1
|
Oduselu GO, Ajani OO, Ogunnupebi TA, Elebiju OF, Bodun DS, Opebiyi OT, Adebiyi E. Synthesis, in silico and in vitro antimicrobial efficacy of some amidoxime-based benzimidazole and benzimidamide derivatives. RSC Med Chem 2025:d5md00114e. [PMID: 40162201 PMCID: PMC11950986 DOI: 10.1039/d5md00114e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 03/09/2025] [Indexed: 04/02/2025] Open
Abstract
Amidoximes are employed as building blocks to synthesise heterocyclic motifs with biological significance. They are very reactive and are used as prodrugs of amidine. This present study unveils the synthesis of amidoxime-based benzimidazole and benzimidamide motifs and evaluates their in silico and in vitro antimicrobial potential as future drug candidates. The compounds (2a, 2b, 4a-c) were synthesized using multi-step synthetic pathways. The synthesised compounds were characterised using physico-chemical examination, 1H- and 13C-NMR, DEPT-135, and FT-IR spectroscopic analyses. The in silico antimicrobial potentials of the synthesized compounds were carried out against glucosamine-6-phosphate synthase of E. coli (PDB ID: 2VF5), and N-myristoyltransferase (NMT) of C. albicans (PDB ID: 1IYL), while the in vitro antimicrobial screening was investigated against selected bacteria and fungi. The in silico studies were carried out using predicted ADMET screening, molecular docking, MM-GBSA, induced-fit docking (IFD), and molecular dynamics (MD) simulation studies. Furthermore, the in vitro experimental validations were performed using the agar diffusion method and the standard antibacterial and antifungal drugs used were gentamicin and ketoconazole respectively. The predicted toxicity test of the compounds showed no significant risk, except for 4c, which showed high tumorigenic risk. Compounds 2b and 2a gave better binding energies; -8.0 kcal mol-1 for 2VF5 and -11.7 kcal mol-1 for 1IYL, respectively. The antimicrobial zone of inhibition and minimum inhibitory concentration values were 40 mm and 3.90 mg mL-1 against S. mutans, then 42 mm and 1.90 mg mL-1 against C. albicans. Potential antimicrobial drug candidates have been identified in this report and should be explored for future preclinical research.
Collapse
Affiliation(s)
- Gbolahan O Oduselu
- Covenant University Bioinformatics Research (CUBRe), Covenant University Ota Nigeria
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana P. O Box LG 54, Legon Accra Ghana
| | - Olayinka O Ajani
- Covenant University Bioinformatics Research (CUBRe), Covenant University Ota Nigeria
- Department of Chemistry, Covenant University Km 10 Idiroko Road P.M.B. 1023 Ota Ogun State Nigeria
| | - Temitope A Ogunnupebi
- Covenant University Bioinformatics Research (CUBRe), Covenant University Ota Nigeria
- Department of Chemistry, Covenant University Km 10 Idiroko Road P.M.B. 1023 Ota Ogun State Nigeria
| | - Oluwadunni F Elebiju
- Covenant University Bioinformatics Research (CUBRe), Covenant University Ota Nigeria
- Department of Chemistry, Covenant University Km 10 Idiroko Road P.M.B. 1023 Ota Ogun State Nigeria
| | - Damilola S Bodun
- Covenant University Bioinformatics Research (CUBRe), Covenant University Ota Nigeria
| | | | - Ezekiel Adebiyi
- Covenant University Bioinformatics Research (CUBRe), Covenant University Ota Nigeria
- African Center of Excellence in Bioinformatics and Data Intensive Science, Makerere University Kampala Uganda
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ) Heidelberg Germany
| |
Collapse
|
2
|
Oduselu GO, Elebiju OF, Ogunnupebi TA, Akash S, Ajani OO, Adebiyi E. Employing Hexahydroquinolines as PfCDPK4 Inhibitors to Combat Malaria Transmission: An Advanced Computational Approach. Adv Appl Bioinform Chem 2024; 17:83-105. [PMID: 39345873 PMCID: PMC11430315 DOI: 10.2147/aabc.s476404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 09/18/2024] [Indexed: 10/01/2024] Open
Abstract
Background Existing antimalarial drugs primarily target blood-stage parasites, but there is a need for transmission-blocking drugs to combat malaria effectively. Plasmodium falciparum Calcium-dependent Protein Kinase 4 (CDPK4) is a promising target for such drugs. This study employed advanced in silico analyses of hexahydroquinolines (HHQ) derivatives to identify PfCDPK4 inhibitors capable of disrupting malaria transmission. Structure-based virtual screening (SBVS) was employed to discover HHQ derivatives with the highest binding affinities against the 3D structure of PfCDPK4 (PDB 1D: 4QOX). Methods Interaction analysis of protein-ligand complexes utilized Discovery Studio Client, while druglikeness and ADMET properties were assessed using SwissADME and pkCSM web servers, respectively. Quantum mechanical calculations of the top hits were conducted using density functional theory (DFT), and GROMACS was employed to perform the molecular dynamics (MD) simulations. Binding free energy was predicted using the MMPBSA.py tool from the AMBER package. Results SBVS identified ten best hits possessing docking scores within the range of -11.2 kcal/mol and -10.6 kcal/mol, surpassing the known inhibitor, BKI-1294 (-9.9 kcal/mol). Among these, 4-[4-(Furan-2-carbonyl)piperazin-1-yl]-1-(naphthalen-2-ylmethyl)-2-oxo-4a,5,6,7,8,8a-hexahydroquinoline-3-carbonitrile (PubChem ID: 145784778) exhibited the highest binding affinity (-11.2 kcal/mol) against PfCDPK4. Conclusion Comparative analysis of this compound with BKI-1294 using advanced computational approaches demonstrated competitive potential. These findings suggest the potential of 4-[4-(Furan-2-carbonyl)piperazin-1-yl]-1-(naphthalen-2-ylmethyl)-2-oxo-4a,5,6,7,8,8a-hexahydroquinoline-3-carbonitrile as a promising PfCDPK4 inhibitor for disrupting malaria transmission. However, further experimental studies are warranted to validate its efficacy and safety profile.
Collapse
Affiliation(s)
- Gbolahan O Oduselu
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, OG, Nigeria
| | - Oluwadunni F Elebiju
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, OG, Nigeria
- Department of Chemistry, Covenant University, Ota, OG, Nigeria
| | - Temitope A Ogunnupebi
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, OG, Nigeria
- Department of Chemistry, Covenant University, Ota, OG, Nigeria
| | - Shopnil Akash
- Department of Pharmacy, Daffodil International University, Dhaka, Bangladesh
| | - Olayinka O Ajani
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, OG, Nigeria
- Department of Chemistry, Covenant University, Ota, OG, Nigeria
| | - Ezekiel Adebiyi
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, OG, Nigeria
- African Center of Excellence in Bioinformatics & Data Intensive Science, Makerere University, Kampala, Uganda
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
3
|
Islam MR, Tayyeb JZ, Paul HK, Islam MN, Oduselu GO, Bayıl I, Abdellattif MH, Al‐Ahmary KM, Al‐Mhyawi SR, Zaki MEA. In silico analysis of potential inhibitors for breast cancer targeting 17beta-hydroxysteroid dehydrogenase type 1 (17beta-HSD1) catalyses. J Cell Mol Med 2024; 28:e18584. [PMID: 39135338 PMCID: PMC11319393 DOI: 10.1111/jcmm.18584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 05/12/2024] [Accepted: 05/22/2024] [Indexed: 08/16/2024] Open
Abstract
Breast cancer (BC) is still one of the major issues in world health, especially for women, which necessitates innovative therapeutic strategies. In this study, we investigated the efficacy of retinoic acid derivatives as inhibitors of 17beta-hydroxysteroid dehydrogenase type 1 (17beta-HSD1), which plays a crucial role in the biosynthesis and metabolism of oestrogen and thereby influences the progression of BC and, the main objective of this investigation is to identify the possible drug candidate against BC through computational drug design approach including PASS prediction, molecular docking, ADMET profiling, molecular dynamics simulations (MD) and density functional theory (DFT) calculations. The result has reported that total eight derivatives with high binding affinity and promising pharmacokinetic properties among 115 derivatives. In particular, ligands 04 and 07 exhibited a higher binding affinity with values of -9.9 kcal/mol and -9.1 kcal/mol, respectively, than the standard drug epirubicin hydrochloride, which had a binding affinity of -8.2 kcal/mol. The stability of the ligand-protein complexes was further confirmed by MD simulations over a 100-ns trajectory, which included assessments of hydrogen bonds, root mean square deviation (RMSD), root mean square Fluctuation (RMSF), dynamic cross-correlation matric (DCCM) and principal component analysis. The study emphasizes the need for experimental validation to confirm the therapeutic utility of these compounds. This study enhances the computational search for new BC drugs and establishes a solid foundation for subsequent experimental and clinical research.
Collapse
Affiliation(s)
- Md. Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health SciencesDaffodil International UniversityDhakaBangladesh
| | - Jehad Zuhair Tayyeb
- Department of Clinical Biochemistry, College of MedicineUniversity of JeddahJeddahSaudi Arabia
| | - Hridoy Kumar Paul
- Department of PharmacyJashore University of Science and TechnologyJashoreBangladesh
| | | | | | - Imren Bayıl
- Department of bioinformatics and computational biologyGaziantep UniversityGaziantepTurkey
| | - Magda H. Abdellattif
- Department of Chemistry, Sciences CollegeUniversity College of Taraba, Taif UniversityTaifSaudi Arabia
| | | | - Saedah R. Al‐Mhyawi
- Department of Chemistry, College of ScienceUniversity of JeddahJeddahSaudi Arabia
| | - Magdi E. A. Zaki
- Department of Chemistry, College of ScienceImam Mohammad Ibn Saud Islamic University RiyadhRiyadhSaudi Arabia
| |
Collapse
|
4
|
Kumawat J, Jain S, Misra N, Dwivedi J, Kishore D. 1,3,5-Triazine: Recent Development in Synthesis of its Analogs and Biological Profile. Mini Rev Med Chem 2024; 24:2019-2071. [PMID: 38847171 DOI: 10.2174/0113895575309800240526180356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/19/2024] [Accepted: 04/30/2024] [Indexed: 10/25/2024]
Abstract
Triazine is an important pharmacophore in the field of research for the development of novel medications due to its presence in numerous powerful physiologically active compounds with significant medical potential, such as anti-tumor, anti-viral, anti-inflammatory, anti-microbial, anti- HIV, anti-leishmanial and others. The easy availability of triazine, high reactivity, simple synthesis of their analog, and their notable broad range of biological activities have garnered chemist interest in designing s-triazine-based drugs. The interest of medicinal chemists has been sparked by the structure-activity relationship of these biologically active entities, leading to the discovery of several promising lead molecules. Its importance for medicinal chemistry research is demonstrated by the remarkable progress made with triazine derivatives in treating a variety of disorders in a very short period. Authors have collated and reviewed the medicinal potential of s-triazine analogous to afford medicinal chemists with a thorough and target-oriented overview of triazine-derived compounds. We hope the present compilation will help people from the industry and research working in the medicinal chemistry area.
Collapse
Affiliation(s)
- Jyoti Kumawat
- Department of Chemistry, Banasthali Vidyapith, Banasthali-304022, India
| | - Sonika Jain
- Department of Chemistry, Banasthali Vidyapith, Banasthali-304022, India
| | - Namita Misra
- Department of Chemistry, Banasthali Vidyapith, Banasthali-304022, India
| | - Jaya Dwivedi
- Department of Chemistry, Banasthali Vidyapith, Banasthali-304022, India
| | - Dharma Kishore
- Department of Chemistry, Banasthali Vidyapith, Banasthali-304022, India
| |
Collapse
|
5
|
Sharma B, Agarwal A, Awasthi SK. Is structural hybridization invoking new dimensions for antimalarial drug discovery research? RSC Med Chem 2023; 14:1227-1253. [PMID: 37484560 PMCID: PMC10357931 DOI: 10.1039/d3md00083d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/01/2023] [Indexed: 07/25/2023] Open
Abstract
Despite effective prevention methods, malaria is a devastating, persistent infection caused by protozoal parasites that result in nearly half a million fatalities annually. Any progress made thus far in the eradication of the disease is jeopardized by the expansion of malaria parasites that have evolved to become resistant to a wide range of drugs, including first-line therapy. To surmount this significant obstacle, it is necessary to develop newly synthesized drugs with multiple modes of action that may have a novel target in various stages of Plasmodium parasite development and this is made possible by the hybridization concept. Hybridization is the combination of at least two diverse pharmacophore units with some linkers bringing about a single molecule with a diverse mode of action. It intensifies a drug's physiological and chemical characteristics, such as absorption, cellular target contact, metabolism, excretion, distribution, and toxicity. This review article outlines the currently published most potent hybrid drugs against the Plasmodium species.
Collapse
Affiliation(s)
- Bhawana Sharma
- Chemical Biology Laboratory, Department of Chemistry, University of Delhi Delhi-110007 India
| | - Alka Agarwal
- Department of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University Varanasi-221005 Uttar Pradesh India
| | - Satish Kumar Awasthi
- Chemical Biology Laboratory, Department of Chemistry, University of Delhi Delhi-110007 India
| |
Collapse
|
6
|
Duay SS, Yap RCY, Gaitano AL, Santos JAA, Macalino SJY. Roles of Virtual Screening and Molecular Dynamics Simulations in Discovering and Understanding Antimalarial Drugs. Int J Mol Sci 2023; 24:ijms24119289. [PMID: 37298256 DOI: 10.3390/ijms24119289] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/16/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Malaria continues to be a global health threat, with approximately 247 million cases worldwide. Despite therapeutic interventions being available, patient compliance is a problem due to the length of treatment. Moreover, drug-resistant strains have emerged over the years, necessitating urgent identification of novel and more potent treatments. Given that traditional drug discovery often requires a great deal of time and resources, most drug discovery efforts now use computational methods. In silico techniques such as quantitative structure-activity relationship (QSAR), docking, and molecular dynamics (MD) can be used to study protein-ligand interactions and determine the potency and safety profile of a set of candidate compounds to help prioritize those tested using assays and animal models. This paper provides an overview of antimalarial drug discovery and the application of computational methods in identifying candidate inhibitors and elucidating their potential mechanisms of action. We conclude with the continued challenges and future perspectives in the field of antimalarial drug discovery.
Collapse
Affiliation(s)
- Searle S Duay
- Department of Chemistry, De La Salle University, Manila 0922, Philippines
| | - Rianne Casey Y Yap
- Department of Chemistry, De La Salle University, Manila 0922, Philippines
| | - Arturo L Gaitano
- Chemistry Department, Adamson University, Manila 1000, Philippines
| | | | | |
Collapse
|
7
|
Saha A, Choudhury AAK, Adhikari N, Ghosh SK, Shakya A, Patgiri SJ, Pratap Singh U, Bhat HR. Molecular docking and antimalarial evaluation of hybrid para-aminobenzoic acid 1,3,5 triazine derivatives via inhibition of Pf-DHFR. J Biomol Struct Dyn 2023; 41:15520-15534. [PMID: 37154740 DOI: 10.1080/07391102.2023.2208207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 03/03/2023] [Indexed: 05/10/2023]
Abstract
In this study, a structurally guided pharmacophore hybridization strategy is used to combine the two key structural scaffolds, para-aminobenzoic acid (PABA), and 1,3,5 triazine in search of new series of antimalarial agents. A combinatorial library of 100 compounds was prepared in five different series as [4A (1-22), 4B (1-21), 4 C (1-20), 4D (1-19) and 4E (1-18)] using different primary and secondary amines, from where 10 compounds were finally screened out through molecular property filter analysis and molecular docking study as promising PABA substituted 1,3,5-triazine scaffold as an antimalarial agent. The docking results showed that compounds 4A12 and 4A20 exhibited good binding interaction with Phe58, IIe164, Ser111, Arg122, Asp54 (-424.19 to -360.34 kcal/mol) and Arg122, Phe116, Ser111, Phe58 (-506.29 to -431.75 kcal/mol) against wild (1J3I) and quadruple mutant (1J3K) type of Pf-DHFR. These compounds were synthesized by conventional as well as microwave-assisted synthesis and characterized by different spectroscopic methods. In-vitro antimalarial activity results indicated that two compounds 4A12 and 4A20 showed promising antimalarial activity against chloroquine-sensitive (3D7) and chloroquine-resistant (Dd2) strains of Plasmodium falciparum with IC50 (1.24-4.77 μg mL-1) and (2.11-3.60 μg mL-1). These hybrid PABA substituted 1,3,5-triazine derivatives might be used in the lead discovery towards a new class of Pf-DHFR inhibitors.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ashmita Saha
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, India
| | | | - Nayana Adhikari
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, India
| | - Surajit Kumar Ghosh
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, India
| | - Anshul Shakya
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, India
| | - Saurav Jyoti Patgiri
- Regional Medical Research Centre, Indian Council of Medical Research (ICMR), Dibrugarh, India
| | - Udaya Pratap Singh
- Drug Design & Discovery Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences, Allahabad, India
| | - Hans Raj Bhat
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, India
| |
Collapse
|
8
|
Sabt A, Eldehna WM, Ibrahim TM, Bekhit AA, Batran RZ. New antileishmanial quinoline linked isatin derivatives targeting DHFR-TS and PTR1: Design, synthesis, and molecular modeling studies. Eur J Med Chem 2023; 246:114959. [PMID: 36493614 DOI: 10.1016/j.ejmech.2022.114959] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/13/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022]
Abstract
In a search for new drug candidates for one of the neglected tropical diseases, leishmaniasis, twenty quinoline-isatin hybrids were synthesized and tested for their in vitro antileishmanial activity against Leishmaniamajor strain. All the synthesized compounds showed promising in vitro activity against the promastigote form in a low micromolar range (IC50 = 0.5084-5.9486 μM) superior to the reference miltefosine (IC50 = 7.8976 μM). All the target compounds were then tested against the intracellular amastigote form and showed promising inhibition effects (IC50 = 0.60442-8.2948 μM versus 8.08 μM for miltefosine). Compounds 4e, 4b and 4f were shown to possess the highest antileishmanial activity against both promastigote and amastigote forms. The most active compounds were proven to exhibit their significant antileishmanial effects through antifolate mechanism, targeting DHFR-TS and PTR1. To evaluate the safety profile of the most active derivatives 4e, 4b and 4f, the in vitro cytotoxicity test was carried out and displayed higher selectivity indices than the reference miltefosine. Molecular docking within putative target protein PTR1 confirmed the high potentiality of the most active compounds 4e, 4b and 4f to block the catalytic activity of Lm-PTR1.
Collapse
Affiliation(s)
- Ahmed Sabt
- Chemistry of Natural Compounds Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki, Cairo, 12622, Egypt
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt; School of Biotechnology, Badr University in Cairo, Badr City, 11829, Egypt
| | - Tamer M Ibrahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt; Bioinformatics Group, Center for Informatics Sciences (CIS), School of Information Technology and Computer Science (ITCS), Nile University, Giza, Egypt
| | - Adnan A Bekhit
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt; Pharmacy Program, Allied Health Department, College of Health Sciences, University of Bahrain, P.O. Box 32038, Bahrain
| | - Rasha Z Batran
- Chemistry of Natural Compounds Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki, Cairo, 12622, Egypt.
| |
Collapse
|
9
|
Microwave synthesis and antimalarial screening of novel 4-amino benzoic acid (PABA)-substituted pyrimidine derivatives as Plasmodium falciparum dihydrofolate reductase inhibitors. 3 Biotech 2022; 12:170. [PMID: 35845109 PMCID: PMC9279537 DOI: 10.1007/s13205-022-03236-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 06/18/2022] [Indexed: 11/28/2022] Open
Abstract
Antimalarial drug resistance is a major threat due to the emerging resistance to all the available drugs in the market. In an approach to develop alternative drugs, a novel class of Pf-DHFR inhibitors was developed using pyrimidine as the core nucleus and substituting the 4- and 6- positions with amines and 4-amino benzoic acid (PABA) to avoid the problem of drug resistance. The resultant compounds 3(a-j) after primary in silico screening and filtering were synthesized using microwave efficiently in high yield and reduced time period compared to conventional synthesis. The antimalarial assay was performed in vitro, against chloroquine-sensitive (3D7) and chloroquine-resistant (Dd2) strains of Plasmodium falciparum using chloroquine as a reference standard. The IC50 values were in the range of 5.26-106.76 µg/ml for 3D7 and in Dd2 the value ranges from 4.71 to 112.98 µg/ml. Compounds 3d, 3e, 3f and 3h showed significant antimalarial activity against both the strains of P. falciparum with no cytotoxicity against fibroblast cell line and 3f was found to be the most potent among them. The hemolysis assay of all the compounds in fresh erythrocytes showed insignificant hemolysis below 5% at a higher dose level. Hence, the present study suggests the possible utility of PABA-substituted pyrimidine scaffold for further development of new Pf-DHFR inhibitors. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-022-03236-w.
Collapse
|
10
|
Singh S, Mandal MK, Masih A, Saha A, Ghosh SK, Bhat HR, Singh UP. 1,3,5-Triazine: A versatile pharmacophore with diverse biological activities. Arch Pharm (Weinheim) 2021; 354:e2000363. [PMID: 33760298 DOI: 10.1002/ardp.202000363] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 02/05/2021] [Accepted: 02/12/2021] [Indexed: 12/14/2022]
Abstract
1,3,5-Triazine and its derivatives have been the epicenter of chemotherapeutic molecules due to their effective biological activities, such as antibacterial, fungicidal, antimalarial, anticancer, antiviral, antimicrobial, anti-inflammatory, antiamoebic, and antitubercular activities. The present review represents a summarized report of the crucial biological activities possessed by substituted 1,3,5-triazine derivatives, with special attention to the most potent compounds.
Collapse
Affiliation(s)
- Saumya Singh
- Drug Design and Discovery Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology, and Sciences, Allahabad, Uttar Pradesh, India
| | - Milan K Mandal
- Drug Design and Discovery Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology, and Sciences, Allahabad, Uttar Pradesh, India
| | - Anup Masih
- Drug Design and Discovery Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology, and Sciences, Allahabad, Uttar Pradesh, India
| | - Ashmita Saha
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| | - Surajit K Ghosh
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| | - Hans R Bhat
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| | - Udaya P Singh
- Drug Design and Discovery Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology, and Sciences, Allahabad, Uttar Pradesh, India
| |
Collapse
|
11
|
Uddin A, Chawla M, Irfan I, Mahajan S, Singh S, Abid M. Medicinal chemistry updates on quinoline- and endoperoxide-based hybrids with potent antimalarial activity. RSC Med Chem 2021; 12:24-42. [PMID: 34046596 PMCID: PMC8132992 DOI: 10.1039/d0md00244e] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/19/2020] [Indexed: 02/01/2023] Open
Abstract
The resistance of conventional antimalarial drugs against the malarial parasite continues to pose a challenge to control the disease. The indiscriminate exploitation of the available antimalarials has resulted in increasing treatment failures, which urges on the search for novel lead molecules. Artemisinin-based combination therapy (ACT) is the current WHO-recommended first-line treatment for the majority of malaria cases. Hybrid molecules offer a newer strategy for the development of next-generation antimalarial drugs. These comprise molecules, each with an individual pharmacological activity, linked together into a single hybrid molecule. This approach has been utilized by several research groups to develop molecules with potent antimalarial activity. In this review, we provide an overview of the pivotal roles of quinoline- and endoperoxide-based hybrids as inhibitors of the life-cycle progression of Plasmodium. Based on the exhaustive literature reports, we have collated the structural and functional analyses of quinoline- and endoperoxide-based hybrid molecules that show potency equal to or greater than those of the individual compounds, offering an effective therapeutics option for clinical use.
Collapse
Affiliation(s)
- Amad Uddin
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia Jamia Nagar New Delhi-110025 India +91 8750295095
- Special Centre for Molecular Medicine, Jawaharlal Nehru University New Delhi-110067 India
| | - Meenal Chawla
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia Jamia Nagar New Delhi-110025 India +91 8750295095
| | - Iram Irfan
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia Jamia Nagar New Delhi-110025 India +91 8750295095
| | - Shubhra Mahajan
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia Jamia Nagar New Delhi-110025 India +91 8750295095
| | - Shailja Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University New Delhi-110067 India
| | - Mohammad Abid
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia Jamia Nagar New Delhi-110025 India +91 8750295095
| |
Collapse
|
12
|
Prasher P, Sharma M, Aljabali AAA, Gupta G, Negi P, Kapoor DN, Singh I, Zacconi FC, Jesus Andreoli Pinto T, Silva MW, Bakshi HA, Chellappan DK, Tambuwala MM, Dua K. Hybrid molecules based on 1,3,5‐triazine as potential therapeutics: A focused review. Drug Dev Res 2020; 81:837-858. [DOI: 10.1002/ddr.21704] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/25/2020] [Accepted: 05/29/2020] [Indexed: 12/30/2022]
Affiliation(s)
- Parteek Prasher
- UGC‐Sponsored Centre for Advanced Studies, Department of Chemistry Guru Nanak Dev University Amritsar India
- Department of Chemistry University of Petroleum & Energy Studies Dehradun India
| | - Mousmee Sharma
- UGC‐Sponsored Centre for Advanced Studies, Department of Chemistry Guru Nanak Dev University Amritsar India
- Department of Chemistry Uttaranchal University Dehradun India
| | - Alaa A. A. Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology Faculty of Pharmacy, Yarmouk University Irbid Jordan
| | - Gaurav Gupta
- School of Pharmacy Suresh Gyan Vihar University Jaipur India
| | - Poonam Negi
- School of Pharmaceutical Sciences Shoolini University of Biotechnology and Management Sciences Solan India
| | - Deepak N. Kapoor
- School of Pharmaceutical Sciences Shoolini University of Biotechnology and Management Sciences Solan India
| | - Inderbir Singh
- Chitkara College of Pharmacy Chitkara University Punjab India
| | - Flavia C. Zacconi
- Departamento de Organica, faculdad de Quimica y de Farmacia, Pontificia Universidad Catolica de Chile Santiago Chile
| | | | - Mateus Webba Silva
- School of Pharmacy and Pharmaceutical Science Ulster University Coleraine United Kingdom
| | - Hamid A. Bakshi
- School of Pharmacy and Pharmaceutical Science Ulster University Coleraine United Kingdom
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy International Medical University Kuala Lumpur Malaysia
| | - Murtaza M. Tambuwala
- School of Pharmacy and Pharmaceutical Science Ulster University Coleraine United Kingdom
| | - Kamal Dua
- School of Pharmaceutical Sciences Shoolini University of Biotechnology and Management Sciences Solan India
- Discipline of Pharmacy, Graduate School of Health University of Technology Sydney Sydney New South Wales Australia
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI) & School of Biomedical Sciences and Pharmacy University of Newcastle Callaghan New South Wales Australia
- Centre for Inflammation, Centenary Institute Royal Prince Alfred Hospital Sydney New South Wales Australia
| |
Collapse
|
13
|
Verma T, Sinha M, Bansal N. Heterocyclic Compounds Bearing Triazine Scaffold and Their Biological Significance: A Review. Anticancer Agents Med Chem 2020; 20:4-28. [DOI: 10.2174/1871520619666191028111351] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/19/2019] [Accepted: 05/21/2019] [Indexed: 01/18/2023]
Abstract
Benzene is a six-membered hydrocarbon ring system and if three carbon-hydrogen units of benzene ring are replaced by nitrogen atoms then triazine is formed. Triazines are present in three isomeric forms 1,2,3- triazine, 1,2,4-triazine, and 1,3,5-triazine according to the position of the nitrogen atom. These are weak bases having weaker resonance energy than benzene, so nucleophilic substitution is preferred than electrophilic substitution. Triazine is an interesting class of heterocyclic compounds in medicinal chemistry. Numerous synthetic derivatives of triazine have been prepared and evaluated for a wide spectrum of biological activities in different models with desired findings such as antibacterial, antifungal, anti-cancer, antiviral, antimalarial, antiinflammatory, antiulcer, anticonvulsant, antimicrobial, insecticidal and herbicidal agents. Triazine analogs have exposed potent pharmacological activity. So, triazine nucleus may be considered as an interesting core moiety for researchers for the development of future drugs.
Collapse
Affiliation(s)
- Tarawanti Verma
- I.K. Gujral Punjab Technical University (IKGPTU), Jalandhar, Punjab, India
| | - Manish Sinha
- Laureate Institute of Pharmacy, Himachal Pradesh, India
| | - Nitin Bansal
- Department of Pharmacology, ASBASJSM College of Pharmacy, BELA, Ropar, Punjab, India
| |
Collapse
|
14
|
Feng LS, Xu Z, Chang L, Li C, Yan XF, Gao C, Ding C, Zhao F, Shi F, Wu X. Hybrid molecules with potential in vitro antiplasmodial and in vivo antimalarial activity against drug-resistant Plasmodium falciparum. Med Res Rev 2019; 40:931-971. [PMID: 31692025 DOI: 10.1002/med.21643] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 09/16/2019] [Accepted: 10/08/2019] [Indexed: 12/12/2022]
Abstract
Malaria is a tropical disease, leading to around half a million deaths annually. Antimalarials such as quinolines are crucial to fight against malaria, but malaria control is extremely challenged by the limited pipeline of effective pharmaceuticals against drug-resistant strains of Plasmodium falciparum which are resistant toward almost all currently accessible antimalarials. To tackle the growing resistance, new antimalarial drugs are needed urgently. Hybrid molecules which contain two or more pharmacophores have the potential to overcome the drug resistance, and hybridization of quinoline privileged antimalarial building block with other antimalarial pharmacophores may provide novel molecules with enhanced in vitro and in vivo activity against drug-resistant (including multidrug-resistant) P falciparum. In recent years, numerous of quinoline hybrids were developed, and their activities against a panel of drug-resistant P falciparum strains were screened. Some of quinoline hybrids were found to possess promising in vitro and in vivo potency. This review emphasized quinoline hybrid molecules with potential in vitro antiplasmodial and in vivo antimalarial activity against drug-resistant P falciparum, covering articles published between 2010 and 2019.
Collapse
Affiliation(s)
| | - Zhi Xu
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Le Chang
- WuXi AppTec Co, Ltd, Wuhan, China
| | - Chuan Li
- WuXi AppTec Co, Ltd, Wuhan, China
| | | | | | | | | | - Feng Shi
- WuXi AppTec Co, Ltd, Wuhan, China
| | - Xiang Wu
- WuXi AppTec Co, Ltd, Wuhan, China
| |
Collapse
|
15
|
Marella A, Verma G, Shaquiquzzaman M, Khan MF, Akhtar W, Alam MM. Malaria Hybrids: A Chronological Evolution. Mini Rev Med Chem 2019; 19:1144-1177. [PMID: 30887923 DOI: 10.2174/1389557519666190315100027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 05/27/2018] [Accepted: 11/03/2018] [Indexed: 01/13/2023]
Abstract
Malaria, an upsetting malaise caused by a diverse class of Plasmodium species affects about 40% of the world's population. The distress associated with it has reached colossal scales owing to the development of resistance to most of the clinically available agents. Hence, the search for newer molecules for malaria treatment and cure is an incessant process. After the era of a single molecule for malaria treatment ended, there was an advent of combination therapy. However, lately there had been reports of the development of resistance to many of these agents as well. Subsequently, at present most of the peer groups working on malaria treatment aim to develop novel molecules, which may act on more than one biological processes of the parasite life cycle, and these scaffolds have been aptly termed as Hybrid Molecules or Double Drugs. These molecules may hold the key to hitherto unknown ways of showing a detrimental effect on the parasite. This review enlists a few of the recent advances made in malaria treatment by these hybrid molecules in a sequential manner.
Collapse
Affiliation(s)
| | - Garima Verma
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi - 110062, India
| | - Md Shaquiquzzaman
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi - 110062, India
| | - Md Faraz Khan
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi - 110062, India
| | - Wasim Akhtar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi - 110062, India
| | - Md Mumtaz Alam
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi - 110062, India
| |
Collapse
|
16
|
Combination Therapy Strategies for the Treatment of Malaria. Molecules 2019; 24:molecules24193601. [PMID: 31591293 PMCID: PMC6804225 DOI: 10.3390/molecules24193601] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 08/15/2019] [Accepted: 08/21/2019] [Indexed: 11/16/2022] Open
Abstract
Malaria is a vector- and blood-borne infection that is responsible for a large number of deaths around the world. Most of the currently used antimalarial therapeutics suffer from drug resistance. The other limitations associated with the currently used antimalarial drugs are poor drug bioavailability, drug toxicity, and poor water solubility. Combination therapy is one of the best approaches that is currently used to treat malaria, whereby two or more therapeutic agents are combined. Different combination therapy strategies are used to overcome the aforementioned limitations. This review article reports two strategies of combination therapy; the incorporation of two or more antimalarials into polymer-based carriers and hybrid compounds designed by hybridization of two antimalarial pharmacophores.
Collapse
|
17
|
Sahu S, Ghosh SK, Gahtori P, Pratap Singh U, Bhattacharyya DR, Bhat HR. In silico ADMET study, docking, synthesis and antimalarial evaluation of thiazole-1,3,5-triazine derivatives as Pf-DHFR inhibitor. Pharmacol Rep 2019; 71:762-767. [PMID: 31351317 DOI: 10.1016/j.pharep.2019.04.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 03/12/2019] [Accepted: 04/08/2019] [Indexed: 12/24/2022]
Abstract
BACKGROUND Plasmodium falciparum dihydrofolate reductase (Pf-DHFR) is an essential enzyme in the folate pathway and is an important target for antimalarial drug discovery. In this study a modern approach has been undertaken to identify new hits of thiazole-1,3,5-triazine derivatives as antimalarials targeting Pf-DHFR. METHODS The library of 378 thiazole-1,3,5-triazines were designed and subjected to ADME analysis. The compounds having optimal ADME score, was then evaluated by docking against wild and mutant Pf-DHFR complex. The resultant compound after screening from above these two methods were synthesized, and assayed for in vitro antimalarial against chloroquine-sensitive (3D-7) and chloroquine resistant (Dd-2) strains of P. falciparum. RESULTS Twenty compounds were identified from the dataset based on considerable AlogP98 vs. PSA_2D confidence ellipse, ADME filter and TOPKAT toxicity analysis. Majority of compounds showed interaction with Asp54, Arg59, Arg122 and Ile 164 in docking analysis. Entire set of tested derivatives exhibited considerable activity at the tested dose against sensitive strain with IC50 values varying from 10.03 to 54.58 μg/ml. Furthermore, against chloroquine resistant strain, eight compounds showed IC50 from 11.29 to 40.92 μg/ml. Compound A5 and H16 were found to be the most potent against both the strains of P. Falciparum. CONCLUSION Results of the study suggested the possible utility of thiazole-1,3,5-triazines as new lead for identifying new class of Pf-DHFR inhibitor.
Collapse
Affiliation(s)
- Supriya Sahu
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| | - Surajit Kumar Ghosh
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| | - Prashant Gahtori
- School of Pharmacy, Graphic Era Hill University Dehradun, Uttarakhand, India
| | - Udaya Pratap Singh
- Drug Design and Discovery Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture Technology and Sciences, Allahabad, India
| | | | - Hans Raj Bhat
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India.
| |
Collapse
|
18
|
Verma G, Khan MF, Mohan Nainwal L, Ishaq M, Akhter M, Bakht A, Anwer T, Afrin F, Islamuddin M, Husain I, Alam MM, Shaquiquzzaman M. Targeting malaria and leishmaniasis: Synthesis and pharmacological evaluation of novel pyrazole-1,3,4-oxadiazole hybrids. Part II. Bioorg Chem 2019; 89:102986. [PMID: 31146198 DOI: 10.1016/j.bioorg.2019.102986] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 04/06/2019] [Accepted: 05/16/2019] [Indexed: 11/24/2022]
Abstract
In continuance with earlier reported work, an extension has been carried out by the same research group. Mulling over the ongoing condition of resistance to existing antimalarial agents, we had reported synthesis and antimalarial activity of certain pyrazole-1,3,4-oxadiazole hybrid compounds. Bearing previous results in mind, our research group ideated to design and synthesize some more derivatives with varied substitutions of acetophenone and hydrazide. Following this, derivatives 5a-r were synthesized and tested for antimalarial efficacy by schizont maturation inhibition assay. Further, depending on the literature support and results of our previous series, certain potent compounds (5f, 5n and 5r) were subjected to Falcipain-2 inhibitory assay. Results obtained for these particular compounds further strengthened our hypothesis. Here, in this series, compound 5f having unsubstituted acetophenone part and a furan moiety linked to oxadiazole ring emerged as the most potent compound and results were found to be comparable to that of the most potent compound (indole bearing) of previous series. Additionally, depending on the available literature, compounds (5a-r) were tested for their antileishmanial potential. Compounds 5a, 5c and 5r demonstrated dose-dependent killing of the promastigotes. Their IC50 values were found to be 33.3 ± 1.68, 40.1 ± 1.0 and 19.0 ± 1.47 μg/mL respectively. These compounds (5a, 5c and 5r) also had effects on amastigote infectivity with IC50 of 44.2 ± 2.72, 66.8 ± 2.05 and 73.1 ± 1.69 μg/mL respectively. Further target validation was done using molecular docking studies. Acute oral toxicity studies for most active compounds were also performed.
Collapse
Affiliation(s)
- Garima Verma
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Mohemmed Faraz Khan
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Lalit Mohan Nainwal
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Mohd Ishaq
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Mymoona Akhter
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Afroz Bakht
- Department of Chemistry, College of Science and Humanities, Prince Sattam Bin Abdulaziz University, P.O. Box-173, Al-Kharj, Saudi Arabia
| | - Tariq Anwer
- Department of Pharmacology, College of Pharmacy, Jazan University, P.O. Box 114, Gizan, Saudi Arabia
| | - Farhat Afrin
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Taibah University, Madina, Saudi Arabia
| | - Mohammad Islamuddin
- Molecular Virology Lab, Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia University, New Delhi, India
| | - Ibraheem Husain
- Molecular Virology Lab, Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia University, New Delhi, India
| | - Mohammad Mumtaz Alam
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Mohammad Shaquiquzzaman
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
19
|
Jain S, Kumar A, Saini D. Novel arylidene derivatives of quinoline based thiazolidinones: Synthesis, in vitro, in vivo and in silico study as antimalarials. Exp Parasitol 2018; 185:107-114. [PMID: 29355497 DOI: 10.1016/j.exppara.2018.01.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 01/03/2018] [Accepted: 01/14/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Sandeep Jain
- Drug Discovery and Research Laboratory, Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar, 125001, India
| | - Ajay Kumar
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, 136119, India
| | - Deepika Saini
- Drug Discovery and Research Laboratory, Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar, 125001, India.
| |
Collapse
|
20
|
Dofe VS, Sarkate AP, Azad R, Gill CH. Green synthesis and inhibitory effect of novel quinoline based thiazolidinones on the growth of MCF-7 human breast cancer cell line by G2/M cell cycle arrest. RESEARCH ON CHEMICAL INTERMEDIATES 2017. [DOI: 10.1007/s11164-017-3157-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
21
|
Novel quinoline-based oxadiazole derivatives induce G2/M arrest and apoptosis in human breast cancer MCF-7 cell line. RESEARCH ON CHEMICAL INTERMEDIATES 2017. [DOI: 10.1007/s11164-017-3078-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
22
|
Sahu S, Ghosh SK, Ghoshal A, Kalita J, Gahtori P, Bhattacharyya DR. Microwave assisted synthesis, antimalarial screening and structure–activity-relationship exploration of some phenylthiazolyl-triazine derivatives against dihydrofolate reductase. Med Chem Res 2016. [DOI: 10.1007/s00044-016-1714-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|