bacteria have adapted and can survive inside these free-living amoebae and potentially cause diseases when ingested by humans. Abstract This study investigated the co-existence of potential human pathogenic bacteria and free-living amoebae in samples collected from stored water in rural households in South Africa using borehole water as a primary water source. Over a period of 5 months, a total of 398 stored water and 392 biofilm samples were collected and assessed. Free-living amoebae were identified microscopically in 92.0% of the water samples and 89.8% of the biofilm samples. A further molecular identification using 18S rRNA sequencing identified Vermamoeba vermiformis, Entamoeba spp., Stenamoeba spp., Flamella spp., and Acanthamoeba spp. including Acanthamoeba genotype T4, which is known to be potentially harmful to humans. Targeted potential pathogenic bacteria were isolated from the water samples using standard culture methods and identified using 16S rRNA sequencing. Mycobacterium spp., Pseudomonas spp., Enterobacter spp., and other emerging opportunistic pathogens such as Stenotrophomonas maltophilia were identified. The results showed the importance of further studies to assess the health risk of free-living amoebae and potential human pathogenic bacteria to people living in rural communities who have no other option than to store water in their homes due to water shortages.
Collapse
Affiliation(s)
- Natasha Potgieter
- One Health Research Group, Department of Biochemistry and Microbiology, Faculty of Science, Engineering and Agriculture, University of Venda, Thohoyandou 0950, Limpopo Province, South Africa
- Correspondence:
| | - Clarissa van der Loo
- Water and Health Research Centre, Doornfontein Campus, University of Johannesburg, Johannesburg 2112, Gauteng, South Africa; (T.G.B.); (C.v.d.L.)
| | - Tobias George Barnard
- Water and Health Research Centre, Doornfontein Campus, University of Johannesburg, Johannesburg 2112, Gauteng, South Africa; (T.G.B.); (C.v.d.L.)
| |
Collapse
|
6
|
Siddiqui R, Makhlouf Z, Khan NA. The Increasing Importance of Vermamoeba vermiformis. J Eukaryot Microbiol 2021; 68:e12857. [PMID: 33987951 DOI: 10.1111/jeu.12857] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Vermamoeba vermiformis are one of the most prevalent free-living amoebae. These amoebae are ubiquitous and also thermotolerant. Of concern, V. vermiformis have been found in hospital water networks. Furthermore, associations between V. vermiformis and pathogenic bacteria have been reported, such as Legionella pneumophila. Moreover, V. vermiformis are well known to host viruses, bacteria, and other microorganisms and cases of keratitis due to V. vermiformis in conjunction with other amoebae have been reported. Despite the preceding, the medical importance of V. vermiformis is still an ongoing discussion and its genome has been only recently sequenced. Herein, we present a review of the current understanding of the biology and pathogenesis pertaining to V. vermiformis, as well as its' role as an etiological agent and trojan horse. An approach known as theranostics which combines both diagnosis and therapy could be utilized to eradicate and diagnose keratitis cases caused by such amoebae. Given the rise in global warming, it is imperative to investigate these rarely studied amoebae and to understand their importance in human health.
Collapse
Affiliation(s)
- Ruqaiyyah Siddiqui
- College of Arts and Sciences, American University of Sharjah, Sharjah, UAE
| | - Zinb Makhlouf
- College of Arts and Sciences, American University of Sharjah, Sharjah, UAE
| | - Naveed Ahmed Khan
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, UAE.,Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, UAE
| |
Collapse
|
7
|
van der Loo C, Bartie C, Barnard TG, Potgieter N. Detection of Free-Living Amoebae and Their Intracellular Bacteria in Borehole Water before and after a Ceramic Pot Filter Point-of-Use Intervention in Rural Communities in South Africa. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:3912. [PMID: 33917870 PMCID: PMC8068299 DOI: 10.3390/ijerph18083912] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/26/2021] [Accepted: 04/02/2021] [Indexed: 11/21/2022]
Abstract
Free-living amoebae (FLA) are ubiquitous in nature, whereas amoeba-resistant bacteria (ARB) have evolved virulent mechanisms that allow them to resist FLA digestion mechanisms and survive inside the amoeba during hostile environmental conditions. This study assessed the prevalence of FLA and ARB species in borehole water before and after a ceramic point-of-use intervention in rural households. A total of 529 water samples were collected over a five-month period from 82 households. All water samples were subjected to amoebal enrichment, bacterial isolation on selective media, and molecular identification using 16S PCR/sequencing to determine ARB species and 18S rRNA PCR/sequencing to determine FLA species present in the water samples before and after the ceramic pot intervention. Several FLA species including Acanthamoeba spp. and Mycobacterium spp. were isolated. The ceramic pot filter removed many of these microorganisms from the borehole water. However, design flaws could have been responsible for some FLA and ARB detected in the filtered water. FLA and their associated ARB are ubiquitous in borehole water, and some of these species might be potentially harmful and a health risk to vulnerable individuals. There is a need to do more investigations into the health risk of these organisms after point-of-use treatment.
Collapse
Affiliation(s)
- Clarissa van der Loo
- Water and Health Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg 2094, South Africa; (C.v.d.L.); (T.G.B.)
| | | | - Tobias George Barnard
- Water and Health Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg 2094, South Africa; (C.v.d.L.); (T.G.B.)
| | - Natasha Potgieter
- Environmental Health, Domestic Hygiene and Microbial Pathogens Research Group, Department of Microbiology, University of Venda, Thohoyandou 1950, South Africa
| |
Collapse
|
8
|
Samba-Louaka A, Delafont V, Rodier MH, Cateau E, Héchard Y. Free-living amoebae and squatters in the wild: ecological and molecular features. FEMS Microbiol Rev 2019; 43:415-434. [DOI: 10.1093/femsre/fuz011] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 04/30/2019] [Indexed: 02/06/2023] Open
Abstract
ABSTRACT
Free-living amoebae are protists frequently found in water and soils. They feed on other microorganisms, mainly bacteria, and digest them through phagocytosis. It is accepted that these amoebae play an important role in the microbial ecology of these environments. There is a renewed interest for the free-living amoebae since the discovery of pathogenic bacteria that can resist phagocytosis and of giant viruses, underlying that amoebae might play a role in the evolution of other microorganisms, including several human pathogens. Recent advances, using molecular methods, allow to bring together new information about free-living amoebae. This review aims to provide a comprehensive overview of the newly gathered insights into (1) the free-living amoeba diversity, assessed with molecular tools, (2) the gene functions described to decipher the biology of the amoebae and (3) their interactions with other microorganisms in the environment.
Collapse
Affiliation(s)
- Ascel Samba-Louaka
- Laboratoire Ecologie et Biologie des Interactions (EBI), Equipe Microbiologie de l'Eau, Université de Poitiers, UMR CNRS 7267, 1 rue Georges Bonnet, TSA51106, 86073 POITIERS Cedex 9, France
| | - Vincent Delafont
- Laboratoire Ecologie et Biologie des Interactions (EBI), Equipe Microbiologie de l'Eau, Université de Poitiers, UMR CNRS 7267, 1 rue Georges Bonnet, TSA51106, 86073 POITIERS Cedex 9, France
| | - Marie-Hélène Rodier
- Laboratoire Ecologie et Biologie des Interactions (EBI), Equipe Microbiologie de l'Eau, Université de Poitiers, UMR CNRS 7267, 1 rue Georges Bonnet, TSA51106, 86073 POITIERS Cedex 9, France
- Laboratoire de Parasitologie et Mycologie, CHU La Milétrie, 2 rue de la Milétrie, 86021 Poitiers Cedex, France
| | - Estelle Cateau
- Laboratoire Ecologie et Biologie des Interactions (EBI), Equipe Microbiologie de l'Eau, Université de Poitiers, UMR CNRS 7267, 1 rue Georges Bonnet, TSA51106, 86073 POITIERS Cedex 9, France
- Laboratoire de Parasitologie et Mycologie, CHU La Milétrie, 2 rue de la Milétrie, 86021 Poitiers Cedex, France
| | - Yann Héchard
- Laboratoire Ecologie et Biologie des Interactions (EBI), Equipe Microbiologie de l'Eau, Université de Poitiers, UMR CNRS 7267, 1 rue Georges Bonnet, TSA51106, 86073 POITIERS Cedex 9, France
| |
Collapse
|
9
|
Scheid PL. Vermamoeba vermiformis - A Free-Living Amoeba with Public Health and Environmental Health Significance. ACTA ACUST UNITED AC 2019. [DOI: 10.2174/1874421401907010040] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Many case reports emphasize the fact that Free-Living Amoebae (FLA) can relatively easily get in contact with humans or animals. The presence of several facultative parasitic FLA in habitats related to human activities supports their public health relevance. While some strains of Acanthamoeba,Naegleria fowleri,Balamuthia mandrillarisand several other FLA have been described as facultative human pathogens, it remains controversial whetherVermamoeba vermiformisstrains may have a pathogenic potential, or whether this FLA is just an incidental contaminant in a range of human cases. However, several cases support its role as a human parasite, either as the only etiological agent, or in combination with other pathogens. Additionally, a wide range of FLA is known as vectors of microorganisms (endocytobionts), hereby emphasizing their environmental significance. Among those FLA serving as hosts for and vectors of (pathogenic) endocytobionts, there are also descriptions ofV. vermiformisas a vehicle and a reservoir of those endocytobionts. The involvement in animal and human health, the role as vector of pathogenic microorganisms and the pathogenicity in cell cultures, led to the assumption thatV. vermiformisshould be considered relevant in terms of public health and environmental health.
Collapse
|
10
|
Vermamoeba vermiformis as etiological agent of a painful ulcer close to the eye. Parasitol Res 2019; 118:1999-2004. [PMID: 30972570 DOI: 10.1007/s00436-019-06312-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 04/03/2019] [Indexed: 01/28/2023]
Abstract
In the present article, we report on the identification of Vermamoeba (Hartmannella) vermiformis as the etiological agent of a tissue infection close to the eye of a female patient. Laboratory examination revealed no involvement of any pathogenic bacteria or fungi in the tissue infection. V. vermiformis was identified by cultivation and morphology of trophozoites and cysts as well as phylogenetic analysis of nuclear 18S rDNA. The lesion improved in the course of 4 weeks by application of zinc paste.
Collapse
|
11
|
Isolation and molecular identification of free-living amoebae from dishcloths in Tenerife, Canary Islands, Spain. Parasitol Res 2019; 118:927-933. [DOI: 10.1007/s00436-018-06193-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 12/21/2018] [Indexed: 01/04/2023]
|
12
|
Delafont V, Rodier MH, Maisonneuve E, Cateau E. Vermamoeba vermiformis: a Free-Living Amoeba of Interest. MICROBIAL ECOLOGY 2018; 76:991-1001. [PMID: 29737382 DOI: 10.1007/s00248-018-1199-8] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 04/30/2018] [Indexed: 05/22/2023]
Abstract
Free-living amoebae are protists that are widely distributed in the environment including water, soil, and air. Although the amoebae of the genus Acanthamoeba are still the most studied, other species, such as Vermamoeba vermiformis (formerly Hartmannella vermiformis), are the subject of increased interest. Found in natural or man-made aquatic environments, V. vermiformis can support the multiplication of other microorganisms and is able to harbor and potentially protect pathogenic bacteria or viruses. This feature is to be noted because of the presence of this thermotolerant amoeba in hospital water networks. As a consequence, this protist could be implicated in health concerns and be indirectly responsible for healthcare-related infections. This review highlights, among others, the consequences of V. vermiformis relationships with other microorganisms and shows that this free-living amoeba species is therefore of interest for public health.
Collapse
Affiliation(s)
- Vincent Delafont
- Ecologie et Biologie des Interactions, UMR CNRS 7267, Equipe Microbiologie de l'Eau, Université de Poitiers, 1 rue Georges Bonnet, 86022, Poitiers Cedex, France
| | - Marie-Helene Rodier
- Ecologie et Biologie des Interactions, UMR CNRS 7267, Equipe Microbiologie de l'Eau, Université de Poitiers, 1 rue Georges Bonnet, 86022, Poitiers Cedex, France
- Laboratoire de parasitologie et mycologie, CHU La Milètrie, 86021, Poitiers Cedex, France
| | - Elodie Maisonneuve
- Ecologie et Biologie des Interactions, UMR CNRS 7267, Equipe Microbiologie de l'Eau, Université de Poitiers, 1 rue Georges Bonnet, 86022, Poitiers Cedex, France
| | - Estelle Cateau
- Ecologie et Biologie des Interactions, UMR CNRS 7267, Equipe Microbiologie de l'Eau, Université de Poitiers, 1 rue Georges Bonnet, 86022, Poitiers Cedex, France.
- Laboratoire de parasitologie et mycologie, CHU La Milètrie, 86021, Poitiers Cedex, France.
| |
Collapse
|
13
|
|
14
|
Milanez GD, Masangkay FR, Thomas RC, Ordona MOGO, Bernales GQ, Corpuz VCM, Fortes HSV, Garcia CMS, Nicolas LC, Nissapatorn V. Molecular identification of Vermamoeba vermiformis from freshwater fish in lake Taal, Philippines. Exp Parasitol 2017; 183:201-206. [DOI: 10.1016/j.exppara.2017.09.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 09/06/2017] [Accepted: 09/11/2017] [Indexed: 11/28/2022]
|
15
|
Reyes-Batlle M, Martín-Rodríguez AJ, López-Arencibia A, Sifaoui I, Liendo AR, Bethencourt Estrella CJ, García Méndez AB, Chiboub O, Hajaji S, Valladares B, Martínez-Carretero E, Piñero JE, Lorenzo-Morales J. In vitro interactions of Acanthamoeba castellanii Neff and Vibrio harveyi. Exp Parasitol 2017; 183:167-170. [PMID: 28917709 DOI: 10.1016/j.exppara.2017.09.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 09/05/2017] [Accepted: 09/11/2017] [Indexed: 01/08/2023]
Abstract
Free-living amoebae (FLA) are opportunistic protozoa widely distributed in the environment. They are frequently found in water and soil samples, but they have also been reported to be associated with bacterial human pathogens such as Legionella spp. Campylobacter spp or Vibrio cholerae among others. Including within Vibrio spp. V. harveyi (Johnson and Shunk, 1936) is a bioluminescent marine bacteria which has been found swimming freely in tropical marine waters, being part of the stomach and intestine microflora of marine animals, and as both a primary and opportunistic pathogen of marine animals. Our aim was to study the interactions between Vibrio harveyi and Acanthamoeba castellanii Neff. Firstly, in order to analyze changes in it cultivability, V. harveyi was coincubated with A. castellanii Neff axenic culture and with Acanthamoeba Conditioned Medium (ACM) at different temperatures in aerobic conditions. Interestingly, at 4 °C and 18-20 °C bacteria were still cultivable in marine agar, at 28 °C, in aerobic conditions, but there weren't significant differences comparing with the controls. We also noted an enhanced migration of Acanthamoeba toward V. harveyi on non-nutrient agar plates compared to controls with no bacteria.
Collapse
Affiliation(s)
- María Reyes-Batlle
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, S/N, 38203 La Laguna, Tenerife, Islas Canarias, Spain.
| | | | - Atteneri López-Arencibia
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, S/N, 38203 La Laguna, Tenerife, Islas Canarias, Spain
| | - Ines Sifaoui
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, S/N, 38203 La Laguna, Tenerife, Islas Canarias, Spain
| | - Aitor Rizo Liendo
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, S/N, 38203 La Laguna, Tenerife, Islas Canarias, Spain
| | - Carlos J Bethencourt Estrella
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, S/N, 38203 La Laguna, Tenerife, Islas Canarias, Spain
| | - Ana B García Méndez
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, S/N, 38203 La Laguna, Tenerife, Islas Canarias, Spain
| | - Olfa Chiboub
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, S/N, 38203 La Laguna, Tenerife, Islas Canarias, Spain; Laboratoire Matériaux-Molécules et Applications, IPEST, B.P 51 2070, La Marsa, University of Cathage, Tunisia
| | - Soumaya Hajaji
- Laboratoire de Parasitologie, Université de La Manouba, Ecole Nationale de Médecine Vétérinaire de Sidi Thabet, 2020, Tunisia
| | - Basilio Valladares
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, S/N, 38203 La Laguna, Tenerife, Islas Canarias, Spain
| | - Enrique Martínez-Carretero
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, S/N, 38203 La Laguna, Tenerife, Islas Canarias, Spain
| | - José E Piñero
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, S/N, 38203 La Laguna, Tenerife, Islas Canarias, Spain
| | - Jacob Lorenzo-Morales
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, S/N, 38203 La Laguna, Tenerife, Islas Canarias, Spain
| |
Collapse
|
16
|
Molecular identification of bacterial endosymbionts of Sappinia strains. Parasitol Res 2016; 116:549-558. [PMID: 27830372 DOI: 10.1007/s00436-016-5319-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 10/28/2016] [Indexed: 10/20/2022]
Abstract
The genus Sappinia comprises free-living amoebae occurring worldwide in a variety of habitats such as soils, plant matter and freshwater ponds, but also animal faeces, and includes at present three species, S. pedata, S. diploidea and S. platani. The genus is potentially pathogenic, as indicated by the identification of S. pedata in a case of human amoebic encephalitis. Electron microscopy studies on some strains already revealed intracellular bacteria in Sappinia. In the current study, we performed 16S ribosomal RNA gene (rDNA) analysis of these bacterial endosymbionts. We first inferred relationships among Sappinia strains on the basis of 18S rDNA, demonstrating that S. pedata emerged as sister to a larger clade including S. diploidea, S. platani and a few 'S. diploidea-like' strains. Thus, bacterial 16S rDNA was searched for in representative strains of each Sappinia species/subgroup. We found that Sappinia strains were associated to distinct species of Flavobacterium or Pedobacter (phylum Bacteroidetes). These appear to be distributed following the amoebal host subgroups, and are not directly related to other Bacteroidetes species known as interacting with free-living amoebae. While all the endosymbionts' close relatives are known to grow on agar, bacteriological media inoculated with amoebal extracts remained negative. Overall, results indicate that the recovered bacteria are likely specific obligate endosymbionts of Sappinia species. Further studies, including additional amoebal strains and deep morphological and molecular analyses, will be necessary to confirm this hypothesis.
Collapse
|
17
|
Muchesa P, Leifels M, Jurzik L, Hoorzook KB, Barnard TG, Bartie C. Coexistence of free-living amoebae and bacteria in selected South African hospital water distribution systems. Parasitol Res 2016; 116:155-165. [PMID: 27730363 PMCID: PMC7088035 DOI: 10.1007/s00436-016-5271-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 09/21/2016] [Indexed: 12/13/2022]
Abstract
Pathogenic free-living amoebae (FLA), such as Naegleria fowleri, Balamuthia mandrillaris and Acanthamoeba species isolated from aquatic environments have been implicated in central nervous system, eye and skin human infections. They also allow the survival, growth and transmission of bacteria such as Legionella, Mycobacteria and Vibrio species in water systems. The purpose of this study was to investigate the co-occurrence of potentially pathogenic FLA and their associated bacteria in hospital water networks in Johannesburg, South Africa. A total of 178 water (n = 95) and swab (n = 83) samples were collected from two hospital water distribution systems. FLA were isolated using the amoebal enrichment technique and identified using PCR and 18S rDNA sequencing. Amoebae potentially containing intra-amoebal bacteria were lysed and cultured on blood agar plates. Bacterial isolates were characterized using the VITEK®2 compact System. Free-living amoebae were isolated from 77 (43.3 %) of the samples. Using microscopy, PCR and 18S rRNA sequencing, Acanthamoeba spp. (T3 and T20 genotypes), Vermamoeba vermiformis and Naegleria gruberi specie were identified. The Acanthamoeba T3 and T20 genotypes have been implicated in eye and central nervous system infections. The most commonly detected bacterial species were Serratia marcescens, Stenotrophomonas maltophilia, Delftia acidovorans, Sphingomonas paucimobilis and Comamonas testosteroni. These nosocomial pathogenic bacteria are associated with systematic blood, respiratory tract, the urinary tract, surgical wounds and soft tissues infections. The detection of FLA and their associated opportunistic bacteria in the hospital water systems point out to a potential health risk to immune-compromised individuals.
Collapse
Affiliation(s)
- P Muchesa
- Water and Health Research Centre, Faculty of Health Sciences, University of Johannesburg, PO Box 17011, Doornfontein, 2028, South Africa.
| | - M Leifels
- Department of Hygiene, Social and Environmental Medicine, Ruhr-University Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - L Jurzik
- Department of Hygiene, Social and Environmental Medicine, Ruhr-University Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - K B Hoorzook
- Water and Health Research Centre, Faculty of Health Sciences, University of Johannesburg, PO Box 17011, Doornfontein, 2028, South Africa
| | - T G Barnard
- Water and Health Research Centre, Faculty of Health Sciences, University of Johannesburg, PO Box 17011, Doornfontein, 2028, South Africa
| | - C Bartie
- Water and Health Research Centre, Faculty of Health Sciences, University of Johannesburg, PO Box 17011, Doornfontein, 2028, South Africa
| |
Collapse
|