1
|
Sassmannshausen J, Bennink S, Distler U, Küchenhoff J, Minns AM, Lindner SE, Burda PC, Tenzer S, Gilberger TW, Pradel G. Comparative proteomics of vesicles essential for the egress of Plasmodium falciparum gametocytes from red blood cells. Mol Microbiol 2024; 121:431-452. [PMID: 37492994 DOI: 10.1111/mmi.15125] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 06/19/2023] [Accepted: 06/27/2023] [Indexed: 07/27/2023]
Abstract
Transmission of malaria parasites to the mosquito is mediated by sexual precursor cells, the gametocytes. Upon entering the mosquito midgut, the gametocytes egress from the enveloping erythrocyte while passing through gametogenesis. Egress follows an inside-out mode during which the membrane of the parasitophorous vacuole (PV) ruptures prior to the erythrocyte membrane. Membrane rupture requires exocytosis of specialized egress vesicles of the parasites; that is, osmiophilic bodies (OBs) involved in rupturing the PV membrane, and vesicles that harbor the perforin-like protein PPLP2 (here termed P-EVs) required for erythrocyte lysis. While some OB proteins have been identified, like G377 and MDV1/Peg3, the majority of egress vesicle-resident proteins is yet unknown. Here, we used high-resolution imaging and BioID methods to study the two egress vesicle types in Plasmodium falciparum gametocytes. We show that OB exocytosis precedes discharge of the P-EVs and that exocytosis of the P-EVs, but not of the OBs, is calcium sensitive. Both vesicle types exhibit distinct proteomes with the majority of proteins located in the OBs. In addition to known egress-related proteins, we identified novel components of OBs and P-EVs, including vesicle-trafficking proteins. Our data provide insight into the immense molecular machinery required for the inside-out egress of P. falciparum gametocytes.
Collapse
Affiliation(s)
- Juliane Sassmannshausen
- Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University, Aachen, Germany
| | - Sandra Bennink
- Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University, Aachen, Germany
| | - Ute Distler
- Core Facility for Mass Spectrometry, Institute of Immunology, University Medical Centre of the Johannes-Gutenberg University, Mainz, Germany
| | - Juliane Küchenhoff
- Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University, Aachen, Germany
| | - Allen M Minns
- Department of Biochemistry and Molecular Biology, Huck Center for Malaria Research, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Scott E Lindner
- Department of Biochemistry and Molecular Biology, Huck Center for Malaria Research, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Paul-Christian Burda
- Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Biology Department, University of Hamburg, Hamburg, Germany
| | - Stefan Tenzer
- Core Facility for Mass Spectrometry, Institute of Immunology, University Medical Centre of the Johannes-Gutenberg University, Mainz, Germany
| | - Tim W Gilberger
- Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Biology Department, University of Hamburg, Hamburg, Germany
| | - Gabriele Pradel
- Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
2
|
Mansouri M, Daware K, Webb CT, McGowan S. Understanding the structure and function of Plasmodium aminopeptidases to facilitate drug discovery. Curr Opin Struct Biol 2023; 82:102693. [PMID: 37657352 DOI: 10.1016/j.sbi.2023.102693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 09/03/2023]
Abstract
Malaria continues to be the most widespread parasitic disease affecting humans globally. As parasites develop drug resistance at an alarming pace, it has become crucial to identify novel drug targets. Over the last decade, the metalloaminopeptidases have gained importance as potential targets for new antimalarials. These enzymes are responsible for removing the N-terminal amino acids from proteins and peptides, and their restricted specificities suggest that many perform unique and essential roles within the malaria parasite. This mini-review focuses on the recent progress in structure and functional data relating to the Plasmodium metalloaminopeptidases that have been validated or shown promise as new antimalarial drug targets.
Collapse
Affiliation(s)
- Mahta Mansouri
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia; Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, 3800, Australia. https://twitter.com/Mahta__Mansouri
| | - Kajal Daware
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, 3800, Australia; Centre to Impact AMR, Monash University, Clayton, 3800, Victoria Australia
| | - Chaille T Webb
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, 3800, Australia; Centre to Impact AMR, Monash University, Clayton, 3800, Victoria Australia
| | - Sheena McGowan
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, 3800, Australia; Centre to Impact AMR, Monash University, Clayton, 3800, Victoria Australia.
| |
Collapse
|
3
|
Zeng J, Zhang R, Ning Ma K, Han LL, Yan SW, Liu RD, Zhang X, Wang ZQ, Cui J. Characterization of a novel aminopeptidase P from Trichinella spiralis and its participation in the intrusion of intestinal epithelial cells. Exp Parasitol 2022; 242:108376. [PMID: 36089006 DOI: 10.1016/j.exppara.2022.108376] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/05/2022] [Accepted: 09/05/2022] [Indexed: 11/24/2022]
Abstract
Aminopeptidases P are metalloproteases belonging to the M24 peptidase family. It specifically hydrolyzes the N-terminus of polypeptides free of acidic amino acids, and plays an important role in the nutrition, metabolism and growth of parasites. The aim of this study was to characterize a novel Trichinella spiralis aminopeptidase P (TsAPP) and to investigate its functions in the invasion of T. spiralis. TsAPP contained two domains of creatinase (a creatinase N and creatinase N2) and a domain of peptidase M24C and APP. The complete TsAPP sequence was cloned and expressed in Escherichia coli BL21 cells. The recombinantly produced TsAPP was used to raise polyclonal antibodies that were subsequently used to detect the expression of the protein in the different life stages of T. spiralis. TsAPP was expressed in various T. spiralis stages. TsAPP was primarily localized in the cuticle, stichosome and intrauterine embryos of this nematode. rTsAPP has an enzymatic activity of a natural aminopeptidase P to hydrolyze the substrate H-Ala-Pro-OH. rTsAPP promoted the larval intrusion of intestinal epithelium cells (IECs). The results showed that TsAPP is involved in the T. spiralis intrusion of IECs and it might be a potential candidate vaccine target against Trichinella infection.
Collapse
Affiliation(s)
- Jie Zeng
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, PR China
| | - Ru Zhang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, PR China
| | - Kai Ning Ma
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, PR China
| | - Lu Lu Han
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, PR China
| | - Shu Wei Yan
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, PR China
| | - Ruo Dan Liu
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, PR China
| | - Xi Zhang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, PR China
| | - Zhong Quan Wang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, PR China.
| | - Jing Cui
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, PR China.
| |
Collapse
|
4
|
Prolyl aminopeptidases: Reclassification, properties, production and industrial applications. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.04.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
5
|
Groomes PV, Kanjee U, Duraisingh MT. RBC membrane biomechanics and Plasmodium falciparum invasion: probing beyond ligand-receptor interactions. Trends Parasitol 2022; 38:302-315. [PMID: 34991983 PMCID: PMC8917059 DOI: 10.1016/j.pt.2021.12.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 10/19/2022]
Abstract
A critical step in malaria blood-stage infections is the invasion of red blood cells (RBCs) by merozoite forms of the Plasmodium parasite. Much progress has been made in defining the parasite ligands and host receptors that mediate this critical step. However, less well understood are the RBC biophysical determinants that influence parasite invasion. In this review we explore how Plasmodium falciparum merozoites interact with the RBC membrane during invasion to modulate RBC deformability and facilitate invasion. We further highlight RBC biomechanics-related polymorphisms that might have been selected for in human populations due to their ability to reduce parasite invasion. Such an understanding will reveal the translational potential of targeting host pathways affecting RBC biomechanical properties for the treatment of malaria.
Collapse
Affiliation(s)
- Patrice V Groomes
- Department of Immunology & Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Usheer Kanjee
- Department of Immunology & Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Manoj T Duraisingh
- Department of Immunology & Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA.
| |
Collapse
|
6
|
Mills B, Isaac RE, Foster R. Metalloaminopeptidases of the Protozoan Parasite Plasmodium falciparum as Targets for the Discovery of Novel Antimalarial Drugs. J Med Chem 2021; 64:1763-1785. [PMID: 33534577 DOI: 10.1021/acs.jmedchem.0c01721] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Malaria poses a significant threat to approximately half of the world's population with an annual death toll close to half a million. The emergence of resistance to front-line antimalarials in the most lethal human parasite species, Plasmodium falciparum (Pf), threatens progress made in malaria control. The prospect of losing the efficacy of antimalarial drugs is driving the search for small molecules with new modes of action. Asexual reproduction of the parasite is critically dependent on the recycling of amino acids through catabolism of hemoglobin (Hb), which makes metalloaminopeptidases (MAPs) attractive targets for the development of new drugs. The Pf genome encodes eight MAPs, some of which have been found to be essential for parasite survival. In this article, we discuss the biological structure and function of each MAP within the Pf genome, along with the drug discovery efforts that have been undertaken to identify novel antimalarial candidates of therapeutic value.
Collapse
Affiliation(s)
- Belinda Mills
- School of Chemistry, University of Leeds, Leeds, U.K., LS2 9JT
| | - R Elwyn Isaac
- School of Biology, University of Leeds, Leeds, U.K., LS2 9JT
| | - Richard Foster
- School of Chemistry, University of Leeds, Leeds, U.K., LS2 9JT
| |
Collapse
|
7
|
Ghifari AS, Teixeira PF, Kmiec B, Pružinská A, Glaser E, Murcha MW. A mitochondrial prolyl aminopeptidase PAP2 releases N-terminal proline and regulates proline homeostasis during stress response. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:1182-1194. [PMID: 32920905 DOI: 10.1111/tpj.14987] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/17/2020] [Accepted: 08/19/2020] [Indexed: 06/11/2023]
Abstract
Most mitochondrial proteins are synthesised in the cytosol and targeted into the organelle via N-terminal targeting peptides that are cleaved upon import. The free targeting peptide is subsequently processed in a stepwise manner, with single amino acids released as final products. Here, we have characterised a proline-cleaving aminopeptidase in Arabidopsis thaliana, prolyl aminopeptidase-2 (PAP2, At3g61540). Activity assays show that PAP2 has a preferred activity to hydrolyse N-terminal proline. Protein localisation studies revealed that PAP2 is exclusively targeted to mitochondria. Characterisation of pap2 mutants show defective pollen, enhanced dark-induced senescence and increased susceptibility to abiotic stresses, which are likely attributed to a reduced level of accumulated free proline. Taken together, these results demonstrate the role of PAP2 in proline cleavage from mitochondrial peptides and proline homeostasis, which is required for the development of male gametophyte, tolerance to abiotic stresses, and leaf senescence.
Collapse
Affiliation(s)
- Abi S Ghifari
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, WA, 6009, Australia
- ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, WA, 6009, Australia
| | - Pedro F Teixeira
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, Stockholm, SE-106 91, Sweden
| | - Beata Kmiec
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, Stockholm, SE-106 91, Sweden
| | - Adriana Pružinská
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, WA, 6009, Australia
- ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, WA, 6009, Australia
| | - Elzbieta Glaser
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, Stockholm, SE-106 91, Sweden
| | - Monika W Murcha
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, WA, 6009, Australia
- ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, WA, 6009, Australia
| |
Collapse
|
8
|
Niu M, Keller NP. Co-opting oxylipin signals in microbial disease. Cell Microbiol 2020; 21:e13025. [PMID: 30866138 DOI: 10.1111/cmi.13025] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 02/01/2019] [Accepted: 02/06/2019] [Indexed: 12/14/2022]
Abstract
Oxylipins, or oxygenated lipids, are universal signalling molecules across all kingdoms of life. These molecules, either produced by microbial pathogens or their mammalian host, regulate inflammation during microbial infection. In this review, we summarise current literature on the biosynthesis pathways of microbial oxylipins and their biological activity towards mammalian cells. Collectively, these studies have illustrated how microbial pathogens can modulate immune rsponse and disease outcome via oxylipin-mediated mechanisms.
Collapse
Affiliation(s)
- Mengyao Niu
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Nancy P Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin.,Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
9
|
Davies H, Belda H, Broncel M, Ye X, Bisson C, Introini V, Dorin-Semblat D, Semblat JP, Tibúrcio M, Gamain B, Kaforou M, Treeck M. An exported kinase family mediates species-specific erythrocyte remodelling and virulence in human malaria. Nat Microbiol 2020; 5:848-863. [PMID: 32284562 PMCID: PMC7116245 DOI: 10.1038/s41564-020-0702-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 03/05/2020] [Indexed: 01/31/2023]
Abstract
The most severe form of human malaria is caused by Plasmodium falciparum. Its virulence is closely linked to the increase in rigidity of infected erythrocytes and their adhesion to endothelial receptors, obstructing blood flow to vital organs. Unlike other human-infecting Plasmodium species, P. falciparum exports a family of 18 FIKK serine/threonine kinases into the host cell, suggesting that phosphorylation may modulate erythrocyte modifications. We reveal substantial species-specific phosphorylation of erythrocyte proteins by P. falciparum but not by Plasmodium knowlesi, which does not export FIKK kinases. By conditionally deleting all FIKK kinases combined with large-scale quantitative phosphoproteomics we identified unique phosphorylation fingerprints for each kinase, including phosphosites on parasite virulence factors and host erythrocyte proteins. Despite their non-overlapping target sites, a network analysis revealed that some FIKKs may act in the same pathways. Only the deletion of the non-exported kinase FIKK8 resulted in reduced parasite growth, suggesting the exported FIKKs may instead support functions important for survival in the host. We show that one kinase, FIKK4.1, mediates both rigidification of the erythrocyte cytoskeleton and trafficking of the adhesin and key virulence factor PfEMP1 to the host cell surface. This establishes the FIKK family as important drivers of parasite evolution and malaria pathology.
Collapse
Affiliation(s)
- Heledd Davies
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick Institute, London, UK
| | - Hugo Belda
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick Institute, London, UK
| | - Malgorzata Broncel
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick Institute, London, UK
| | - Xingda Ye
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick Institute, London, UK
- Division of Infectious Diseases, Department of Medicine, Imperial College London, London, UK
| | - Claudine Bisson
- Institute of Structural and Molecular Biology, Birkbeck College, University of London, London, UK
| | - Viola Introini
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | - Dominique Dorin-Semblat
- Université de Paris, Biologie Intégrée du Globule Rouge, UMR_S1134, BIGR, INSERM, Paris, France
- Institut National de la Transfusion Sanguine, Paris, France
- Laboratory of Excellence GR-Ex, Paris, France
| | - Jean-Philippe Semblat
- Université de Paris, Biologie Intégrée du Globule Rouge, UMR_S1134, BIGR, INSERM, Paris, France
- Institut National de la Transfusion Sanguine, Paris, France
- Laboratory of Excellence GR-Ex, Paris, France
| | - Marta Tibúrcio
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick Institute, London, UK
| | - Benoit Gamain
- Université de Paris, Biologie Intégrée du Globule Rouge, UMR_S1134, BIGR, INSERM, Paris, France
- Institut National de la Transfusion Sanguine, Paris, France
- Laboratory of Excellence GR-Ex, Paris, France
| | - Myrsini Kaforou
- Division of Infectious Diseases, Department of Medicine, Imperial College London, London, UK
| | - Moritz Treeck
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick Institute, London, UK.
| |
Collapse
|
10
|
Liu X, Zhang QY, Wang F, Jiang JH. A near infrared fluorescent probe for the detection and imaging of prolyl aminopeptidase activity in living cells. Analyst 2020; 144:5980-5985. [PMID: 31531498 DOI: 10.1039/c9an01303b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Prolyl aminopeptidase (PAP) is an important exopeptidase which might be a biomarker for pathogen infection and a potential therapeutic target. However, very few fluorescent probes have been developed for detecting PAP activity. Here we report the development of the first near infrared (NIR) turn-on fluorescent probe (NIR-PAP) for detecting and imaging PAP in living cells. The probe is prepared by reacting a cysteine-proline dipeptide with an acryloylated NIR fluorophore via a facile thiol-Michael addition reaction. NIR-PAP exhibits a dynamic response toward PAP in the range of 0.02-2.5 U mL-1 with an estimated limit of detection of 0.013 U mL-1. In vitro studies also reveal that the probe displays high specificity and robust responses toward PAP under physiological pH and temperature conditions. Moreover, NIR-PAP is successfully introduced to detect and differentiate PAP activity in four different cell lines via both confocal fluorescence imaging and flow cytometry. Therefore, our probe may hold great promise in diagnosing infectious diseases caused by pathogens and screening therapeutic drugs in vivo.
Collapse
Affiliation(s)
- Xianjun Liu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | | | | | | |
Collapse
|
11
|
Functional annotation of serine hydrolases in the asexual erythrocytic stage of Plasmodium falciparum. Sci Rep 2019; 9:17532. [PMID: 31772212 PMCID: PMC6879560 DOI: 10.1038/s41598-019-54009-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 11/06/2019] [Indexed: 12/22/2022] Open
Abstract
Enzymes of the serine hydrolase superfamily are ubiquitous, highly versatile catalysts that mediate a wide variety of metabolic reactions in eukaryotic cells, while also being amenable to selective inhibition. We have employed a fluorophosphonate-based affinity capture probe and mass spectrometry to explore the expression profile and metabolic roles of the 56-member P. falciparum serine hydrolase superfamily in the asexual erythrocytic stage of P. falciparum. This approach provided a detailed census of active serine hydrolases in the asexual parasite, with identification of 21 active serine hydrolases from α/β hydrolase, patatin, and rhomboid protease families. To gain insight into their functional roles and substrates, the pan-lipase inhibitor isopropyl dodecylfluorophosphonate was employed for competitive activity-based protein profiling, leading to the identification of seven serine hydrolases with potential lipolytic activity. We demonstrated how a chemoproteomic approach can provide clues to the specificity of serine hydrolases by using a panel of neutral lipase inhibitors to identify an enzyme that reacts potently with a covalent monoacylglycerol lipase inhibitor. In combination with existing phenotypic data, our studies define a set of serine hydrolases that likely mediate critical metabolic reactions in asexual parasites and enable rational prioritization of future functional characterization and inhibitor development efforts.
Collapse
|
12
|
Luth MR, Gupta P, Ottilie S, Winzeler EA. Using in Vitro Evolution and Whole Genome Analysis To Discover Next Generation Targets for Antimalarial Drug Discovery. ACS Infect Dis 2018; 4:301-314. [PMID: 29451780 PMCID: PMC5848146 DOI: 10.1021/acsinfecdis.7b00276] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
![]()
Although
many new anti-infectives have been discovered and developed solely
using phenotypic cellular screening and assay optimization, most researchers
recognize that structure-guided drug design is more practical and
less costly. In addition, a greater chemical space can be interrogated
with structure-guided drug design. The practicality of structure-guided
drug design has launched a search for the targets of compounds discovered
in phenotypic screens. One method that has been used extensively in
malaria parasites for target discovery and chemical validation is in vitro evolution and whole genome analysis (IVIEWGA).
Here, small molecules from phenotypic screens with demonstrated antiparasitic
activity are used in genome-based target discovery methods. In this
Review, we discuss the newest, most promising druggable targets discovered
or further validated by evolution-based methods, as well as some exceptions.
Collapse
Affiliation(s)
- Madeline R. Luth
- Division of Host Pathogen Systems and Therapeutics, Department of Pediatrics, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Purva Gupta
- Division of Host Pathogen Systems and Therapeutics, Department of Pediatrics, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Sabine Ottilie
- Division of Host Pathogen Systems and Therapeutics, Department of Pediatrics, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Elizabeth A. Winzeler
- Division of Host Pathogen Systems and Therapeutics, Department of Pediatrics, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
- Skaggs School of Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| |
Collapse
|
13
|
Lavazec C. Molecular mechanisms of deformability of Plasmodium -infected erythrocytes. Curr Opin Microbiol 2017; 40:138-144. [DOI: 10.1016/j.mib.2017.11.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 11/06/2017] [Accepted: 11/09/2017] [Indexed: 12/11/2022]
|
14
|
Deu E. Proteases as antimalarial targets: strategies for genetic, chemical, and therapeutic validation. FEBS J 2017; 284:2604-2628. [PMID: 28599096 PMCID: PMC5575534 DOI: 10.1111/febs.14130] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 04/29/2017] [Accepted: 06/06/2017] [Indexed: 01/17/2023]
Abstract
Malaria is a devastating parasitic disease affecting half of the world's population. The rapid emergence of resistance against new antimalarial drugs, including artemisinin-based therapies, has made the development of drugs with novel mechanisms of action extremely urgent. Proteases are enzymes proven to be well suited for target-based drug development due to our knowledge of their enzymatic mechanisms and active site structures. More importantly, Plasmodium proteases have been shown to be involved in a variety of pathways that are essential for parasite survival. However, pharmacological rather than target-based approaches have dominated the field of antimalarial drug development, in part due to the challenge of robustly validating Plasmodium targets at the genetic level. Fortunately, over the last few years there has been significant progress in the development of efficient genetic methods to modify the parasite, including several conditional approaches. This progress is finally allowing us not only to validate essential genes genetically, but also to study their molecular functions. In this review, I present our current understanding of the biological role proteases play in the malaria parasite life cycle. I also discuss how the recent advances in Plasmodium genetics, the improvement of protease-oriented chemical biology approaches, and the development of malaria-focused pharmacological assays, can be combined to achieve a robust biological, chemical and therapeutic validation of Plasmodium proteases as viable drug targets.
Collapse
Affiliation(s)
- Edgar Deu
- Chemical Biology Approaches to Malaria LaboratoryThe Francis Crick InstituteLondonUK
| |
Collapse
|
15
|
Exported Epoxide Hydrolases Modulate Erythrocyte Vasoactive Lipids during Plasmodium falciparum Infection. mBio 2016; 7:mBio.01538-16. [PMID: 27795395 PMCID: PMC5082902 DOI: 10.1128/mbio.01538-16] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Erythrocytes are reservoirs of important epoxide-containing lipid signaling molecules, including epoxyeicosatrienoic acids (EETs). EETs function as vasodilators and anti-inflammatory modulators in the bloodstream. Bioactive EETs are hydrolyzed to less active diols (dihydroxyeicosatrienoic acids) by epoxide hydrolases (EHs). The malaria parasite Plasmodium falciparum infects host red blood cells (RBCs) and exports hundreds of proteins into the RBC compartment. In this study, we show that two parasite epoxide hydrolases, P. falciparum epoxide hydrolases 1 (PfEH1) and 2 (PfEH2), both with noncanonical serine nucleophiles, are exported to the periphery of infected RBCs. PfEH1 and PfEH2 were successfully expressed in Escherichia coli, and they hydrolyzed physiologically relevant erythrocyte EETs. Mutations in active site residues of PfEH1 ablated the ability of the enzyme to hydrolyze an epoxide substrate. Overexpression of PfEH1 or PfEH2 in parasite-infected RBCs resulted in a significant alteration in the epoxide fatty acids stored in RBC phospholipids. We hypothesize that the parasite disruption of epoxide-containing signaling lipids leads to perturbed vascular function, creating favorable conditions for binding and sequestration of infected RBCs to the microvascular endothelium. The malaria parasite exports hundreds of proteins into the erythrocyte compartment. However, for most of these proteins, their physiological function is unknown. In this study, we investigate two “hypothetical” proteins of the α/β-hydrolase fold family that share sequence similarity with epoxide hydrolases (EHs)—enzymes that destroy bioactive epoxides. Altering EH expression in parasite-infected erythrocytes resulted in a significant change in the epoxide fatty acids stored in the host cell. We propose that these EH enzymes may help the parasite to manipulate host blood vessel opening and inflame the vessel walls as they pass through the circulation system. Understanding how the malaria parasite interacts with its host RBCs will aid in our ability to combat this deadly disease.
Collapse
|