1
|
Moudgil AD, Nehra AK, Sharma A, Patel S, Vohra S. First Insight into the Phylogenetic Diversity of Bovicola caprae Infesting Goats of Different Agro-climatic Locations in India. Biochem Genet 2024:10.1007/s10528-024-10886-3. [PMID: 39003435 DOI: 10.1007/s10528-024-10886-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 07/08/2024] [Indexed: 07/15/2024]
Abstract
Bovicola caprae is an important obligate ectoparasite of goats worldwide including India. The present study aimed at the molecular confirmation, phylogenetics and population structure analyses of B. caprae infesting goats of three different agro-climatic locations in India, by targeting the mitochondrial cytochrome C oxidase subunit 1 (cox1) genetic marker. The phylogenetic tree exhibited the presence of two different lineages of B. caprae. The sequences generated herein clustered in lineage 2 along with the GenBank™ archived sequences from China and Iran. The sequences generated herein also showed the circulation of sub-lineages of B. caprae in India based on the analysis of pairwise genetic distances between sequences and median-joining haplotype network. The population structure analyses revealed low nucleotide (0.00353 ± 0.00291 and 0.02694 ± 0.00363) and high haplotype (0.667 ± 0.314 and 0.618 ± 0.104) diversities for the present study isolates as well as for the complete dataset, respectively, which evinced a recent demographic expansion. High genetic differentiation (FST value = 0.97826) and low gene flow (Nm = 0.00556) were also recorded in the different lineages/populations. In conclusion, the present study addressed the research gap and provided the first insight into the phylogenetics of the goat louse B. caprae and highlighted the circulation of sub-lineages of the ectoparasite in India.
Collapse
Affiliation(s)
- Aman D Moudgil
- Department of Veterinary Parasitology, College of Veterinary Sciences, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, 125004, India.
| | - Anil K Nehra
- Department of Veterinary Parasitology, College of Veterinary Sciences, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, 125004, India
| | - Ankur Sharma
- Department of Veterinary Medicine, DGCN College of Veterinary and Animal Sciences, CSK Himachal Pradesh Krishi Vishvavidyalaya, Palampur, Himachal Pradesh, 176062, India
| | - Santosh Patel
- Department of Veterinary Parasitology, College of Veterinary Sciences, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, 125004, India
| | - Sukhdeep Vohra
- Department of Veterinary Parasitology, College of Veterinary Sciences, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, 125004, India
| |
Collapse
|
2
|
Jiménez-Avalos G, Soto-Obando A, Solis M, Gilman RH, Cama V, Gonzalez AE, García HH, Sheen P, Requena D, Zimic M. Assembly and phylogeographical analysis of novel Taenia solium mitochondrial genomes suggest stratification within the African-American genotype. Parasit Vectors 2023; 16:349. [PMID: 37803424 PMCID: PMC10559519 DOI: 10.1186/s13071-023-05958-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 08/30/2023] [Indexed: 10/08/2023] Open
Abstract
BACKGROUND Taenia solium is a parasite of public health concern, causing human taeniasis and cysticercosis. Two main genotypes have been identified: Asian and African-American. Although characterizing T. solium genotypes is crucial to understanding the genetic epidemiology of its diseases, not much is known about the differences between T. solium mitochondrial genomes from different genotypes. Also, little is known about whether genotypes are further subdivided. Therefore, this study aimed to identify a set of point mutations distributed throughout the T. solium mitochondrial genome that differentiate the African-American from the Asian genotype. Another objective was to identify whether T. solium main genotypes are further stratified. METHODS One Mexican and two Peruvian T. solium mitochondrial genomes were assembled using reads available in the NCBI Sequence Read Archive and the reference genome from China as a template. Mutations with respect to the Chinese reference were identified by multiple genome alignment. Jensen-Shannon and Grantham scores were computed for mutations in protein-coding genes to evaluate whether they affected protein function. Phylogenies by Bayesian inference and haplotype networks were constructed using cytochrome c oxidase subunit 1 and cytochrome b from these genomes and other isolates to infer phylogeographical relationships. RESULTS A set of 31 novel non-synonymous point mutations present in all genomes of the African-American genotype were identified. These mutations were distributed across the mitochondrial genome, differentiating the African-American from the Asian genotype. All occurred in non-conserved protein positions. Furthermore, the analysis suggested a stratification of the African-American genotypes into an East African and a West African sublineage. CONCLUSIONS A novel set of 31 non-synonymous mutations differentiating the main T. solium genotypes was identified. None of these seem to be causing differences in mitochondrial protein function between parasites of the two genotypes. Furthermore, two sublineages within the African-American genotype are proposed for the first time. The presence of the East African sublineage in the Americas suggests an underestimated connection between East African and Latin American countries that might have arisen in the major slave trade between Portuguese Mozambique and the Americas. The results obtained here help to complete the molecular epidemiology of the parasite.
Collapse
Affiliation(s)
- Gabriel Jiménez-Avalos
- Laboratorio de Bioinformática, Biología Molecular y Desarrollos Tecnológicos. Laboratorios de Investigación y Desarrollo, Facultad de Ciencias e Ingeniería. Universidad Peruana Cayetano Heredia, Lima, Perú
- T. C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD, USA
| | - Alina Soto-Obando
- Laboratorio de Bioinformática, Biología Molecular y Desarrollos Tecnológicos. Laboratorios de Investigación y Desarrollo, Facultad de Ciencias e Ingeniería. Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Maria Solis
- Laboratorio de Bioinformática, Biología Molecular y Desarrollos Tecnológicos. Laboratorios de Investigación y Desarrollo, Facultad de Ciencias e Ingeniería. Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Robert H Gilman
- Department of International Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, USA
| | - Vitaliano Cama
- Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, USA
| | - Armando E Gonzalez
- Facultad de Medicina Veterinaria, Universidad Nacional Mayor de San Marcos, Lima, Perú
| | - Hector H García
- Departamento de Microbiología, Universidad Peruana Cayetano Heredia, Lima, Perú
- Cysticercosis Unit, Instituto Nacional de Ciencias Neurológicas, Lima, Perú
| | - Patricia Sheen
- Laboratorio de Bioinformática, Biología Molecular y Desarrollos Tecnológicos. Laboratorios de Investigación y Desarrollo, Facultad de Ciencias e Ingeniería. Universidad Peruana Cayetano Heredia, Lima, Perú
| | - David Requena
- Laboratorio de Bioinformática, Biología Molecular y Desarrollos Tecnológicos. Laboratorios de Investigación y Desarrollo, Facultad de Ciencias e Ingeniería. Universidad Peruana Cayetano Heredia, Lima, Perú.
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, USA.
- Bioinformatics Group in Multi-Omics and Immunology, New York, NY, 10065, USA.
| | - Mirko Zimic
- Laboratorio de Bioinformática, Biología Molecular y Desarrollos Tecnológicos. Laboratorios de Investigación y Desarrollo, Facultad de Ciencias e Ingeniería. Universidad Peruana Cayetano Heredia, Lima, Perú.
| |
Collapse
|
3
|
Moudgil P, Kumar R, Jindal N, Moudgil AD. Sub-lineages of Taenia solium Asian Genotype Recorded in North India. Acta Parasitol 2022; 67:1237-1245. [PMID: 35616832 DOI: 10.1007/s11686-022-00564-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 04/28/2022] [Indexed: 11/26/2022]
Abstract
PURPOSE Porcine cysticercosis is a neglected zoonotic disease of significant veterinary and medical importance owing to its economic impact and public health significance. The present study aimed at genetic characterization of Taenia solium metacestodes in slaughtered pigs of Haryana (North India). METHODS A total of 213 (160 and 53 from Chandigarh and Hisar, respectively) slaughtered pigs intended for human consumption were screened for the presence of T. solium metacestodes. The retrieved metacestodes were confirmed molecularly based on the partial amplification of mitochondrial cytochrome c oxidase subunit 1 (CO1) gene. Evolutionary divergence, haplotype and nucleotide diversities and neutrality indices of the retrieved isolates were also assessed. RESULTS Out of the 213 pigs, 2 (0.94%) revealed the presence of metacestodes involving 1 pig each from Chandigarh (0.62%) and Hisar (1.9%). The sequences obtained after custom sequencing were submitted to GenBank under the accession numbers LC661682-83. The present study haplotype clustered with haplotypes of Asian origin and showed variation from other haplotypes by 1-23 mutational steps. However, the present study isolates also showed nucleotide polymorphisms (A198T, A199G, A201T, G204A, T206A, C210T, T212G, T213A, T216G/A, T217C, T221C, C524T, G994A) at different positions, which indicated the presence of sub-lineages. Low nucleotide diversity (π = 0.020) and negative value of Tajima's D (- 1.304) observed for the haplotypes under consideration was indicative of purifying selection and recent population expansion. CONCLUSIONS Our study confirms the circulation of T. solium Asian genotype (with distinct sub-lineages) in study area and recommends strict control measures to contain the zoonotic disease.
Collapse
Affiliation(s)
- Pallavi Moudgil
- Department of Veterinary Public Health and Epidemiology, College of Veterinary Sciences, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, 125001, India
| | - Ramesh Kumar
- Department of Veterinary Public Health and Epidemiology, College of Veterinary Sciences, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, 125001, India
| | - Naresh Jindal
- Department of Veterinary Public Health and Epidemiology, College of Veterinary Sciences, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, 125001, India
| | - Aman D Moudgil
- Department of Veterinary Parasitology, College of Veterinary Sciences, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, 125001, India.
| |
Collapse
|
4
|
Ito A, Budke CM. Genetic Diversity of Taenia solium and its Relation to Clinical Presentation of Cysticercosis. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2021; 94:343-349. [PMID: 34211353 PMCID: PMC8223547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
In this perspectives paper, we discuss fertilization strategies for Taenia saginata and Taenia saginata asiatica as well as heterogeneity in Taenia solium, the causative agent of human cysticercosis. Two different genotypes of T. solium (Asian and Afro/American) were confirmed by mitochondrial DNA analysis approximately two decades ago. Since then, outcrossings of the two genotypes have been identified in Madagascar where the two genotypes are distributed sympatrically. Outcrossings were confirmed by the presence of discordance between mitochondrial and nuclear DNA. Since multiple tapeworm infections are common in endemic areas, outcrossing events likely occur quite frequently. Therefore, mitochondrial DNA from T. solium specimens collected from humans and pigs in endemic areas should be analyzed. If variations are found between specimens, nuclear DNA analysis should be performed to confirm the presence of discordance between mitochondrial and nuclear genes. Additional outcrossings likely add complexity to understanding the existing genetic diversity. Serological surveys are also recommended since serodiagnostic glycoprotein can also differentiate between the two genotypes. Viable eggs from different genotypes or from hybrids of two different genotypes should be used for experimental infection of pigs or dogs in order to observe any pathological heterogeneity in cysticercosis development. Although genetic diversity of T. solium is expected to result in clinical heterogeneity of cysticercosis in humans and pigs, there is currently no evidence showing that this occurs. There are also no comparative experimental studies on this topic. Therefore, studies evaluating the link between parasite heterogeneity and clinical outcome are warranted.
Collapse
Affiliation(s)
- Akira Ito
- Department of Parasitology, Asahikawa Medical
University, Asahikawa, Japan
| | - Christine M. Budke
- Department of Veterinary Integrative Biosciences,
College of Veterinary Medicine & Biomedical Sciences, Texas A & M
University, College Station, TX, USA
| |
Collapse
|
5
|
Rodriguez-Morales AJ, Paniz-Mondolfi AE, Faccini-Martínez ÁA, Henao-Martínez AF, Ruiz-Saenz J, Martinez-Gutierrez M, Alvarado-Arnez LE, Gomez-Marin JE, Bueno-Marí R, Carrero Y, Villamil-Gomez WE, Bonilla-Aldana DK, Haque U, Ramirez JD, Navarro JC, Lloveras S, Arteaga-Livias K, Casalone C, Maguiña JL, Escobedo AA, Hidalgo M, Bandeira AC, Mattar S, Cardona-Ospina JA, Suárez JA. The Constant Threat of Zoonotic and Vector-Borne Emerging Tropical Diseases: Living on the Edge. FRONTIERS IN TROPICAL DISEASES 2021; 2:676905. [PMID: 34010366 PMCID: PMC8132189 DOI: 10.3389/fitd.2021.676905] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 04/06/2021] [Indexed: 12/20/2022] Open
Affiliation(s)
- Alfonso J. Rodriguez-Morales
- Grupo de Investigación Biomedicina, Faculty of Medicine, Fundacion Universitaria Autonoma de las Americas, Pereira, Colombia
- Emerging Infectious Diseases and Tropical Medicine Research Group, Instituto para la Investigación en Ciencias Biomédicas - Sci-Help, Pereira, Colombia
- Coordinación Nacional de Investigación, Universidad Privada Franz Tamayo (UNIFRANZ), Cochabamba, Bolivia
- Master Program on Clinical Epidemiology and Biostatistics, Universidad Científica del Sur, Lima, Peru
| | - Alberto E. Paniz-Mondolfi
- Department of Pathology, Molecular and Cell-Based Medicine, Laboratory of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Instituto de Investigaciones Biomédicas IDB/Incubadora Venezolana de la Ciencia, Barquisimeto, Venezuela
| | | | - Andrés F. Henao-Martínez
- Department of Medicine, Division of Infectious Diseases, School of Medicine, University of Colorado Denver, Aurora, CO, United States
| | - Julian Ruiz-Saenz
- Grupo de Investigación en Ciencias Animales - GRICA, Facultad de Medicina Veterinaria y Zootecnia, Universidad Cooperativa de Colombia, Bucaramanga, Colombia
| | - Marlen Martinez-Gutierrez
- Grupo de Investigación en Ciencias Animales - GRICA, Facultad de Medicina Veterinaria y Zootecnia, Universidad Cooperativa de Colombia, Bucaramanga, Colombia
- Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia, Medellín, Colombia
| | - Lucia E. Alvarado-Arnez
- Coordinación Nacional de Investigación, Universidad Privada Franz Tamayo (UNIFRANZ), Cochabamba, Bolivia
| | - Jorge E. Gomez-Marin
- Grupo de Estudio en Parasitologia Molecular (GEPAMOL) Group, Facultad de Ciencias de la Salud, Universidad del Quindío, Armenia, Colombia
| | - Ruben Bueno-Marí
- Departamento de Investigación y Desarrollo (I+D), Laboratorios Lokímica, Paterna, Spain
- Área de Parasitología, Departamento de Farmacia y Tecnología Farmaceútica y Parasitología, Universidad de Valencia, Burjasot, Spain
| | - Yenddy Carrero
- Facultad de Ciencias de la Salud, Carrera de Medicina, Universidad Técnica de Ambato, Ambato, Ecuador
| | - Wilmer E. Villamil-Gomez
- Infectious Diseases and Infection Control Research Group, Hospital Universitario de Sincelejo, Sincelejo, Colombia
- Programa Del Doctorado de Medicina Tropical, SUE Caribe, Universidad Del Atlántico, Barranquilla, Colombia
| | - D. Katterine Bonilla-Aldana
- Semillero de Investigación en Zoonosis (SIZOO), Grupo de Investigación BIOECOS, Fundacion Universitaria Autonoma de las Americas, Pereira, Colombia
| | - Ubydul Haque
- Department of Biostatistics and Epidemiology, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Juan D. Ramirez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Juan-Carlos Navarro
- Research Group of Emerging Diseases, Ecoepidemiology and Biodiversity, Health Sciences Faculty, Universidad Internacional SEK, Quito, Ecuador
| | - Susana Lloveras
- Sección Zoopatología Médica, Hospital de Infecciosas FJ Muñiz, Buenos Aires, Argentina
| | - Kovy Arteaga-Livias
- Master Program on Clinical Epidemiology and Biostatistics, Universidad Científica del Sur, Lima, Peru
- Faculty of Medicine, Universidad Nacional Hermilio Valdizán, Huánuco, Peru
| | | | - Jorge L. Maguiña
- Master Program on Clinical Epidemiology and Biostatistics, Universidad Científica del Sur, Lima, Peru
| | - Angel A. Escobedo
- Department of Epidemiology, Institute of Gastroenterology, Havana, Cuba
| | - Marylin Hidalgo
- Infectious Diseases Group, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | | | - Salim Mattar
- Instituto de Investigaciones Biologicas del Tropico, Universidad de Cordoba, Monteria, Colombia
| | - Jaime A. Cardona-Ospina
- Grupo de Investigación Biomedicina, Faculty of Medicine, Fundacion Universitaria Autonoma de las Americas, Pereira, Colombia
- Emerging Infectious Diseases and Tropical Medicine Research Group, Instituto para la Investigación en Ciencias Biomédicas - Sci-Help, Pereira, Colombia
| | - Jose A. Suárez
- Investigador SNI Senacyt Panamá, Instituto Conmemorativo Gorgas de Estudios de la Salud (ICGES), Panama, Panama
| |
Collapse
|
6
|
Abuseir S, Schicht S, Springer A, Nagel-Kohl U, Strube C. Genetic Characterization of Taenia saginata Cyst Isolates from Germany. Vector Borne Zoonotic Dis 2018; 18:433-439. [PMID: 29893621 DOI: 10.1089/vbz.2017.2218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The beef tapeworm Taenia saginata, which causes taeniosis in humans and cysticercosis in cattle, is of medical and economic importance. Understanding the parasite's genetic population structure may help to analyze transmission patterns and aid in the development of control measures. As information on sequence variability is scarce for European isolates, this study aimed to elucidate the intraspecific genetic variability of T. saginata cysts from German cattle by sequence comparison of the mitochondrial cytochrome c oxidase subunit 1 (cox1) and NADH dehydrogenase subunit 5 (nad5) genes, in relationship to sequences from other geographical origins. Cysts were collected from northern German, Swiss, and Belgian cattle. Moreover, proglottids from an adult T. saginata specimen from Palestine were included. Amplification and Sanger sequencing of the cox1 gene was successful for 57 samples (45 German, 9 Swiss, 2 Belgian, 1 Palestinian), whereas 32 sequences were obtained for the nad5 gene (21 German, 10 Swiss, 1 Palestinian). For German isolates, sequence comparison revealed minor genetic variability with two polymorphic sites and mutations in both genes. Three haplotypes with haplotype diversity of 0.088 for cox1 and 0.186 for nad5, as well as nucleotide diversities of 0.00028 and 0.00095, respectively, were observed. Comparison of the cox1 gene sequence of German isolates with other European, African, American, and Asian isolates obtained from National Center for Biotechnology Information (total of 71 sequences) raised 11 polymorphic sites and mutations as well as 10 haplotypes (haplotype diversity: 0.239; nucleotide diversity: 0.00097). Although nad5 sequence comparison comprised less sequences (N = 33), analyses revealed 11 polymorphic sites, 12 mutation sites, and 7 haplotypes (haplotype diversity: 0.335, nucleotide diversity: 0.00391), indicating a better resolution of genetic variability compared to cox1. Thus, nad5 may be particularly useful for in-depth studies on genetic divergence of T. saginata.
Collapse
Affiliation(s)
- Sameh Abuseir
- 1 Faculty of Agriculture and Veterinary Medicine, An-Najah National University , Nablus, Palestine
| | - Sabine Schicht
- 2 Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover , Hanover, Germany
| | - Andrea Springer
- 2 Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover , Hanover, Germany
| | - Uschi Nagel-Kohl
- 3 Lower Saxony State Office for Consumer Protection and Food Safety, Veterinary Institute , Hanover, Germany
| | - Christina Strube
- 2 Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover , Hanover, Germany
| |
Collapse
|
7
|
Sanpool O, Rodpai R, Intapan PM, Sadaow L, Thanchomnang T, Laymanivong S, Maleewong W, Yamasaki H. Genetic diversity of Taenia saginata (Cestoda: Cyclophyllidea) from Lao People's Democratic Republic and northeastern Thailand based on mitochondrial DNA. Parasit Vectors 2017; 10:141. [PMID: 28284223 PMCID: PMC5346190 DOI: 10.1186/s13071-017-2079-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 03/06/2017] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Taenia saginata is a tapeworm found in cattle worldwide. Analysis of genetic diversity in different geographical populations of T. saginata not only helps to understand the origin, transmission and spread of this organism, but also to evaluate the selection pressures acting on T. saginata and how it is responding to them. However, there are few reports of the genetic variability of T. saginata populations in different regions of the world, including Lao PDR and Thailand. We report the genetic diversity of T. saginata populations in Lao PDR and northeastern Thailand together with sequences of T. saginata from other countries deposited in GenBank. RESULTS Mitochondrial cox1 sequence analysis revealed that 15 and 8 haplotypes were identified in 30 and 21 T. saginata isolates from Lao PDR and northeastern Thailand, respectively. Fifty-three haplotypes were identified from 98 sequences. Phylogenetic tree and haplotype network analyses revealed that global isolates of T. saginata were genetically divided into five groups (A, B, C1, C2 and D). Taenia saginata isolates from Lao PDR and northeastern Thailand belonged to either Group A or B. Taenia saginata from western Thailand clustered in groups C1, C2 and D, and populations from the northeast and western Thailand were found to be genetically distinct. Taenia saginata isolates in Lao PDR and Thailand were also found to be genetically diverse but the degree of genetic differentiation was low. CONCLUSIONS Taenia saginata populations from Lao PDR and northeastern Thailand are genetically distinct from the population in western Thailand and it is proposed that T. saginata has been dispersed by different transmission routes in Southeast Asia.
Collapse
Affiliation(s)
- Oranuch Sanpool
- Department of Parasitology and Research and Diagnostic Center for Emerging Infectious Diseases, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand.,Faculty of Medicine, Mahasarakham University, Maha Sarakham, 44000, Thailand
| | - Rutchanee Rodpai
- Department of Parasitology and Research and Diagnostic Center for Emerging Infectious Diseases, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Pewpan M Intapan
- Department of Parasitology and Research and Diagnostic Center for Emerging Infectious Diseases, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand.
| | - Lakkhana Sadaow
- Department of Parasitology and Research and Diagnostic Center for Emerging Infectious Diseases, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | | | - Sakhone Laymanivong
- Centre of Malariology, Parasitology and Entomology, Ministry of Health, Vientiane, Lao PDR
| | - Wanchai Maleewong
- Department of Parasitology and Research and Diagnostic Center for Emerging Infectious Diseases, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Hiroshi Yamasaki
- Department of Parasitology, National Institute of Infectious Diseases, Ministry of Health, Labour and Welfare, Tokyo, 162-8640, Japan.
| |
Collapse
|