1
|
Mitra S, Sultana SA, Prova SR, Uddin TM, Islam F, Das R, Nainu F, Sartini S, Chidambaram K, Alhumaydhi FA, Emran TB, Simal-Gandara J. Investigating forthcoming strategies to tackle deadly superbugs: current status and future vision. Expert Rev Anti Infect Ther 2022; 20:1309-1332. [PMID: 36069241 DOI: 10.1080/14787210.2022.2122442] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 08/16/2022] [Indexed: 11/09/2022]
Abstract
INTRODUCTION Superbugs are microorganisms that cause disease and have increased resistance to the treatments typically used against infections. Recently, antibiotic resistance development has been more rapid than the pace at which antibiotics are manufactured, leading to refractory infections. Scientists are concerned that a particularly virulent and lethal 'superbug' will one day join the ranks of existing bacteria that cause incurable diseases, resulting in a global health disaster on the scale of the Black Death. AREAS COVERED This study highlights the current developments in the management of antibiotic-resistant bacteria and recommends strategies for further regulating antibiotic-resistant microorganisms associated with the healthcare system. This review also addresses the origins, prevalence, and pathogenicity of superbugs, and the design of antibacterial against these growing multidrug-resistant organisms from a medical perspective. EXPERT OPINION It is recommended that antimicrobial resistance should be addressed by limiting human-to-human transmission of resistant strains, lowering the use of broad-spectrum antibiotics, and developing novel antimicrobials. Using the risk-factor domains framework from this study would assure that not only clinical but also community and hospital-specific factors are covered, lowering the chance of confounders. Extensive subjective research is necessary to fully understand the underlying factors and uncover previously unexplored areas.
Collapse
Affiliation(s)
- Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, 1000, Dhaka, Bangladesh
| | - Sifat Ara Sultana
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, 1000, Dhaka, Bangladesh
| | - Shajuthi Rahman Prova
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, 1000, Dhaka, Bangladesh
| | - Tanvir Mahtab Uddin
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, 1000, Dhaka, Bangladesh
| | - Fahadul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207, Dhaka, Bangladesh
| | - Rajib Das
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, 1000, Dhaka, Bangladesh
| | - Firzan Nainu
- Faculty of Pharmacy, Hasanuddin University, 90245, Makassar, Indonesia
| | - Sartini Sartini
- Department of Pharmaceutical Science and Technology, Faculty of Pharmacy, Hasanuddin University, 90245, Makassar, Indonesia
| | - Kumarappan Chidambaram
- Department of Pharmacology and Toxicology, College of Pharmacy, King Khalid University, 62529, Abha, Saudi Arabia
| | - Fahad A Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, 52571, Buraydah, Saudi Arabia
| | - Talha Bin Emran
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207, Dhaka, Bangladesh
- Department of Pharmacy, BGC Trust University Bangladesh, 4381, Bangladesh
| | - Jesus Simal-Gandara
- Universidade de Vigo, Nutrition and Bromatology Group, Analytical Chemistry and Food Science Department, Faculty of Science, E32004 Ourense, Spain
| |
Collapse
|
2
|
Siddiqui R, Boghossian A, Akbar N, Khan NA. A one health approach versus Acanthamoeba castellanii, a potential host for Morganella morganii. INTERNATIONAL MICROBIOLOGY : THE OFFICIAL JOURNAL OF THE SPANISH SOCIETY FOR MICROBIOLOGY 2022; 25:781-788. [PMID: 35794501 PMCID: PMC9261161 DOI: 10.1007/s10123-022-00261-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 06/02/2022] [Accepted: 06/24/2022] [Indexed: 11/28/2022]
Abstract
Acanthamoeba castellanii, known as the “Trojan horse of the microbial world,” is known to host a variety of microorganisms including viruses, yeasts, protists, and bacteria. Acanthamoeba can act as a vector and may aid in the transmission of various bacterial pathogens to potential hosts and are found in a variety of places, thus impacting the health of humans, animals, and the environment. These are interconnected in a system known as “one health.” With the global threat of antibiotic resistance, bacteria may avoid harsh conditions, antibiotics, and disinfectants by sheltering within Acanthamoeba. In this study, Acanthamoeba castellanii interaction with Morganella morganii, a Gram-negative bacterium was studied. Escherichia coli K1 interaction with Acanthamoeba was carried out as a control. Association, invasion, and survival assays were accomplished. Morganella morganii was found to associate, invade, and survive within Acanthamoeba castellanii. Additionally, Escherichia coli K1 was also found to associate, invade, and survive within the Acanthamoeba at a higher number in comparison to Morganella morganii. For the first time, we have shown that Morganella morganii interact, invade, and survive within Acanthamoeba castellanii, suggesting that Acanthamoeba may be a potential vector in the transmission of Morganella morganii to susceptible hosts. Taking a one health approach to tackle and develop disinfectants to target Acanthamoeba is warranted, as the amoebae may be hosting various microbes such as multiple drug-resistant bacteria and even viruses such as the novel coronavirus.
Collapse
Affiliation(s)
- Ruqaiyyah Siddiqui
- College of Arts and Sciences, American University of Sharjah, 26666, Sharjah, United Arab Emirates
| | - Anania Boghossian
- College of Arts and Sciences, American University of Sharjah, 26666, Sharjah, United Arab Emirates
| | - Noor Akbar
- College of Arts and Sciences, American University of Sharjah, 26666, Sharjah, United Arab Emirates
| | - Naveed Ahmed Khan
- Department of Clinical Sciences, College of Medicine, University of Sharjah, 27272, Sharjah, United Arab Emirates.
| |
Collapse
|
3
|
Hojo F, Osaki T, Yonezawa H, Hanawa T, Kurata S, Kamiya S. Acanthamoeba castellanii supports extracellular survival of Helicobacter pylori in co-culture. J Infect Chemother 2020; 26:946-954. [PMID: 32448734 DOI: 10.1016/j.jiac.2020.04.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/03/2020] [Accepted: 04/16/2020] [Indexed: 12/15/2022]
Abstract
This study aimed to demonstrate whether Helicobacter pylori is able to survive in co-culture with a protozoan, Acanthamoeba castellanii, in order to further investigate a possible aqueous environmental mode of transmission. Numbers of H. pylori in co-culture with A castellanii were assessed by colony forming unit (CFU) assay and cell morphology was observed by electron microscopy. Viable and intact H. pylori in co-culture were detected and the number of H. pylori in co-culture with A. castellanii was significantly higher than in bacterial single culture. It was also shown that co-culture of H. pylori with A. castellanii physically separated by a filter membrane negated this survival effect, suggesting that adherence of H. pylori to A. castellanii affects its survival. Scanning electron microscopy revealed helical forms of H. pylori in co-culture with A. castellanii, but not in single culture. These results imply that mutual interaction between H. pylori and A. castellanii in the environment is critical for survival of H. pylori. In addition, the H. pylori gene expression profile was found to differ between single and co-cultured cells using RNA-sequence analysis.
Collapse
Affiliation(s)
- Fuhito Hojo
- Institute of Laboratory Animals, Graduate School of Medicine, Kyorin University, 6-20-2 Shinkawa, Mitaka, Tokyo, Japan.
| | - Takako Osaki
- Department of Infectious Diseases, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo, Japan
| | - Hideo Yonezawa
- Department of Infectious Diseases, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo, Japan
| | - Tomoko Hanawa
- Department of Infectious Diseases, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo, Japan
| | - Satoshi Kurata
- Department of Infectious Diseases, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo, Japan
| | - Shigeru Kamiya
- Department of Infectious Diseases, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo, Japan; Faculty of Health Sciences, Kyorin University, 181-8612, 5-4-1 Shimorenjaku, Mitaka, Tokyo, Japan
| |
Collapse
|