1
|
Horn M, Bieliková L, Vostoupalová A, Švéda J, Mareš M. An update on proteases and protease inhibitors from trematodes. ADVANCES IN PARASITOLOGY 2024; 126:97-176. [PMID: 39448195 DOI: 10.1016/bs.apar.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Trematodes, a class of parasitic flatworms, are responsible for a variety of devastating diseases in humans and animals, with schistosomiasis and fascioliasis being prominent examples. Trematode proteolytic systems involved in the host-parasite interaction have emerged as key contributors to the success of trematodes in establishing and maintaining infections. This review concentrates on diverse proteases and protease inhibitors employed by trematodes and provides an update on recent advances in their molecular-level characterization, with a focus on function, structure, and therapeutic target potential.
Collapse
Affiliation(s)
- Martin Horn
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Lucia Bieliková
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Andrea Vostoupalová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jakub Švéda
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Michael Mareš
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
2
|
Euceda-Padilla EA, Mateo-Cruz MG, Ávila-González L, Flores-Pucheta CI, Ortega-López J, Talamás-Lara D, Velazquez-Valassi B, Jasso-Villazul L, Arroyo R. Trichomonas vaginalis Legumain-2, TvLEGU-2, Is an Immunogenic Cysteine Peptidase Expressed during Trichomonal Infection. Pathogens 2024; 13:119. [PMID: 38392857 PMCID: PMC10892250 DOI: 10.3390/pathogens13020119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024] Open
Abstract
Trichomonas vaginalis is the causative agent of trichomoniasis, the most prevalent nonviral, neglected sexually transmitted disease worldwide. T. vaginalis has one of the largest degradomes among unicellular parasites. Cysteine peptidases (CPs) are the most abundant peptidases, constituting 50% of the degradome. Some CPs are virulence factors recognized by antibodies in trichomoniasis patient sera, and a few are found in vaginal secretions that show fluctuations in glucose concentrations during infection. The CPs of clan CD in T. vaginalis include 10 genes encoding legumain-like peptidases of the C13 family. TvLEGU-2 is one of them and has been identified in multiple proteomes, including the immunoproteome obtained with Tv (+) patient sera. Thus, our goals were to assess the effect of glucose on TvLEGU-2 expression, localization, and in vitro secretion and determine whether TvLEGU-2 is expressed during trichomonal infection. We performed qRT-PCR assays using parasites grown under different glucose conditions. We also generated a specific anti-TvLEGU-2 antibody against a synthetic peptide of the most divergent region of this CP and used it in Western blot (WB) and immunolocalization assays. Additionally, we cloned and expressed the tvlegu-2 gene (TVAG_385340), purified the recombinant TvLEGU-2 protein, and used it as an antigen for immunogenicity assays to test human sera from patients with vaginitis. Our results show that glucose does not affect tvlegu-2 expression but does affect localization in different parasite organelles, such as the plasma membrane, Golgi complex, hydrogenosomes, lysosomes, and secretion vesicles. TvLEGU-2 is secreted in vitro, is present in vaginal secretions, and is immunogenic in sera from Tv (+) patients, suggesting its relevance during trichomonal infection.
Collapse
Affiliation(s)
- Esly Alejandra Euceda-Padilla
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN 2508, Alcaldía Gustavo A. Madero (GAM), Mexico City 07360, Mexico; (E.A.E.-P.); (M.G.M.-C.); (L.Á.-G.)
| | - Miriam Guadalupe Mateo-Cruz
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN 2508, Alcaldía Gustavo A. Madero (GAM), Mexico City 07360, Mexico; (E.A.E.-P.); (M.G.M.-C.); (L.Á.-G.)
| | - Leticia Ávila-González
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN 2508, Alcaldía Gustavo A. Madero (GAM), Mexico City 07360, Mexico; (E.A.E.-P.); (M.G.M.-C.); (L.Á.-G.)
| | - Claudia Ivonne Flores-Pucheta
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN 2508, Alcaldía Gustavo A. Madero (GAM), Mexico City 07360, Mexico; (C.I.F.-P.); (J.O.-L.)
| | - Jaime Ortega-López
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN 2508, Alcaldía Gustavo A. Madero (GAM), Mexico City 07360, Mexico; (C.I.F.-P.); (J.O.-L.)
| | - Daniel Talamás-Lara
- Unidad de Microscopía Electrónica, Laboratorios Nacionales De Servicios Experimentales (LaNSE), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN 2508, Alcaldía Gustavo A. Madero (GAM), Mexico City 07360, Mexico;
| | - Beatriz Velazquez-Valassi
- Departamento de Vigilancia Epidemiológica, Hospital General de México “Eduardo Liceaga”, Mexico City 06720, Mexico;
| | - Lidia Jasso-Villazul
- Unidad de Medicina Preventiva, Hospital General de México “Eduardo Liceaga”, Mexico City 06720, Mexico;
| | - Rossana Arroyo
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN 2508, Alcaldía Gustavo A. Madero (GAM), Mexico City 07360, Mexico; (E.A.E.-P.); (M.G.M.-C.); (L.Á.-G.)
| |
Collapse
|
3
|
Chu Y, Shi D, Wang N, Ren L, Liu N, Hu F, Meng W, Hong SJ, Bai X. Clonorchis sinensis legumain promotes migration and invasion of cholangiocarcinoma cells via regulating tumor-related molecules. Parasit Vectors 2023; 16:71. [PMID: 36797792 PMCID: PMC9933405 DOI: 10.1186/s13071-023-05694-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/03/2023] [Indexed: 02/18/2023] Open
Abstract
BACKGROUND Clonorchis sinensis infection causes serious pathological changes in the bile duct and is highly correlated with cholangiocarcinoma. The excretory-secretory products (ESP) of C. sinensis play a critical role in the oncogenesis and progression of cholangiocarcinoma, while the components and precise mechanism remain unclear. Here, we evaluated the function of C. sinensis legumain (Cslegumain) in promoting the invasion and migration of cholangiocarcinoma cells and the mechanism involved. METHODS The structural and molecular characteristics of Cslegumain were predicted and analyzed using the online program Phyre2. Quantitative real-time polymerase chain reaction (qRT-PCR) and immunohistochemical staining were performed to test the transcriptional level of Cslegumain and its localization in the adult. Native Cslegumain was detected by western blotting assay. The effects of Cslegumain on the proliferation, invasion and migration of cholangiocarcinoma cells were checked using CCK-8 assay, Matrigel transwell assay and scratch wound healing assay. Expression levels of tumor-related molecules regulated by Cslegumain were evaluated by qRT-PCR and western blotting assay. RESULTS Cslegumain showed high similarity with human legumain in the secondary and tertiary structures and displayed higher transcriptional levels in the adult worm than in the metacercariae. Native Cslegumain was detected in a catalytic form and was localized mainly in the intestine of the C. sinensis adult and epithelial cells of the intrahepatic bile duct. After transfection into RBE cells, Cslegumain showed high ability in promoting the invasion and migration but not the proliferation of cholangiocarcinoma RBE cells. Furthermore, the expression levels of some molecules including E-cadherin and N-cadherin were downregulated, while the levels of α-actinin 4, β-catenin and inducible nitric oxide synthase (iNOS) were upregulated. CONCLUSIONS Our findings indicated that Cslegumain showed very similar structures as those of human legumain and could promote the invasion and migration of cholangiocarcinoma cells by regulating some tumor-related molecules.
Collapse
Affiliation(s)
- Yanfei Chu
- grid.452240.50000 0004 8342 6962Clinical Medicine Laboratory, Binzhou Medical University Hospital, Binzhou, 256603 Shandong People’s Republic of China
| | - Doufei Shi
- grid.452240.50000 0004 8342 6962Department of Geriatric Medicine, Binzhou Medical University Hospital, Binzhou, 256603 Shandong People’s Republic of China
| | - Nan Wang
- grid.452240.50000 0004 8342 6962Clinical Medicine Laboratory, Binzhou Medical University Hospital, Binzhou, 256603 Shandong People’s Republic of China
| | - Lebin Ren
- grid.452240.50000 0004 8342 6962Clinical Medicine Laboratory, Binzhou Medical University Hospital, Binzhou, 256603 Shandong People’s Republic of China
| | - Naiguo Liu
- grid.452240.50000 0004 8342 6962Clinical Medicine Laboratory, Binzhou Medical University Hospital, Binzhou, 256603 Shandong People’s Republic of China
| | - Fengai Hu
- grid.452240.50000 0004 8342 6962Clinical Medicine Laboratory, Binzhou Medical University Hospital, Binzhou, 256603 Shandong People’s Republic of China
| | - Wei Meng
- grid.452240.50000 0004 8342 6962Clinical Medicine Laboratory, Binzhou Medical University Hospital, Binzhou, 256603 Shandong People’s Republic of China
| | - Sung-Jong Hong
- grid.254224.70000 0001 0789 9563Department of Medical Environmental Biology, Chung-Ang University College of Medicine, Dongjak-Gu, Seoul, 156-756 Republic of Korea
| | - Xuelian Bai
- Clinical Medicine Laboratory, Binzhou Medical University Hospital, Binzhou, 256603, Shandong, People's Republic of China.
| |
Collapse
|
4
|
Young ND, Stroehlein AJ, Kinkar L, Wang T, Sohn WM, Chang BCH, Kaur P, Weisz D, Dudchenko O, Aiden EL, Korhonen PK, Gasser RB. High-quality reference genome for Clonorchis sinensis. Genomics 2021; 113:1605-1615. [PMID: 33677057 DOI: 10.1016/j.ygeno.2021.03.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 01/18/2021] [Accepted: 03/01/2021] [Indexed: 12/13/2022]
Abstract
The Chinese liver fluke, Clonorchis sinensis, causes the disease clonorchiasis, affecting ~35 million people in regions of China, Vietnam, Korea and the Russian Far East. Chronic clonorchiasis causes cholangitis and can induce a malignant cancer, called cholangiocarcinoma, in the biliary system. Control in endemic regions is challenging, and often relies largely on chemotherapy with one anthelmintic, called praziquantel. Routine treatment carries a significant risk of inducing resistance to this anthelmintic in the fluke, such that the discovery of new interventions is considered important. It is hoped that the use of molecular technologies will assist this endeavour by enabling the identification of drug or vaccine targets involved in crucial biological processes and/or pathways in the parasite. Although draft genomes of C. sinensis have been published, their assemblies are fragmented. In the present study, we tackle this genome fragmentation issue by utilising, in an integrated way, advanced (second- and third-generation) DNA sequencing and informatic approaches to build a high-quality reference genome for C. sinensis, with chromosome-level contiguity and curated gene models. This substantially-enhanced genome provides a resource that could accelerate fundamental and applied molecular investigations of C. sinensis, clonorchiasis and/or cholangiocarcinoma, and assist in the discovery of new interventions against what is a highly significant, but neglected disease-complex.
Collapse
Affiliation(s)
- Neil D Young
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Andreas J Stroehlein
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Liina Kinkar
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Tao Wang
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Woon-Mok Sohn
- Department of Parasitology and Institute of Health Sciences, School of Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Bill C H Chang
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Parwinder Kaur
- UWA School of Agriculture and Environment, Faculty of Science, University of Western Australia, Perth, Western Australia 6009, Australia
| | - David Weisz
- The Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Olga Dudchenko
- The Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA
| | - Erez Lieberman Aiden
- UWA School of Agriculture and Environment, Faculty of Science, University of Western Australia, Perth, Western Australia 6009, Australia; The Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA; Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech, Pudong 201210, China
| | - Pasi K Korhonen
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Robin B Gasser
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
5
|
Li S, Chen X, Zhou J, Xie Z, Shang M, He L, Liang P, Chen T, Mao Q, Liang C, Li X, Huang Y, Yu X. Amino acids serve as an important energy source for adult flukes of Clonorchis sinensis. PLoS Negl Trop Dis 2020; 14:e0008287. [PMID: 32352979 PMCID: PMC7217481 DOI: 10.1371/journal.pntd.0008287] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/12/2020] [Accepted: 04/10/2020] [Indexed: 12/19/2022] Open
Abstract
Clonorchiasis, caused by chronic infection with Clonorchis sinensis (C. sinensis), is an important food-borne parasitic disease that seriously afflicts more than 35 million people globally, resulting in a socioeconomic burden in endemic regions. C. sinensis adults long-term inhabit the microaerobic and limited-glucose environment of the bile ducts. Energy metabolism plays a key role in facilitating the adaptation of adult flukes to crowded habitat and hostile environment. To understand energy source for adult flukes, we compared the component and content of free amino acids between C. sinensis-infected and uninfected bile. The results showed that the concentrations of free amino acids, including aspartic acid, serine, glycine, alanine, histidine, asparagine, threonine, lysine, hydroxylysine, and urea, were significantly higher in C. sinensis-infected bile than those in uninfected bile. Furthermore, exogenous amino acids could be utilized by adult flukes via the gluconeogenesis pathway regardless of the absence or presence of exogenous glucose, and the rate-limiting enzymes, such as C. sinensis glucose-6-phosphatase, fructose-1,6-bisphosphatase, phosphoenolpyruvate carboxykinase, and pyruvate carboxylase, exhibited high expression levels by quantitative real-time PCR analysis. Interestingly, no matter whether exogenous glucose was present, inhibition of gluconeogenesis reduced the glucose and glycogen levels as well as the viability and survival time of adult flukes. These results suggest that gluconeogenesis might play a vital role in energy metabolism of C. sinensis and exogenous amino acids probably serve as an important energy source that benefits the continued survival of adult flukes in the host. Our study will be a cornerstone for illuminating the biological characteristics of C. sinensis and the host-parasite interactions. Clonorchiasis, closely related to cholangiocarcinoma and hepatocellular carcinoma, has led to a negative socioeconomic impact in global areas especially some Asian endemic regions. Owing to the emergence of drug resistance and hypersensitivity reactions after the massive and repeated use of praziquantel as well as the lack of effective vaccines, searching for new strategies that prevent and treat clonorchiasis has become an urgent matter. Clonorchis sinensis, the causative agent of clonorchiasis, long-term inhabits the microaerobic and limited-glucose environment of the bile ducts. Adequate nutrients are essential for adult flukes to resist the adverse condition and survive in the crowed habitat. Studies on energy metabolism of adult flukes are beneficial for further exploring host-parasite interactions and developing novel anti-parasitic drugs. Our results suggest that gluconeogenesis probably plays a vital role in energy metabolism of Clonorchis sinensis and exogenous amino acids might be an essential energy source for adult flukes to successfully survive in the host. Our foundational study opens a new avenue for explaining energy metabolism of Clonorchis sinensis and provides a valuable strategy that the gluconeogenesis pathway will be a potential and novel target for the prevention and treatment of clonorchiasis.
Collapse
Affiliation(s)
- Shan Li
- Department of Pathology and Pathophysiology, Henan University of Chinese Medicine, Zhengzhou, Henan, People’s Republic of China
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, People’s Republic of China
- Key Laboratory for Tropical Diseases Control, Sun Yat-Sen University, Ministry of Education, Guangzhou, Guangdong, People’s Republic of China
| | - Xueqing Chen
- Clinical Laboratory, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People’s Republic of China
| | - Juanjuan Zhou
- Zhengzhou Key Laboratory for Children’s Infection and Immunity, Children’s Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan, People’s Republic of China
| | - Zhizhi Xie
- Clinical Laboratory, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, People’s Republic of China
| | - Mei Shang
- Clinical Laboratory, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, People’s Republic of China
| | - Lei He
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, People’s Republic of China
- Key Laboratory for Tropical Diseases Control, Sun Yat-Sen University, Ministry of Education, Guangzhou, Guangdong, People’s Republic of China
| | - Pei Liang
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, People’s Republic of China
- Key Laboratory for Tropical Diseases Control, Sun Yat-Sen University, Ministry of Education, Guangzhou, Guangdong, People’s Republic of China
| | - Tingjin Chen
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, People’s Republic of China
- Key Laboratory for Tropical Diseases Control, Sun Yat-Sen University, Ministry of Education, Guangzhou, Guangdong, People’s Republic of China
| | - Qiang Mao
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, People’s Republic of China
- Key Laboratory for Tropical Diseases Control, Sun Yat-Sen University, Ministry of Education, Guangzhou, Guangdong, People’s Republic of China
| | - Chi Liang
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, People’s Republic of China
- Key Laboratory for Tropical Diseases Control, Sun Yat-Sen University, Ministry of Education, Guangzhou, Guangdong, People’s Republic of China
| | - Xuerong Li
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, People’s Republic of China
- Key Laboratory for Tropical Diseases Control, Sun Yat-Sen University, Ministry of Education, Guangzhou, Guangdong, People’s Republic of China
| | - Yan Huang
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, People’s Republic of China
- Key Laboratory for Tropical Diseases Control, Sun Yat-Sen University, Ministry of Education, Guangzhou, Guangdong, People’s Republic of China
- * E-mail: (YH); (XY)
| | - Xinbing Yu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, People’s Republic of China
- Key Laboratory for Tropical Diseases Control, Sun Yat-Sen University, Ministry of Education, Guangzhou, Guangdong, People’s Republic of China
- * E-mail: (YH); (XY)
| |
Collapse
|
6
|
Na BK, Pak JH, Hong SJ. Clonorchis sinensis and clonorchiasis. Acta Trop 2020; 203:105309. [PMID: 31862466 DOI: 10.1016/j.actatropica.2019.105309] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 11/22/2019] [Accepted: 12/16/2019] [Indexed: 01/25/2023]
Abstract
Clonorchis sinensis is a fish-borne trematode that inhabits the bile duct of mammals including humans. Clonorchiasis is prevalent in China, Korea, and Vietnam, and 15-20 million people are estimated to be infected by this fluke. Freshwater snails act as the first intermediate host for the proliferation of C. sinensis larvae and shed the cercariae into water. The cercariae penetrate the skin of freshwater fish and transform to metacercariae. Humans are infected by eating raw or undercooked freshwater fish as dishes of filet, "sashimi," or congee, which contain C. sinensis metacercariae. In humans, the C. sinensis metacercariae excyst in the duodenum, and juvenile flukes migrate up via bile chemotaxis into bile ducts. Once there, C. sinensis provokes hyperplasia of the bile duct epithelium, obstructive jaundice, ascites, liver enlargement and cirrhosis, and infrequent cholangiocarcinoma (CCA). Although the association between C. sinensis infection and CCA has been firmly established in past decades, the underlying mechanisms are not elucidated in detail. In the context of chronic clonorchiasis-associated hepatobiliary aberrations, the constitutive disruption of redox homeostasis and dysregulation of physiological signaling pathways may promote the malignant transformation of cholangiocytes, thus leading to substantial acquisition of a more aggressive phenotype by these cells: CCA. With advances of genomic and molecular biological approaches, diverse C. sinensis proteins that are essential for parasite physiology and pathogenicity have been identified and characterized. Some of the proteins have been considered as attractive targets for development of vaccines and chemotherapeutics. Candidate antigens for reliable serodiagnosis of clonorchiasis have been studied.
Collapse
|
7
|
Kang JM, Yoo WG, Lê HG, Lee J, Sohn WM, Na BK. Clonorchis sinensis MF6p/HDM (CsMF6p/HDM) induces pro-inflammatory immune response in RAW 264.7 macrophage cells via NF-κB-dependent MAPK pathways. Parasit Vectors 2020; 13:20. [PMID: 31931867 PMCID: PMC6958574 DOI: 10.1186/s13071-020-3882-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 01/01/2020] [Indexed: 12/12/2022] Open
Abstract
Background MF6p/host defense molecules (HDMs) are a broad family of small proteins secreted by helminth parasites. Although the physiological role of MF6p/HDMs in trematode parasites is not fully understood, their potential biological function in maintaining heme homeostasis and modulating host immune response has been proposed. Methods A gene encoding the MF6p/HDM of Clonorchis sinensis (CsMF6p/HDM) was cloned. Recombinant CsMF6p/HDM (rCsMF6p/HDM) was expressed in Escherichia coli. The biochemical and immunological properties of rCsMF6/HDM were analyzed. CsMF6p/HDM induced pro-inflammatory response in RAW 264.7 cells was analyzed by cytokine array assay, reverse transcription polymerase chain reaction, and enzyme-linked immunosorbent assay. The structural feature of CsMF6p/HDM was analyzed by three-dimensional modeling and molecular docking simulations. Results The CsMF6p/HDM shares a high level of amino acid sequence similarity with orthologs from other trematodes and is expressed in diverse developmental stages of the parasite. The rCsMF6p/HDM bound to bacteria-derived lipopolysaccharide (LPS), without effectively neutralizing LPS-induced inflammatory response in RAW 264.7 macrophage cells. Rather, the rCsMF6p/HDM induced pro-inflammatory immune response, which is characterized by the expression of TNF-α and IL-6, in RAW 264.7 cells. The rCsMF6p/HDM-induced pro-inflammatory immune response was regulated by JNK and p38 MAPKs, and was effectively down-regulated via inhibition of NF-κB. The structural analysis of CsMF6p/HDM and the docking simulation with LPS suggested insufficient capture of LPS by CsMF6p/HDM, which suggested that rCsMF6p/HDM could not effectively neutralize LPS-induced inflammatory response in RAW 264.7 cells. Conclusions Although rCsMF6p/HDM binds to LPS, the binding affinity may not be sufficient to maintain a stable complex of rCsMF6p/HDM and LPS. Moreover, the rCsMF6p/HDM-induced pro-inflammatory response is characterized by the release of IL-6 and TNF-α in RAW 264.7 macrophage cells. The pro-inflammatory response induced by rCsMF6p/HDM is mediated via NF-κB-dependent MAPK signaling pathway. These results collectively suggest that CsMF6p/HDM mediates C. sinensis-induced inflammation cascades that eventually lead to hepatobiliary diseases.![]()
Collapse
Affiliation(s)
- Jung-Mi Kang
- Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju, 52727, Republic of Korea.,BK21Plus Team for Anti-aging Biotechnology and Industry, Department of Convergence Medical Science, Gyeongsang National University, Jinju, 52727, Republic of Korea
| | - Won Gi Yoo
- Department of Medical Environmental Biology, Chung-Ang University College of Medicine, Seoul, 06974, Republic of Korea
| | - Hương Giang Lê
- Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju, 52727, Republic of Korea.,BK21Plus Team for Anti-aging Biotechnology and Industry, Department of Convergence Medical Science, Gyeongsang National University, Jinju, 52727, Republic of Korea
| | - Jinyoung Lee
- Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju, 52727, Republic of Korea.,Department of Tropical Medicine, and Inha Research Institute for Medical Sciences, Inha University College of Medicine, Incheon, 22212, Republic of Korea
| | - Woon-Mok Sohn
- Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju, 52727, Republic of Korea
| | - Byoung-Kuk Na
- Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju, 52727, Republic of Korea. .,BK21Plus Team for Anti-aging Biotechnology and Industry, Department of Convergence Medical Science, Gyeongsang National University, Jinju, 52727, Republic of Korea.
| |
Collapse
|
8
|
Kang JM, Yoo WG, Lê HG, Thái TL, Hong SJ, Sohn WM, Na BK. Partial Characterization of Two Cathepsin D Family Aspartic Peptidases of Clonorchis sinensis. THE KOREAN JOURNAL OF PARASITOLOGY 2019; 57:671-680. [PMID: 31914521 PMCID: PMC6960241 DOI: 10.3347/kjp.2019.57.6.671] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 11/12/2019] [Indexed: 11/24/2022]
Abstract
Cathepsin D (CatD, EC 3.4.23.5) is a member belonging to the subfamily of aspartic endopeptidases, which are classified into the MEROPS clan AA, family A1. Helminth parasites express a large set of different peptidases that play pivotal roles in parasite biology and pathophysiology. However, CatD is less well known than the other classes of peptidases in terms of biochemical properties and biological functions. In this study, we identified 2 novel CatDs (CsCatD1 and CsCatD2) of Clonorchis sinensis and partially characterized their properties. Both CsCatDs represent typical enzymes sharing amino acid residues and motifs that are tightly conserved in the CatD superfamily of proteins. Both CsCatDs showed similar patterns of expression in different developmental stages of C. sinensis, but CsCatD2 was also expressed in metacercariae. CsCatD2 was mainly expressed in the intestines and eggs of C. sinensis. Sera obtained from rats experimentally infected with C. sinensis reacted with recombinant CsCatD2 beginning 2 weeks after infection and the antibody titers were gradually increased by maturation of the parasite. Structural analysis of CsCatD2 revealed a bilobed enzyme structure consisting of 2 antiparallel β-sheet domains packed against each other forming a homodimeric structure. These results suggested a plausible biological role of CsCatD2 in the nutrition and reproduction of parasite and its potential utility as a serodiagnostic antigen in clonorchiasis.
Collapse
Affiliation(s)
- Jung-Mi Kang
- Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 52727, Korea.,BK21Plus Team for Anti-aging Biotechnology and Industry, Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Korea
| | - Won-Gi Yoo
- Department of Medical Environmental Biology, Chung-Ang University College of Medicine, Seoul 06974, Korea
| | - Hương Giang Lê
- Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 52727, Korea.,BK21Plus Team for Anti-aging Biotechnology and Industry, Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Korea
| | - Thị Lam Thái
- Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 52727, Korea.,BK21Plus Team for Anti-aging Biotechnology and Industry, Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Korea
| | - Sung-Jong Hong
- Department of Medical Environmental Biology, Chung-Ang University College of Medicine, Seoul 06974, Korea
| | - Woon-Mok Sohn
- Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 52727, Korea
| | | |
Collapse
|