1
|
Almeria S, Grocholl J, Mullins J, Durigan M, Ewing-Peeples L, Rogers EL, Hirneisen K, Madson S, Wang SS. Multi-laboratory validation of a modified real-time PCR assay (Mit1C) for the detection of Cyclospora cayetanensis in fresh produce. Food Microbiol 2025; 128:104727. [PMID: 39952748 DOI: 10.1016/j.fm.2025.104727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/06/2025] [Accepted: 01/07/2025] [Indexed: 02/17/2025]
Abstract
Cyclospora cayetanensis is a foodborne protozoan parasite that causes the human diarrheal disease cyclosporiasis. Recently, the US FDA developed a modified real-time PCR method based on a specific mitochondrial target gene (Mit1C) to detect C. cayetanensis in fresh produce. The method was validated by single laboratory validation (SLV) studies in Romaine lettuce, cilantro, and raspberries. The present study aimed to evaluate the performance of the new real-time Mit1C (Mit1C qPCR) method by comparing it with the current BAM Chapter 19b qPCR (18S qPCR) as the reference method for the detection of the protozoan parasite C. cayetanensis in fresh produce in a multi-laboratory validation (MLV) setting with the participation of 13 collaborating laboratories. Each laboratory analyzed twenty-four blind-coded Romaine lettuce DNA test samples that included: two unseeded samples, three samples seeded with five oocysts, and one sample seeded with 200 oocysts in the first round and five unseeded samples, eight samples seeded with five oocysts, and five samples seeded with 200 oocysts in the second round. The overall detection rates across laboratories for Romaine lettuce samples inoculated with 200 and 5 oocysts and un-inoculated samples were 100% (78/78), 69.23% (99/143), and 1.1% (1/91), respectively, for Mit1C qPCR, and 100% (78/78), 61.54% (88/143) and 0% (0/91), respectively, for 18S qPCR. The relative level of detection (RLOD = LOD50, Mit1C/LOD50, 18S) was 0.81 with a 95% confidence interval (0.600, 1.095), which included 1. Thus, Mit1C qPCR and 18S qPCR had statistically similar levels of detection. Mit1C qPCR was highly reproducible as the between-laboratory variance in the test results was nearly zero (0) and showed a high specificity at 98.9%. In conclusion, this study demonstrated that the new, more specific Mit1C qPCR method is an effective alternative analytical tool for detection of C. cayetanensis in fresh produce.
Collapse
Affiliation(s)
- Sonia Almeria
- Virology and Parasitology Branch, Division of Food and Environmental Safety (DFES), Office of Applied Microbiology and Technology (OAMT), Office of Laboratory Operations and Applied Sciences (OLOAS), Human Foods Program, Food and Drug Administration, Department of Health and Human Services, 8301 Muirkirk Road, Laurel, MD, 20708, USA.
| | - John Grocholl
- Virology and Parasitology Branch, Division of Food and Environmental Safety (DFES), Office of Applied Microbiology and Technology (OAMT), Office of Laboratory Operations and Applied Sciences (OLOAS), Human Foods Program, Food and Drug Administration, Department of Health and Human Services, 8301 Muirkirk Road, Laurel, MD, 20708, USA.
| | - Jeremi Mullins
- Division of Science Program Coordination, Office of Regulatory Testing & Surveillance (ORTS), Office of Laboratory Operations and Applied Science (OLOAS), Human Foods Program, Food and Drug Administration, Department of Health and Human Services, 60 Eighth Street, N.E., Atlanta, GA, 30309, USA.
| | - Mauricio Durigan
- Virology and Parasitology Branch, Division of Food and Environmental Safety (DFES), Office of Applied Microbiology and Technology (OAMT), Office of Laboratory Operations and Applied Sciences (OLOAS), Human Foods Program, Food and Drug Administration, Department of Health and Human Services, 8301 Muirkirk Road, Laurel, MD, 20708, USA.
| | - Laura Ewing-Peeples
- Virology and Parasitology Branch, Division of Food and Environmental Safety (DFES), Office of Applied Microbiology and Technology (OAMT), Office of Laboratory Operations and Applied Sciences (OLOAS), Human Foods Program, Food and Drug Administration, Department of Health and Human Services, 8301 Muirkirk Road, Laurel, MD, 20708, USA.
| | - Ellie Lauren Rogers
- Joint Institute for Food Safety and Applied Nutrition (JIFSAN), University of Maryland, College Park, MD, 20742, USA.
| | - Kirsten Hirneisen
- Office of Regulatory Testing and Surveillance (ORTS), Office of Laboratory Operations and Applied Science (OLOAS), Human Foods Program (HFP), U.S. Food and Drug Administration, 19701 Fairchild, Irvine, CA, 92612, USA.
| | - Shauna Madson
- Microbiology Branch, Division of Science Program Coordination, Office of Regulatory Testing and Surveillance (ORTS), Office of Lab Operations and Applied Science (OLOAS), Human Foods Program, Food and Drug Administration, Department of Health and Human Services, Lakewood, CO, 80225, USA.
| | - Shizhen Steven Wang
- Surveillance Design Branch, Division of Surveillance and Data Integration, Office of Surveillance Strategy and Risk Prioritization (OSSRP), Human Foods Program, Food and Drug Administration, 5001 Campus Dr, College Park, MD, 20740, USA
| |
Collapse
|
2
|
Katsuno T, Sugiura Y, Morishita M, Osaki S, Suzuki M, Takasaki J, Iikura M, Izumi S, Hojo M, Sugiyama H. Spinal Echinococcosis in a Japanese Woman Living in Tokyo: Diagnostic Challenges in Non-endemic Areas and Public Health Implications. Intern Med 2025; 64:971-977. [PMID: 39135255 PMCID: PMC11986315 DOI: 10.2169/internalmedicine.3713-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 06/23/2024] [Indexed: 03/18/2025] Open
Abstract
Echinococcosis, caused by Echinococcus spp., often affects the lungs and liver, and spinal involvement is rare. Echinococcus multilocularis is prevalent in Japan, particularly in Hokkaido. We herein report a rare case of spinal echinococcosis in a 31-year-old woman who was diagnosed in Tokyo. Spinal echinococcosis is uncommon and often leads to misdiagnoses. The patient likely contracted the disease via contaminated fresh produce transported from an endemic region. This study emphasizes the diagnostic challenges of spinal echinococcosis in non-endemic regions and highlights the public health concerns related to the spread of infections in non-endemic areas.
Collapse
Affiliation(s)
- Takashi Katsuno
- Department of Respiratory Medicine, National Center for Global Health and Medicine, Japan
| | - Yuriko Sugiura
- Department of Respiratory Medicine, National Center for Global Health and Medicine, Japan
| | - Momoko Morishita
- Department of Respiratory Medicine, National Center for Global Health and Medicine, Japan
| | - Shuhei Osaki
- Department of Musculoskeletal Oncology, National Cancer Center Hospital, Japan
| | - Manabu Suzuki
- Department of Respiratory Medicine, National Center for Global Health and Medicine, Japan
| | - Jin Takasaki
- Department of Respiratory Medicine, National Center for Global Health and Medicine, Japan
| | - Motoyasu Iikura
- Department of Respiratory Medicine, National Center for Global Health and Medicine, Japan
| | - Shinyu Izumi
- Department of Respiratory Medicine, National Center for Global Health and Medicine, Japan
| | - Masayuki Hojo
- Department of Respiratory Medicine, National Center for Global Health and Medicine, Japan
| | - Haruhito Sugiyama
- Department of Respiratory Medicine, National Center for Global Health and Medicine, Japan
| |
Collapse
|
3
|
Augendre L, Costa D, Escotte-Binet S, Aubert D, Villena I, Dumètre A, La Carbona S. Surrogates of foodborne and waterborne protozoan parasites: A review. Food Waterborne Parasitol 2023; 33:e00212. [PMID: 38028241 PMCID: PMC10661733 DOI: 10.1016/j.fawpar.2023.e00212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/27/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
The protozoan parasites Cryptosporidium parvum, Cyclospora cayetanensis, and Toxoplasma gondii are major causes of waterborne and foodborne diseases worldwide. The assessment of their removal or inactivation during water treatment and food processing remains challenging, partly because research on these parasites is hindered by various economical, ethical, methodological, and biological constraints. To address public health concerns and gain new knowledge, researchers are increasingly seeking alternatives to the use of such pathogenic parasites. Over the past few decades, several non-pathogenic microorganisms and manufactured microparticles have been evaluated as potential surrogates of waterborne and foodborne protozoan parasites. Here, we review the surrogates that have been reported for C. parvum, C. cayetanensis, and T. gondii oocysts, and discuss their use and relevance to assess the transport, removal, and inactivation of these parasites in food and water matrices. Biological surrogates including non-human pathogenic Eimeria parasites, microorganisms found in water sources (anaerobic and aerobic spore-forming bacteria, algae), and non-biological surrogates (i.e. manufactured microparticles) have been identified. We emphasize that such surrogates have to be carefully selected and implemented depending on the parasite and the targeted application. Eimeria oocysts appear as promising surrogates to investigate in the future the pathogenic coccidian parasites C. cayetanensis and T. gondii that are the most challenging to work with.
Collapse
Affiliation(s)
- Laure Augendre
- EA 7510 ESCAPE Epidemiosurveillance and Circulation of Parasites in the Environment, University of Reims Champagne Ardennes, Faculty of Medicine, SFR Cap Santé Fed 4231, 51 Rue Cognacq Jay, 51096 Reims Cedex, France
- ACTALIA Food Safety, 310 Rue Popielujko, 50000, Saint-Lô, France
| | - Damien Costa
- EA 7510 ESCAPE Epidemiosurveillance and Circulation of Parasites in the Environment, University of Rouen Normandie, University Hospital of Rouen, 22 Boulevard Gambetta, 76183 Rouen Cedex, France
| | - Sandie Escotte-Binet
- EA 7510 ESCAPE Epidemiosurveillance and Circulation of Parasites in the Environment, University of Reims Champagne Ardennes, Faculty of Medicine, SFR Cap Santé Fed 4231, 51 Rue Cognacq Jay, 51096 Reims Cedex, France
| | - Dominique Aubert
- EA 7510 ESCAPE Epidemiosurveillance and Circulation of Parasites in the Environment, University of Reims Champagne Ardennes, Faculty of Medicine, SFR Cap Santé Fed 4231, 51 Rue Cognacq Jay, 51096 Reims Cedex, France
| | - Isabelle Villena
- EA 7510 ESCAPE Epidemiosurveillance and Circulation of Parasites in the Environment, University of Reims Champagne Ardennes, Faculty of Medicine, SFR Cap Santé Fed 4231, 51 Rue Cognacq Jay, 51096 Reims Cedex, France
| | - Aurélien Dumètre
- Aix-Marseille University, IRD, AP-HM, IHU Méditerranée Infection, UMR Vectors - Tropical and Mediterranean Infections, 19-21 Boulevard Jean Moulin, 13005 Marseille, France
| | | |
Collapse
|
4
|
Almeria S, Chacin-Bonilla L, Maloney JG, Santin M. Cyclospora cayetanensis: A Perspective (2020-2023) with Emphasis on Epidemiology and Detection Methods. Microorganisms 2023; 11:2171. [PMID: 37764015 PMCID: PMC10536660 DOI: 10.3390/microorganisms11092171] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/11/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
Cyclospora cayetanensis infections are prevalent worldwide, and the parasite has become a major public health and food safety concern. Although important efforts have been dedicated to advance toward preventing and reducing incidences of cyclosporiasis, there are still several knowledge gaps that hamper the implementation of effective measures to prevent the contamination of produce and water with Cyclospora oocysts. Some of these data gaps can be attributed to the fact that access to oocysts is a limiting factor in C. cayetanensis research. There are no animal models or in vivo or in vitro culture systems to propagate the oocysts needed to facilitate C. cayetanensis research. Thus, researchers must rely upon limited supplies of oocysts obtained from naturally infected human patients considerably restricting what can be learnt about this parasite. Despite the limited supply of C. cayetanensis oocysts, several important advances have happened in the past 3 years. Great progress has been made in the Cyclospora field in the areas of molecular characterization of strains and species, generation of genomes, and development of novel detection methods. This comprehensive perspective summarizes research published from 2020 to 2023 and evaluates what we have learnt and identifies those aspects in which further research is needed.
Collapse
Affiliation(s)
- Sonia Almeria
- Center for Food Safety and Nutrition (CFSAN), Department of Health and Human Services, Food and Drug Administration, Office of Applied Research and Safety Assessment (OARSA), Division of Virulence Assessment, Laurel, MD 20708, USA
| | | | - Jenny G. Maloney
- Environmental Microbial and Food Safety Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA;
| | - Monica Santin
- Environmental Microbial and Food Safety Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA;
| |
Collapse
|
5
|
Rezaeian S, Taghipour A, Bahadory S, Mogharab V, Abdoli A. Global prevalence and genotype distribution of Microsporidia spp. in various consumables: a systematic review and meta-analysis. JOURNAL OF WATER AND HEALTH 2023; 21:895-914. [PMID: 37515561 PMCID: wh_2023_042 DOI: 10.2166/wh.2023.042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/31/2023]
Abstract
Water and food sources play a major role in the distribution and transfer of microsporidia infection to animals and humans. So, this systematic review and meta-analysis aimed to assess the status and genetic diversity of microsporidia infection in water, vegetables, fruits, milk, cheese, and meat. The standard protocol of Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines was followed. Scopus, PubMed, Web of Science, and Google Scholar were searched from 1 January 2000 and 1 February 2023. The point estimates and 95% confidence intervals (CIs) were calculated using a random-effects model. Of the 1,308 retrieved studies, 35 articles were included in the final meta-analysis. The pooled prevalence of microsporidia infection in mixed water, mixed fruits, mixed vegetables, and milk was 43.3% (95% CI, 33-54.2%; I2, 94.86%), 35.8% (95% CI, 5.3-84.8%; I2, 0), 12% (95% CI, 4.9-26.6%; I2, 96.43%), and 5.8% (95% CI, 2.7-12%; I2, 83.72%), respectively. Considering the genotypes, microsporidia with genotype D in water sources and genotype CD6 in vegetables/fruits were the highest reported genotypes. Given the relatively high prevalence of microsporidiosis (especially in water sources), designing strategies for control, and prevention of microsporidia infection in these sources should be recommended.
Collapse
Affiliation(s)
- Sanaz Rezaeian
- Student Research Committee, Jahrom University of Medical Sciences, Jahrom, Iran; Zoonoses Research Center, Jahrom University of Medical Sciences, Jahrom, Iran; These authors contributed equally to this work. E-mail:
| | - Ali Taghipour
- Zoonoses Research Center, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Saeed Bahadory
- Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Vahid Mogharab
- Department of Pediatrics, Jahrom University of Medical Sciences, Jahrom, Iran; These authors contributed equally to this work
| | - Amir Abdoli
- Zoonoses Research Center, Jahrom University of Medical Sciences, Jahrom, Iran; Department of Medical Parasitology and Mycology, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran
| |
Collapse
|
6
|
Bhatt K, Suyal DC, Kumar S, Singh K, Goswami P. New insights into engineered plant-microbe interactions for pesticide removal. CHEMOSPHERE 2022; 309:136635. [PMID: 36183882 DOI: 10.1016/j.chemosphere.2022.136635] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 09/21/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
Over the past decades, rapid industrialization along with the overutilization of organic pollutants/pesticides has altered the environmental circumstances. Moreover, various anthropogenic, xenobiotics and natural activities also affected plants, soil, and human health, in both direct and indirect ways. To counter this, several conventional methods are currently practiced, but are uneconomical, noxious, and is yet inefficient for large-scale application. Plant-microbe interactions are mediated naturally in an ecosystem and are practiced in several areas. Plant growth promoting rhizobacteria (PGPR) possess certain attributes affecting plant and soil consequently performing decontamination activity via a direct and indirect mechanism. PGPR also harbors indispensable genes stimulating the mineralization of several organic and inorganic compounds. This makes microbes potential candidates for contributing to sustainably remediating the harmful pesticide contaminants. There is a limited piece of information about the plant-microbe interaction pertaining predict and understand the overall interaction concerning a sustainable environment. Therefore, this review focuses on the plant-microbe interaction in the rhizosphere and inside the plant's tissues, along with the utilization augmenting the crop productivity, reduction in plant stress along with decontamination of pesticides/organic pollutants in soil for sustainable environmental management.
Collapse
Affiliation(s)
- Kalpana Bhatt
- Department of Food Science, Purdue University, West Lafayette, IN, 47907, USA.
| | - Deep Chandra Suyal
- Department of Microbiology, Akal College of Basic Sciences, Eternal University, Baru Sahib, Sirmour, Himachal Pradesh, India.
| | - Saurabh Kumar
- ICAR-Research Complex for Eastern Region, Patna, 800014, Bihar, India
| | - Kuldeep Singh
- Department of Microbiology, Chaudhary Charan Singh Haryana Agricultural University, Hisar, 125004, India
| | - Priya Goswami
- Department of Biotechnology, Mangalayatan University, Uttar Pradesh, India
| |
Collapse
|
7
|
Berrouch S, Escotte-Binet S, Madline A, Aubert D, Nast E, La Carbona S, Hoummadi L, Hafid J, Villena I. Protozoan Parasites and Leafy Greens in Marrakech: Study of Occurrence Using a Molecular Method. Acta Parasitol 2022; 67:546-554. [PMID: 34800215 DOI: 10.1007/s11686-021-00488-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/18/2021] [Indexed: 01/25/2023]
Abstract
PURPOSE The aim of this study was to assess the presence of T. gondii, Cryptosporidium spp. oocysts, and G. duodenalis cysts, in three leafy greens (coriander, lettuce, and parsley) commonly consumed raw. Despite the recognition of the association between the parasitic illnesses and the consumption of contaminated food, there is still a lack of studies investigating the occurrence of parasitic contamination in food matrices. METHODS A total of 152 leafy green samples were collected in Marrakech from April 2018 to October 2019. Parasites were eluted and concentrated before detection of their DNA by real-time qPCR. RESULTS The analysis revealed an overall rate of contamination of 32.2% (49/152), with 29.6% (45/152) positive for T. gondii and 2.6% (4/152) for G. duodenalis, while none was positive for Cryptosporidium spp. CONCLUSION The results showed that humans can be exposed to protozoan parasites through vegetables consumption. Further investigations can be performed to acquire new epidemiological data to assess the public health impact of these protozoan diseases in Morocco.
Collapse
|