1
|
Mirzapour-Kouhdasht A, Shaghaghian S, Majdinasab M, Huang JY, Garcia-Vaquero M. Unravelling the Digestibility and Structure-Function Relationship of Lentil Protein Through Germination and Molecular Weight Fractionation. Foods 2025; 14:272. [PMID: 39856938 PMCID: PMC11765259 DOI: 10.3390/foods14020272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/07/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
This study explores for the first time the impact of a 6-day germination process on the structure (FTIR), antioxidant activity, nutritional/safety attributes (ACE-I inhibitory activity, digestibility, and cytotoxicity), and functional properties of fractions of variable molecular weight (W > 5 kDa; 3 kDa < MW < 5 kDa; and MW < 3 kDa) isolated from proteins extracted from lentils. FTIR results indicated a substantial increase in β-sheet contents during germination. The digestibility of proteins increased from day 0 (16.32-17.04%) to day 6 of germination (24.92-26.05%) with variable levels of digestibility depending on their MW. ACE-I inhibitory activity improved during germination in all fractions, reaching IC50 values of 0.95, 0.83, and 0.69 mg/mL after 6 days of germination. All antioxidant activities analyzed notably increased, particularly in low-MW fractions (MW < 3 kDa). The functional properties of low-MW fractions were also the most promising, displaying the highest water and fat binding capacities and emulsifying and foaming capacities but lower foaming and emulsifying stability compared to high-MW fractions. Cytotoxicity tests on L929 cells revealed the slight adverse effects of low-MW fractions during germination. This study provides insights into the enhanced nutritional and functional attributes of lentil proteins following germination, emphasizing their potential application in functional foods.
Collapse
Affiliation(s)
- Armin Mirzapour-Kouhdasht
- Section of Food and Nutrition, School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland;
- Department of Food Science, Purdue University, West Lafayette, IN 47907, USA;
| | - Samaneh Shaghaghian
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz 71441-65186, Iran; (S.S.); (M.M.)
- Department of Food Science, University of Laval, Quebec, QC G1V0A6, Canada
| | - Marjan Majdinasab
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz 71441-65186, Iran; (S.S.); (M.M.)
| | - Jen-Yi Huang
- Department of Food Science, Purdue University, West Lafayette, IN 47907, USA;
| | - Marco Garcia-Vaquero
- Section of Food and Nutrition, School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland;
| |
Collapse
|
2
|
Mateus ARS, Barros SC, Cortegoso SM, Sendón R, Barbosa-Pereira L, Khwaldia K, Pataro G, Ferrari G, Breniaux M, Ghidossi R, Pena A, Sanches-Silva A. Potential of fruit seeds: Exploring bioactives and ensuring food safety for sustainable management of food waste. Food Chem X 2024; 23:101718. [PMID: 39246690 PMCID: PMC11379553 DOI: 10.1016/j.fochx.2024.101718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/30/2024] [Accepted: 08/05/2024] [Indexed: 09/10/2024] Open
Abstract
Sweet cherry pits, date seeds, and grape seeds are abundant fruit by-products in the Mediterranean region. Assessing their antioxidant capacity is crucial for their valorization. Grape and date seeds exhibited higher concentrations of total phenolic and flavonoid contents, and significant antioxidant capacity. Epicatechin was the main flavonoid in sweet cherry pits and date seeds (29-85 mg/g), while vanillic acid was the predominant phenolic acid across all by-products (5-23 mg/g). However, some sweet cherry pit varieties exceeded Maximum Residue Levels (MRL) for five pesticides, while grape seeds contained thirteen fungicide residues, all below MRL. Ochratoxin A was detected in one date seed but below the limit of quantification. Additionally, grape seeds showed an Al content of approximately 130 mg/kg, along with levels of As, Cd, and Pb. Date seeds exhibited high potential for food and pharmaceutical applications, pending evaluation for chemical contaminants.
Collapse
Affiliation(s)
- Ana Rita Soares Mateus
- National Institute for Agricultural and Veterinary Research (INIAV), I.P., Rua dos Lágidos, Lugar da Madalena, 4485-655 Vairão, Vila do Conde, Portugal
- University of Coimbra, Faculty of Pharmacy, Polo III, Azinhaga de Stª Comba, 3000-548 Coimbra, Portugal
- LAQV, REQUIMTE, Laboratory of Bromatology and Pharmacognosy, Faculty of Pharmacy, University of Coimbra, Polo III, Azinhaga de Stª Comba, 3000-548 Coimbra, Portugal
- Centre for Animal Science Studies (CECA), ICETA, Porto, Portugal
| | - Sílvia Cruz Barros
- National Institute for Agricultural and Veterinary Research (INIAV), I.P., Rua dos Lágidos, Lugar da Madalena, 4485-655 Vairão, Vila do Conde, Portugal
| | - Sandra Mariño Cortegoso
- Department of Analytical Chemistry, Nutrition and Food Science, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Raquel Sendón
- Department of Analytical Chemistry, Nutrition and Food Science, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Letrícia Barbosa-Pereira
- Department of Analytical Chemistry, Nutrition and Food Science, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Khaoula Khwaldia
- Laboratoire des Substances Naturelles, Institut National de Recherche et d'Analyse Physico-chimique, INRAP, Pôle Technologique de Sidi Thabet, 2020, Tunisia
| | - Gianpiero Pataro
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132 - 84084 Fisciano (SA), Italy
- ProdAl Scarl, Via Giovanni Paolo II, 132 - 84084 Fisciano (SA), Italy
| | - Giovanna Ferrari
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132 - 84084 Fisciano (SA), Italy
- ProdAl Scarl, Via Giovanni Paolo II, 132 - 84084 Fisciano (SA), Italy
| | - Marion Breniaux
- UMR ŒNOLOGIE (OENO), ISVV, UMR 1366, Université de Bordeaux, INRAE, Bordeaux, France
- NP, Villenave d'Ornon, France
- University of Bordeaux, Unité de recherche Œnologie, USC 1366 INRAE, Institut des Sciences de la Vigne et du Vin, Villenave d'Ornon, France
| | - Remy Ghidossi
- UMR ŒNOLOGIE (OENO), ISVV, UMR 1366, Université de Bordeaux, INRAE, Bordeaux, France
- NP, Villenave d'Ornon, France
- University of Bordeaux, Unité de recherche Œnologie, USC 1366 INRAE, Institut des Sciences de la Vigne et du Vin, Villenave d'Ornon, France
| | - Angelina Pena
- University of Coimbra, Faculty of Pharmacy, Polo III, Azinhaga de Stª Comba, 3000-548 Coimbra, Portugal
- LAQV, REQUIMTE, Laboratory of Bromatology and Pharmacognosy, Faculty of Pharmacy, University of Coimbra, Polo III, Azinhaga de Stª Comba, 3000-548 Coimbra, Portugal
| | - Ana Sanches-Silva
- University of Coimbra, Faculty of Pharmacy, Polo III, Azinhaga de Stª Comba, 3000-548 Coimbra, Portugal
- Centre for Animal Science Studies (CECA), ICETA, Porto, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (Al4AnimalS), 1300-477 Lisbon, Portugal
| |
Collapse
|
3
|
Bekiroglu H, Karaman S, Bozkurt F, Sagdic O. Characterization of some physicochemical, textural, and antioxidant properties of muffins fortified with hydrolyzed whey protein. Food Sci Nutr 2024; 12:8105-8117. [PMID: 39479724 PMCID: PMC11521639 DOI: 10.1002/fsn3.4422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/25/2024] [Accepted: 08/04/2024] [Indexed: 11/02/2024] Open
Abstract
Whey protein hydrolysates, derived from enzymatic hydrolysis of whey protein isolates or concentrates, offer enhanced bioavailability and solubility compared to intact whey protein. In this study, whey protein hydrolysates (WPHs) having different hydrolysis degrees (5%, 10%, and 15%) were produced and muffin cakes were enriched with the addition of WPHs. In general, the addition of WPHs showed a significant effect on oil and protein content while the emulsion activity was improved with the increased hydrolysis degree (HD). The degree of hydrolysis increment resulted in a significant increase in both antioxidant power and antiradical activity of the WPHs. Ferric-reducing antioxidant power and ABTS radical scavenging activity ranged between 18.83-87.27 mg TE/100 g and 211.8-5063.1 mg TE/100 g, respectively. The highest FRAP and ABTS values were recorded for the 15% HD while the lowest was for the native whey protein isolate (WPI). The induction periods giving a clear information for the oxidative stability were 1593 min for the control muffins, and it was 1654 for the muffin added with WPI. Rheological data revealed that all cake batter samples including WPHs showed viscoelastic behavior. WPHs could be efficiently used in muffin formulation to increase the biofunctional effects of the final products.
Collapse
Affiliation(s)
- Hatice Bekiroglu
- Department of Food Engineering, Faculty of AgricultureSirnak UniversitySirnakTurkey
- Department of Food Engineering, Faculty of Chemical and Metallurgical EngineeringYildiz Technical UniversityIstanbulTurkey
| | - Safa Karaman
- Faculty of Engineering, Department of Food EngineeringNigde Omer Halis Demir UniversityNigdeTurkey
| | - Fatih Bozkurt
- Department of Food Engineering, Faculty of Chemical and Metallurgical EngineeringYildiz Technical UniversityIstanbulTurkey
| | - Osman Sagdic
- Department of Food Engineering, Faculty of Chemical and Metallurgical EngineeringYildiz Technical UniversityIstanbulTurkey
| |
Collapse
|
4
|
Jayasree Subhash A, Babatunde Bamigbade G, Al-Ramadi B, Kamal-Eldin A, Gan RY, Senaka Ranadheera C, Ayyash M. Characterizing date seed polysaccharides: A comprehensive study on extraction, biological activities, prebiotic potential, gut microbiota modulation, and rheology using microwave-assisted deep eutectic solvent. Food Chem 2024; 444:138618. [PMID: 38309077 DOI: 10.1016/j.foodchem.2024.138618] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/17/2024] [Accepted: 01/26/2024] [Indexed: 02/05/2024]
Abstract
This study investigated the biological activities, prebiotic potentials, modulating gut microbiota, and rheological properties of polysaccharides derived from date seeds via microwave-assisted deep eutectic solvent systems. Averaged molecular weight (246.5 kDa) and a monosaccharide profile (galacturonic acid: glucose: mannose: fructose: galactose), classifying MPS as a heteropolysaccharide. MPS, at concentrations of 125-1000 µg/mL, demonstrates increasing free radical scavenging activities (DPPH, ABTS, MC, SOD, SORS, and LO), potent antioxidant potential (FRAP: 51.2-538.3 µg/mL; TAC: 28.3-683.4 µg/mL; RP: 18.5-171.2 µg/mL), and dose-dependent antimicrobial activity against common foodborne pathogens. Partially-purified MPS exhibits inhibition against α-glucosidase (79.6 %), α-amylase (85.1 %), and ACE (68.4 %), along with 80 % and 46 % inhibition against Caco-2 and MCF-7 cancer cells, respectively. Results indicate that MPS fosters the growth of beneficial fecal microbiota, including Proteobacteria, Firmicutes, and Actinobacteria, supporting microbes responsible for major SCFAs (acetic, propionic, and butyric acids) production, such as Ruminococcus and Blautia.
Collapse
Affiliation(s)
- Athira Jayasree Subhash
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University (UAEU), Al-Ain, UAE
| | - Gafar Babatunde Bamigbade
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University (UAEU), Al-Ain, UAE
| | - Basel Al-Ramadi
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University (UAEU), Al-Ain, UAE; Zayed Center for Health Sciences, United Arab Emirates University (UAEU), Al-Ain, UAE
| | - Afaf Kamal-Eldin
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University (UAEU), Al-Ain, UAE
| | - Ren-You Gan
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Singapore 138669, Singapore
| | | | - Mutamed Ayyash
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University (UAEU), Al-Ain, UAE; School of Agriculture, Food, and Ecosystem Sciences, Faculty of Science, The University of Melbourne, VIC 3010, Australia.
| |
Collapse
|
5
|
Yang Y, Huang L, Huang Z, Ren Y, Xiong Y, Xu Z, Chi Y. Food-derived peptides unleashed: emerging roles as food additives beyond bioactivities. Crit Rev Food Sci Nutr 2024:1-22. [PMID: 38889067 DOI: 10.1080/10408398.2024.2360074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Innovating food additives stands as a cornerstone for the sustainable evolution of future food systems. Peptides derived from food proteins exhibit a rich array of physicochemical and biological attributes crucial for preserving the appearance, flavor, texture, and nutritional integrity of foods. Leveraging these peptides as raw materials holds great promise for the development of novel food additives. While numerous studies underscore the potential of peptides as food additives, existing reviews predominantly focus on their biotic applications, leaving a notable gap in the discourse around their abiotic functionalities, such as their physicochemical properties. Addressing this gap, this review offers a comprehensive survey of peptide-derived food additives in food systems, accentuating the application of peptides' abiotic properties. It furnishes a thorough exploration of the underlying mechanisms and diverse applications of peptide-derived food additives, while also delineating the challenges encountered and prospects for future applications. This well-time review will set the stage for a deeper understanding of peptide-derived food additives.
Collapse
Affiliation(s)
- Yanli Yang
- Innovation Center for Advanced Brewing Science and Technology, College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| | - Lunjie Huang
- Innovation Center for Advanced Brewing Science and Technology, College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| | - Zhangjun Huang
- National Engineering Research Center, Luzhou Laojiao Co. Ltd, Luzhou, China
- Luzhou Pinchuang Technology Co. Ltd., National Engineering Research Center of Solid-State Brewing, Luzhou, China
| | - Yao Ren
- Innovation Center for Advanced Brewing Science and Technology, College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| | - Yanfei Xiong
- National Engineering Research Center, Luzhou Laojiao Co. Ltd, Luzhou, China
- Luzhou Pinchuang Technology Co. Ltd., National Engineering Research Center of Solid-State Brewing, Luzhou, China
| | - Zhenghong Xu
- Innovation Center for Advanced Brewing Science and Technology, College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| | - Yuanlong Chi
- Innovation Center for Advanced Brewing Science and Technology, College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| |
Collapse
|
6
|
Manzoor M, Singh J, Bhat ZF, Jaglan S. Multifunctional apple seed protein hydrolysates: Impact of enzymolysis on the biochemical, techno-functional and in vitro α-glucosidase, pancreatic lipase and angiotensin-converting enzyme inhibition activities. Int J Biol Macromol 2024; 257:128553. [PMID: 38056736 DOI: 10.1016/j.ijbiomac.2023.128553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 11/19/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023]
Abstract
The work was designed to assess the amelioration effect of papain hydrolysis on the biochemical, techno-functional, and biological properties of apple seed protein isolate (API) after 0-90 min of hydrolysis. Hydrolysis significantly enhanced the nutritional value (protein content ˃ 90 %) while decreasing the average particle size. With increasing hydrolysis time, FTIR analysis revealed a transition from α-helix to β-turn structure, indicating the unfolding of protein structure. This structural alteration positively influenced the functional characteristics, with samples hydrolyzed for 90 min exhibiting excellent solubility, higher water and oil absorption capacity, foaming capacity, and increased emulsifying activity index. Moreover, samples hydrolyzed for 90 min displayed the highest α-glucosidase (29.62-57.43 %), pancreatic lipase inhibition (12.87-31.08 %), and ACE inhibition (25.32-62.70 %) activity. Interestingly, the inhibiting ability of protein hydrolysates against α-glucosidase and ACE was more effective than pancreatic lipase, suggesting their usefulness as a functional ingredient, particularly in type II diabetes and hypertension management.
Collapse
Affiliation(s)
- Mehnaza Manzoor
- Division of Food Science and Technology, Sher-e-Kashmir University of Agriculture Science and Technology, Jammu 180009, India; Fermentation & Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India.
| | - Jagmohan Singh
- Division of Food Science and Technology, Sher-e-Kashmir University of Agriculture Science and Technology, Jammu 180009, India.
| | - Zuhaib F Bhat
- Division of Livestock Product Technology, Sher-e-Kashmir University of Agriculture Science and Technology, Jammu, India.
| | - Sundeep Jaglan
- Fermentation & Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India.
| |
Collapse
|
7
|
Muñoz-Tebar N, Viuda-Martos M, Lorenzo JM, Fernandez-Lopez J, Perez-Alvarez JA. Strategies for the Valorization of Date Fruit and Its Co-Products: A New Ingredient in the Development of Value-Added Foods. Foods 2023; 12:foods12071456. [PMID: 37048284 PMCID: PMC10094366 DOI: 10.3390/foods12071456] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 04/14/2023] Open
Abstract
Date palm trees (Phoenix dactylifera L.) are traditionally cultivated in South-West Asia and North Africa for date fruit consumption, although in recent years, its consumption has increased worldwide, and its cultivation has spread to other areas of America, sub-Saharan Africa, Oceania, and Southern Europe. During date fruit processing, several types of by-products are generated, such as low-quality dates or seeds, which along with date fruit, represent an excellent source of dietary fiber and bioactive compounds such as flavonoids, tannins, carotenoids, tocopherols, and tocotrienols. Therefore, this review provides information on the processing of dates fruit and the value-added by-products generated from them as well as their applications in different types of foods for the development of foods with an enhanced nutritional and functional profile. The incorporation of date fruit and their co-products in food formulations will help to cover the current consumer demands for foods made with ingredients of natural origin and with health properties beyond the merely nutritional.
Collapse
Affiliation(s)
- Nuria Muñoz-Tebar
- IPOA Research Group, Centro de Investigación e Innovación Agroalimentaria y Agroambiental, Universidad Miguel Hernández (CIAGRO-UMH), Carretera. Beniel Km 3.2, 033121 Orihuela, Alicante, Spain
| | - Manuel Viuda-Martos
- IPOA Research Group, Centro de Investigación e Innovación Agroalimentaria y Agroambiental, Universidad Miguel Hernández (CIAGRO-UMH), Carretera. Beniel Km 3.2, 033121 Orihuela, Alicante, Spain
| | - Jose Manuel Lorenzo
- Centro Tecnológico de la Carne de Galicia, Avd. Galicia 4, 32900 San Cibrao das Viñas, Ourense, Spain
| | - Juana Fernandez-Lopez
- IPOA Research Group, Centro de Investigación e Innovación Agroalimentaria y Agroambiental, Universidad Miguel Hernández (CIAGRO-UMH), Carretera. Beniel Km 3.2, 033121 Orihuela, Alicante, Spain
| | - Jose Angel Perez-Alvarez
- IPOA Research Group, Centro de Investigación e Innovación Agroalimentaria y Agroambiental, Universidad Miguel Hernández (CIAGRO-UMH), Carretera. Beniel Km 3.2, 033121 Orihuela, Alicante, Spain
| |
Collapse
|
8
|
Biparva P, Mirzapour-Kouhdasht A, Valizadeh S, Garcia-Vaquero M. Advanced Processing of Giant Kelp ( Macrocystis pyrifera) for Protein Extraction and Generation of Hydrolysates with Anti-Hypertensive and Antioxidant Activities In Vitro and the Thermal/Ionic Stability of These Compounds. Antioxidants (Basel) 2023; 12:antiox12030775. [PMID: 36979023 PMCID: PMC10045072 DOI: 10.3390/antiox12030775] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/13/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
In this study, giant kelp was explored under various conventional and ultrasound-assisted extraction (UAE) conditions for the extraction of protein, its hydrolysis, and ultrafiltration to generate multiple fractions. The amino acid composition of all the fractions and their biological activities in vitro, including angiotensin-converting enzyme I (ACE) inhibitory activity and antioxidant activities (2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging, reducing power (RP), and ferrous chelating (FC) activities) were tested by storing the compounds for 2 weeks at various temperatures (-20-60 °C) and pHs (2-11) to elucidate their thermal and ionic stability, respectively. The yield of protein extraction using the conventional method was lower (≈39%) compared to the use of UAE (150 W, 15 min), which achieved protein recoveries of approximately 60%. After enzymatic hydrolysis and ultrafiltration, low-molecular-weight (MW) hydrolysates had the highest levels of ACE inhibitory (80%), DPPH (84%), RP (0.71 mM trolox equivalents), and FC (81%) activities. Amino acids associated with peptides of high biological activities, such as Val, Ala, Asx, Gly, Lys, Met, Leu, and His, were at higher levels in the low MW fraction compared to any other sample. The biological activities in vitro of all the samples fluctuated under the multiple storage conditions studied, with the highest stability of all the samples appreciated at -20 °C and pH 7. This study shows for the first time the use of giant kelp as a promising source of bioactive peptides and indicates the optimum processing and storing conditions for the use of these compounds as nutraceuticals or functional foods that could help in the prevention of cardiovascular disorders and multiple chronic diseases associated with oxidative damage.
Collapse
Affiliation(s)
- Paniz Biparva
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz P.O. Box 71441-65186, Iran
| | - Armin Mirzapour-Kouhdasht
- School of Agriculture and Food Science, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland
| | - Shahriyar Valizadeh
- Department of Natural Resources and Environmental Engineering, School of Agriculture, Shiraz University, Shiraz P.O. Box 71441-65186, Iran
| | - Marco Garcia-Vaquero
- School of Agriculture and Food Science, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland
| |
Collapse
|
9
|
Ajayi FF, Mudgil P, Jobe A, Antony P, Vijayan R, Gan CY, Maqsood S. Novel Plant-Protein (Quinoa) Derived Bioactive Peptides with Potential Anti-Hypercholesterolemic Activities: Identification, Characterization and Molecular Docking of Bioactive Peptides. Foods 2023; 12:foods12061327. [PMID: 36981252 PMCID: PMC10048307 DOI: 10.3390/foods12061327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/18/2023] [Accepted: 02/20/2023] [Indexed: 03/30/2023] Open
Abstract
Hypercholesterolemia remains a serious global public health concern. Previously, synthetic anti-hypercholesterolemic drugs were used for ameliorating this condition; however, long-term usage presented several side-effects. In this regard, natural products as an adjunct therapy has emerged in recent times. This study aimed to produce novel bioactive peptides with anti-hypercholesterolemic activity (cholesterol esterase (CEase) and pancreatic lipase (PL)) from quinoa protein hydrolysates (QPHs) using three enzymatic hydrolysis methods (chymotrypsin, protease and bromelain) at 2-h hydrolysis intervals (2, 4, and 6 h). Chymotrypsin-generated hydrolysates showed higher CEase (IC50: 0.51 mg/mL at 2 h) and PL (IC50: 0.78 mg/mL at 6 h) inhibitory potential in comparison to other derived hydrolysates and intact quinoa proteins. Peptide profiling by LC-MS QTOF and in silico interaction with target enzymes showed that only four derived bioactive peptides from QPHs could bind in the active site of CEase, whereas twelve peptides could bind in the active site of PL. Peptides QHPHGLGALCAAPPST, HVQGHPALPGVPAHW, and ASNLDNPSPEGTVM were identified to be potential CEase inhibitors, and FSAGGLP, QHPHGLGALCAAPPST, KIVLDSDDPLFGGF, MFVPVPH, and HVQGHPALPGVPAHW were identified as potential PL inhibitors on the basis of the maximum number of reactive residues in these bioactive peptides. In conclusion, QPHs can be considered as an alternative therapy for the treatment of hypercholesterolemia.
Collapse
Affiliation(s)
- Feyisola Fisayo Ajayi
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
| | - Priti Mudgil
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
| | - Amie Jobe
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
| | - Priya Antony
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
| | - Ranjit Vijayan
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
- The Big Data Analytics Center, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
| | - Chee-Yuen Gan
- Analytical Biochemistry Research Centre (ABrC), Universiti Sains Malaysia, SAINS@USM Campus, Bayan Lepas 11900, Malaysia
| | - Sajid Maqsood
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
| |
Collapse
|
10
|
Mousavi M, Fadaei V, Akbari‐adergani B. Stimulation of ACE inhibitory and improving α-amylase and α-glucosidase and antioxidant activities of semi-prepared and dry soup by incorporating with date kernel powder. Food Sci Nutr 2023; 11:1342-1353. [PMID: 36911836 PMCID: PMC10003009 DOI: 10.1002/fsn3.3170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 10/29/2022] [Accepted: 11/23/2022] [Indexed: 12/15/2022] Open
Abstract
Date kernel as a functional food component has a special importance due to its rich nutritional profile, low price, and ease of access. For this, in this research, the sub-product was used for formulation of semi-prepared dry soup (SPDS); the effect of adding 0 (S1 = control), 2 (S2), and 4 (S3) %w/w date kernel powder (DKP) on physicochemical, nutritional, and organoleptic properties and beneficial effects of SPDS samples were evaluated. The results revealed that S2 and S3 samples were different from the control sample in some physicochemical properties so that viscosity increased 1.27 and 1.52 times and a* raised 5.6 and 8.5 times, respectively, while L* decreased 0.94 and 0.88 times and b* reduced 0.92 and 0.8 times, respectively. The nutritional properties of S2 and S3 samples compared with the control sample improved. Also, differences were observed in the beneficial effects of S2 and S3 compared with the control sample as total polyphenol content (TPC) increased 1.06 and 1.11 times, respectively (p < .05); antioxidant activities (AA) of S2 and S3 samples were 8.04 and 6.01 mg/ml and angiotensin-converting enzyme (ACE) inhibitory activities were measured to be 8.2 and 7.86 mg/ml, respectively; also, α-amylase and α-glucosidase inhibitory activities of S2 and S3 samples were observed 4.48% and 5.70%, and 4.59% and 6.36%, respectively. From the organoleptic aspect, S3 had the highest acceptability. Generally, it is concluded that with the addition of DKP (maximally 4%w/w) to SPDS formulation, a functional soup could be produced considering the rich nutritional profile of DKP.
Collapse
Affiliation(s)
- Maryam Mousavi
- Department of Food Science and Technology, Shahr‐e‐Qods BranchIslamic Azad UniversityTehranIran
| | - Vajiheh Fadaei
- Department of Food Science and Technology, Shahr‐e‐Qods BranchIslamic Azad UniversityTehranIran
| | - Behrouz Akbari‐adergani
- Food and Drug Laboratory Research Center, Food and Drug AdministrationMinistry of Health and Medical EducationTehranIran
| |
Collapse
|
11
|
Kim Y, Kim MJ, Oh WY, Lee J. Antioxidant effects and reaction volatiles from heated mixture of soy protein hydrolysates and coconut oil. Food Sci Biotechnol 2023; 32:309-317. [PMID: 36778091 PMCID: PMC9905523 DOI: 10.1007/s10068-022-01189-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/27/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022] Open
Abstract
Soy protein hydrolysates (SPHs) are prepared from soybean meal using commercially available protease enzymes and acid/alkali treatment. The antioxidant properties of SPHs were evaluated by measuring headspace oxygen consumption and conjugated diene formation in oil-in-water (O/W) emulsions. In addition, volatile profiles were analyzed for the heated mixture of SPHs and the coconut oil (SPHCO). Total amino acid content was the highest in double proteases. SPHs prepared from enzymes acted as better antioxidants than those prepared from acid/alkali treatments in O/W emulsions. SPHs prepared from double proteases generated the highest amounts of total volatiles and nitrogen-containing compounds in SPHCO. 2,3-Dihydro-3,5-dihydroxy-6-methyl-4H-pyran-4-one, 2-methyl-butanal, benzeneacetaldehyde, and 2,6-dimethylpyrazine were the major volatiles in SPHCO. Enzymatic SPHs act as natural antioxidants in the O/W emulsion matrix, and thermal reaction products from SPHCO may contribute to the production of a unique volatile flavor in plant protein-based foods. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-022-01189-7.
Collapse
Affiliation(s)
- YoonHa Kim
- Department of Food Science and Biotechnology, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do Republic of Korea
| | - Mi-Ja Kim
- Department of Food and Nutrition, Kangwon National University, Samcheok, Republic of Korea
| | - Won Young Oh
- Department of Food Science and Biotechnology, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do Republic of Korea
| | - JaeHwan Lee
- Department of Food Science and Biotechnology, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do Republic of Korea
| |
Collapse
|
12
|
Al-Khalili M, Al-Habsi N, Rahman MS. Applications of date pits in foods to enhance their functionality and quality: A review. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2023. [DOI: 10.3389/fsufs.2022.1101043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Graphical AbstractSummary of the abstract
Collapse
|
13
|
Mardani M, Badakné K, Farmani J, Aluko RE. Antioxidant peptides: Overview of production, properties, and applications in food systems. Compr Rev Food Sci Food Saf 2023; 22:46-106. [PMID: 36370116 DOI: 10.1111/1541-4337.13061] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 08/23/2022] [Accepted: 09/19/2022] [Indexed: 11/13/2022]
Abstract
In recent years, several studies have reported the beneficial effects of antioxidant peptides in delaying oxidation reactions. Thus, a growing number of food proteins have been investigated as suitable sources for obtaining these antioxidant peptides. In this study, some of the most critical developments in the discovery of peptidic antioxidants are discussed. Initially, the primary methods to release, purify, and identify these antioxidant peptides from various food-derived sources are reviewed. Then, computer-based screening methods of the available peptides are summarized, and methods to interpret their structure-activity relationship are illustrated. Finally, approaches to the large-scale production of these bioactive peptides are described. In addition, the applications of these antioxidants in food systems are discussed, and gaps, future challenges, and opportunities in this field are highlighted. In conclusion, various food items can be considered promising sources to obtain these novel antioxidant peptides, which present various opportunities for food applications in addition to health promotion. The lack of in-depth data on the link between the structure and activity of these antioxidants, which is critical for the prediction of possible bioactive amino acid sequences and their potency in food systems and in vivo conditions (rather than in vitro systems), requires further attention. Consequently, future collaborative research activities between the industry and academia are required to realize the commercialization objectives of these novel antioxidant peptides.
Collapse
Affiliation(s)
- Mohsen Mardani
- Department of Cereal and Industrial Plant Processing, Faculty of Food Science, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
| | - Katalin Badakné
- Department of Cereal and Industrial Plant Processing, Faculty of Food Science, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
| | - Jamshid Farmani
- Department of Food Science and Technology, Faculty of Agricultural Engineering, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
| | - Rotimi E Aluko
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
14
|
Chemical Characterization of Date Seeds ( Phoenix dactylifera L.) Cultivated in Algeria for its Application as Functional Ingredients. ACTA UNIVERSITATIS CIBINIENSIS. SERIES E: FOOD TECHNOLOGY 2022. [DOI: 10.2478/aucft-2022-0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Abstract
Seven date seeds cultivars, Deglet Nour, Degla Baïdha, Fakht, Ghars, Hamraya, Tafezouin and Takermost were provided from Algerian Sahara. Some of these Algerian date seeds were studied for the first time (Fakht, Hamraya and Takermost). The biochemical characterization of these date seeds were studied, including fatty acids and minerals profiles. The results showed that date seeds are a good source of carbohydrates and crude cellulose, with averages of 66.63 and 13.20%, respectively. They are also a good source of proteins, with the cultivar Deglet Nour seeds as the richest one (9.27 ± 0.03%). The main fatty acid for all date seeds oils is oleic acid except for Deglet Nour in which lauric acid is the main one. However, the studied date seed oils could be classified as oleic-lauric oil. Potassium was the highest mineral in all date seeds cultivars, with values ranging from 2700 to 2900 mg/Kg, followed by sodium and iron. These results indicate that date seeds have good nutritional value with different compositions among cultivars. It could be concluded that date seeds could be considered as a good opportunity for their technological and industrial valorization.
Collapse
|
15
|
Mirzapour-Kouhdasht A, Garcia-Vaquero M, Eun JB, Simal-Gandara J. Influence of Enzymatic Hydrolysis and Molecular Weight Fractionation on the Antioxidant and Lipase / α-Amylase Inhibitory Activities In Vitro of Watermelon Seed Protein Hydrolysates. Molecules 2022; 27:7897. [PMID: 36431994 PMCID: PMC9693037 DOI: 10.3390/molecules27227897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/02/2022] [Accepted: 11/12/2022] [Indexed: 11/17/2022] Open
Abstract
This study aims to evaluate the potential in vitro antioxidant and anti-obesity activities of watermelon seed protein hydrolysates (WSPH) obtained using different combinations of enzymes alcalase−proteinase K (ALC-PK) and alcalase−actinidin (ALC-ACT). There was a direct relationship between the degree of hydrolysis (DH) and the biological activities of the WSPH, with the highest DPPH (approximately 85%) and lipase inhibitory activities (≈59%) appreciated at DH of 36−37% and 33−35% when using ALC-PK and ALC-ACT, respectively. Following molecular weight fractionation, the ALC-PK WSPH < 3 kDa (F1) assayed at 1 mg.mL−1 had the highest DPPH-radical scavenging (89.22%), ferrous chelating (FC) (79.83%), reducing power (RP) (A 0.51), lipase inhibitory (71.36%), and α-amylase inhibitory (62.08%) activities. The amino acid analysis of ALC-PK WSPH and its fractions revealed a relationship between the biological activity of the extracts and their composition. High contents of hydrophobic amino acids, arginine, and aromatic amino acids were related to high antioxidant, lipase inhibitory, and α-amylase inhibitory activities in the extracts, respectively. Overall, this study revealed that underutilized protein sources such as WSPH, using the appropriate combination of enzymes, could result in the generation of new ingredients and compounds with powerful antioxidant and anti-obesity activities with promising applications as nutraceuticals or functional foods.
Collapse
Affiliation(s)
- Armin Mirzapour-Kouhdasht
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, D04 V1W8 Dublin, Ireland
| | - Marco Garcia-Vaquero
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, D04 V1W8 Dublin, Ireland
| | - Jong-Bang Eun
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, E32004 Ourense, Spain
| |
Collapse
|
16
|
Ahmad Mohd Zain MR, Abdul Kari Z, Dawood MAO, Nik Ahmad Ariff NS, Salmuna ZN, Ismail N, Ibrahim AH, Thevan Krishnan K, Che Mat NF, Edinur HA, Abdul Razab MKA, Mohammed A, Mohamed Salam SKN, Rao PV, Mohamad S, Hamat B, Zainal Abidin S, Seong Wei L, Ahmed Shokri A. Bioactivity and Pharmacological Potential of Date Palm (Phoenix dactylifera L.) Against Pandemic COVID-19: a Comprehensive Review. Appl Biochem Biotechnol 2022; 194:4587-4624. [PMID: 35579740 PMCID: PMC9110634 DOI: 10.1007/s12010-022-03952-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 05/02/2022] [Indexed: 02/06/2023]
Abstract
A novel coronavirus disease (COVID-19) or severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2), transmitted from person to person, has quickly emerged as the pandemic responsible for the current global health crisis. This infection has been declared a global pandemic, resulting in a concerning number of deaths as well as complications post-infection, primarily among vulnerable groups particularly older people and those with multiple comorbidities. In this article, we review the most recent research on the role of date palm (Phoenix dactylifera L.) fruits (DPFs) to prevent or treat COVID-19 infection. The mechanisms underlying this preventive or therapeutic effect are also discussed in terms of bioactivity potentials in date palm, e.g., antimicrobial, antioxidant, anticancer, anti-diabetic, anti-inflammatory, neuroprotective, and hemolytic potential, as well as prospect against COVID-19 disease and the potential product development. Therefore, it can be concluded that regular consumption of DPFs may be associated with a lower risk of some chronic diseases. Indeed, DPFs have been widely used in folk medicine since ancient times to treat a variety of health conditions, demonstrating the importance of DPFs as a nutraceutical and source of functional nourishment. This comprehensive review aims to summarize the majority of the research on DPFs in terms of nutrient content and biologically active components such as phenolic compounds, with an emphasis on their roles in improving overall health as well as the potential product development to ensure consumers' satisfaction in a current pandemic situation. In conclusion, DPFs can be given to COVID-19 patients as a safe and effective add-on medication or supplement in addition to routine treatments.
Collapse
Affiliation(s)
| | - Zulhisyam Abdul Kari
- Faculty of Agro Based Industry, Universiti Malaysia Kelantan, 17600 Jeli, Kelantan Malaysia
| | - Mahmoud A. O. Dawood
- Department of Animal Production, Faculty of Agriculture, Kafrelsheikh University, Kafrelsheikh, 33516 Egypt
- The Center for Applied Research On the Environment and Sustainability, The American University in Cairo, Cairo, 11835 Egypt
| | - Nik Shahman Nik Ahmad Ariff
- Razak Faculty of Technology and Informatics, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 50410 Kuala Lumpur, Malaysia
| | - Zeti Norfidiyati Salmuna
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan Malaysia
| | - Norzila Ismail
- Department of Pharmacology, School of Medical Sciences, Universiti Sains Malaysia, George Town, Malaysia
| | - Al Hafiz Ibrahim
- Unit Perubatan Rehabilitasi, Pusat Pengajian Sains Perubatan, Universiti Sains Malaysia Kampus Kesihatan Kubang Kerian, Kota Bharu, Malaysia
| | - Kumara Thevan Krishnan
- Faculty of Agro Based Industry, Universiti Malaysia Kelantan, 17600 Jeli, Kelantan Malaysia
| | - Nor Fazila Che Mat
- School of Health Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Malaysia
| | - Hisham Atan Edinur
- School of Health Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Malaysia
| | | | - Aurifullah Mohammed
- Faculty of Agro Based Industry, Universiti Malaysia Kelantan, 17600 Jeli, Kelantan Malaysia
| | | | - Pasupuleti Visweswara Rao
- Centre for International Collaboration and Research, Reva University, Rukmini Knowledge Park, Kattigenahili, Yelahanka, Bangalore, 560064 Karnataka India
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Abdurrab University, Jl Riau Ujung No. 73, Pekanbaru, 28292 Riau Indonesia
- Department of Biomedical Science and Therapeutics, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Sabah Malaysia
| | - Sakinah Mohamad
- Department of Otorhinolaryngology-Head and Neck Surgery, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kota Bharu, Kelantan Malaysia
| | - Basyarah Hamat
- Razak Faculty of Technology and Informatics, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 50410 Kuala Lumpur, Malaysia
| | - Shahriman Zainal Abidin
- Design Studies, College of Creative Arts, Kompleks Ilham, Universiti Teknologi MARA, 40450 Shah Alam, Selangor Malaysia
| | - Lee Seong Wei
- Faculty of Agro Based Industry, Universiti Malaysia Kelantan, 17600 Jeli, Kelantan Malaysia
| | - Amran Ahmed Shokri
- Department of Orthopaedics, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan Malaysia
| |
Collapse
|
17
|
Phoenix dactylifera L. seed protein hydrolysates as a potential source of peptides with antidiabetic and anti-hypercholesterolemic properties: An in vitro study. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
18
|
Tuna Ağirbaş HE, Yavuz-Düzgün M, Özçelik B. Valorization of fruit seed flours: rheological characteristics of composite dough and cake quality. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01423-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
19
|
Exploration of bioactive peptides from various origin as promising nutraceutical treasures: In vitro, in silico and in vivo studies. Food Chem 2022; 373:131395. [PMID: 34710682 DOI: 10.1016/j.foodchem.2021.131395] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 09/24/2021] [Accepted: 10/09/2021] [Indexed: 01/08/2023]
Abstract
The current health scenarios describe growing public health problems, such as diabetes, hypertension and cancer. Therefore, researchers focused on studying these health issues are interested in exploring bioactive compounds from different food sources. Among them, bioactive peptides have garnered huge scientific interest because of their multifunctional biological activities such as antioxidative, antimicrobial, antihypertensive, anticancer, antidiabetic, immunomodulatory effect. They can be used as food and pharmaceutical ingredients with a great potential against disease targets. This review covers methods of production in general for several peptides obtained from various food sources including seed, milk and meat, and described their biological activities. Particular focus was given to bioinformatic tools to advance quantification, detection and characterize each peptide sequence obtained from different protein sources with predicted biological activity. Besides, various in vivo studies have been discussed to provide a better understanding of their physiological functions, which altogether could provide valuable information for their commercialization in future foods.
Collapse
|
20
|
Najjar Z, Kizhakkayil J, Shakoor H, Platat C, Stathopoulos C, Ranasinghe M. Antioxidant Potential of Cookies Formulated with Date Seed Powder. Foods 2022; 11:foods11030448. [PMID: 35159598 PMCID: PMC8833968 DOI: 10.3390/foods11030448] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 02/01/2023] Open
Abstract
Utilising major waste products from the food industry can have both a great environmental impact and be a means to improve consumer health. Date seed is a food industry byproduct that has been proven to have high nutritional value. The aim of this work was to measure the total polyphenolic content (TPC), flavonoids, and antioxidant activity of the seeds of six date fruit varieties, Fard, Khalas, Khinaizi, Sukkary, Shaham, and Zahidi, and to use those seeds to enhance the antioxidant value of cookies by partially substituting flour with ground date seed. Date seed powder (DSP) was extracted at three levels of sample to solvent ratio (5:1, 10:1 and 15:1 mg/mL). Cookies were prepared using three substitution levels of wheat flour (2.5, 5.0, and 7.5%, w/w) by DSP and two types of flour (white and whole wheat), and were baked at two different temperatures, 180 and 200 °C. The composite cookies were found to contain a significant amount of TPC and flavonoids, and showed increased antioxidant activity compared with the control samples.
Collapse
Affiliation(s)
- Zein Najjar
- Department of Food Science, College of Food and Agriculture, United Arab Emirates University, Al-Ain P.O. Box 15551, United Arab Emirates; (Z.N.); (M.R.)
| | - Jaleel Kizhakkayil
- Department of Nutrition and Health, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain P.O. Box 15551, United Arab Emirates; (J.K.); (H.S.); (C.P.)
| | - Hira Shakoor
- Department of Nutrition and Health, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain P.O. Box 15551, United Arab Emirates; (J.K.); (H.S.); (C.P.)
| | - Carine Platat
- Department of Nutrition and Health, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain P.O. Box 15551, United Arab Emirates; (J.K.); (H.S.); (C.P.)
| | - Constantinos Stathopoulos
- Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 165 00 Prague, Czech Republic
- Correspondence:
| | - Meththa Ranasinghe
- Department of Food Science, College of Food and Agriculture, United Arab Emirates University, Al-Ain P.O. Box 15551, United Arab Emirates; (Z.N.); (M.R.)
| |
Collapse
|
21
|
Physical Chemical and Textural Characteristics and Sensory Evaluation of Cookies Formulated with Date Seed Powder. Foods 2022; 11:foods11030305. [PMID: 35159461 PMCID: PMC8834499 DOI: 10.3390/foods11030305] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 02/05/2023] Open
Abstract
Date seeds are a major waste product that can be utilised as a valuable and nutritional material in the food industry. The aim of the present study was to improve cookies quality in terms of functional and textural value and assess the effect of date seed powder flour substitution on the physical and chemical characteristics of cookies. Three substitution levels (2.5, 5 and 7.5%) of flour by fine date seed powder from six varieties locally named Khalas, Khinaizi, Sukkary, Shaham, Zahidi and Fardh were prepared. Two types of flour were used (white flour and whole wheat) at two different baking temperatures: 180 and 200 °C. The incorporation of date seed had no or slight effect on moisture, ash, fat and protein content of the baked cookies. On the other hand, incorporation significantly affected the lightness and hardness of cookies; the higher level of addition, the darker and crispier the resulting cookies. The sensory analysis indicated that the produced cookies were acceptable in terms of smell, taste, texture and overall acceptability. The results indicate that the most acceptable cookies across all evaluated parameters were produced using whole wheat flour with 7.5% levels of date seed powder using Khalas and Zahidi varieties. Overall, the analysis indicated that cookies with acceptable physical characteristics and an improved nutritional profile could be produced with partial replacement of the white/whole wheat flour by date seed powder.
Collapse
|
22
|
Date Components as Promising Plant-Based Materials to Be Incorporated into Baked Goods—A Review. SUSTAINABILITY 2022. [DOI: 10.3390/su14020605] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Date (Phoenix dactylifera L. Arecaceae) fruits and their by-products are rich in nutrients. The health benefits of dates and their incorporation into value-added products have been widely studied. The date-processing industry faces a significant sustainability challenge as more than 10% (w/w) of the production is discarded as waste or by-products. Currently, food scientists are focusing on bakery product fortification with functional food ingredients due to the high demand for nutritious food with more convenience. Utilizing date components in value-added bakery products is a trending research area with increasing attention. Studies where the researchers tried to improve the quality of bakery goods by incorporating date components have shown positive results, with several drawbacks that need attention and further research. The objective of this review is to present a comprehensive overview of the utilization of date components in bakery products and to identify gaps in the current knowledge. This review will help focus further research in the area of valorization of date by-products and thereby contribute to the generation of novel functional bakery products that meet consumer expectations and industry standards, thus generating income for the relevant industry and considerable alleviation of the environmental burden this waste and by-products contribute to. Only a few studies have been focused on utilizing date by-products and their extracts for baked goods, while a research area still remaining under-explored is the effect of incorporation of date components on the shelf life of bakery products.
Collapse
|
23
|
Ayati S, Eun J, Atoub N, Mirzapour‐Kouhdasht A. Functional yogurt fortified with fish collagen‐derived bioactive peptides: Antioxidant capacity, ACE and DPP‐IV inhibitory. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.16208] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Samaneh Ayati
- Department of Food Science and Technology Faculty of Agriculture Jahrom University Jahrom Iran
| | - Jong‐Bang Eun
- Department of Integrative Food, Bioscience and Biotechnology Chonnam National University Gwangju South Korea
| | - Najme Atoub
- Atoub Sanat Nanotechnologists Company Agricultural Growth Center, Science and Technology Park Shiraz Iran
| | - Armin Mirzapour‐Kouhdasht
- Atoub Sanat Nanotechnologists Company Agricultural Growth Center, Science and Technology Park Shiraz Iran
- School of Agriculture and Food Science University College Dublin Dublin Ireland
| |
Collapse
|
24
|
Effect of enzymatically hydrolysed brewers’ spent grain supplementation on the rheological, textural and sensory properties of muffins. FUTURE FOODS 2021. [DOI: 10.1016/j.fufo.2021.100085] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
25
|
Ali Redha A, Valizadenia H, Siddiqui SA, Maqsood S. A state-of-art review on camel milk proteins as an emerging source of bioactive peptides with diverse nutraceutical properties. Food Chem 2021; 373:131444. [PMID: 34717085 DOI: 10.1016/j.foodchem.2021.131444] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 09/24/2021] [Accepted: 10/18/2021] [Indexed: 02/07/2023]
Abstract
The generation of camel milk derived bioactive peptides (CM-BAPs) have started to grab keen interest of many researchers during the past decade. CM-BAPs have shown more significant bioactive properties in comparison to camel milk intact proteins. CM-BAPs can be obtained using enzyme hydrolysis to form hydrolysates, or by the fermentation process. In this systematic review, 46 research articles exploring the health-related bioactive properties of CM-BAPs through in-vitro and in-vivo studies have been included. CM-BAPs have been reported for their antioxidant, anti-diabetic, anti-obesity, antihypertensive, antibacterial, antibiofilm, anticancer, anti-inflammatory, anti-haemolytic, and anti-hyperpigmentation activities. The effects of factors such as molecular weight of peptides, type of enzyme, enzyme to substrate ratio, hydrolysis temperature and duration have been analysed. The in-vitro studies have provided enough evidence on certain aspects of the pharmacological actives of camel milk bioactive peptides. Nevertheless, the in-vivo studies are very limited, and no clinical studies on CM-BAPs have been reported.
Collapse
Affiliation(s)
- Ali Ali Redha
- Chemistry Department, School of Science, Loughborough University, Loughborough LE11 3TU, United Kingdom.
| | - Hamidreza Valizadenia
- School of Medicine, Shahroud University of Medical Sciences, Shahroud, Semnan Province, Iran
| | - Shahida Anusha Siddiqui
- Technical University of Munich Campus Straubing for Biotechnology and Sustainability, Essigberg 3, 94315 Straubing, Germany; DIL e.V. - German Institute of Food Technologies, D-Quakenbrück, Germany
| | - Sajid Maqsood
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain 15551, United Arab Emirates; Zayed Centre of Health Science, United Arab Emirates University, Al-Ain 15551, United Arab Emirates.
| |
Collapse
|
26
|
Zulaikha Y, Yao SH, Chang YW. Physicochemical and Functional Properties of Snack Bars Enriched with Tilapia ( Oreochromis niloticus) By-Product Powders. Foods 2021; 10:foods10081908. [PMID: 34441684 PMCID: PMC8392232 DOI: 10.3390/foods10081908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/13/2021] [Accepted: 08/14/2021] [Indexed: 02/07/2023] Open
Abstract
This research aimed to evaluate tilapia by-product powders as a novel food ingredient and the suitable cooking method for snack bar (SBs) production. Tilapia by-product powders were made by two processing methods; one powder was oven-dried as tilapia dry powder (TDP) and another was bromelain-hydrolyzed and then freeze-dried as tilapia hydrolysate powder (THP). SBs were prepared by incorporating tilapia dry powders (TDP or THP; 10%). SBs were further separated in two different cooking methods, namely unbaked and baked ones. The baked SBs had yellow and darker coloration (L* value ranged from 66.38 to 76.12) and more reddish color (a* value range from −1.26 to 1.06). Addition of tilapia by-product powders significantly (p < 0.05) increased the protein content of the original SB from 21.58 to 32.08% (SB + THP). Regarding DPPH scavenging activity, the control group showed the lowest activity, followed by SB + TDP and SB + THP with the highest activity (p < 0.05), with DPPH scavenging activity ranged from 12.40 to 26.04%. The baking process significantly (p < 0.05) increased the angiotensin converting enzyme (ACE) inhibitory activity of the SBs. In particular, the SB + THP group showed the highest activity (17.78%). All samples exhibited antibacterial activity against Staphylococcus aureus, and the SB + THP group showed the highest activity (15.08 ± 1.95 mm growth inhibition). Based on principal component analysis, four principal components (nutraceutical pigmentation, physical characteristics, nutrition value, and greater dehydration) were contributed towards the physicochemical and functional properties of the SBs. The overall results suggested that tilapia by-product powders can be potential ingredients for adding functional values to food products.
Collapse
Affiliation(s)
- Yasinta Zulaikha
- Department of Food Science, National Taiwan Ocean University, Keelung City 20224, Taiwan; (Y.Z.); (S.-H.Y.)
| | - Shuai-Huei Yao
- Department of Food Science, National Taiwan Ocean University, Keelung City 20224, Taiwan; (Y.Z.); (S.-H.Y.)
| | - Yu-Wei Chang
- Department of Food Science, National Taiwan Ocean University, Keelung City 20224, Taiwan; (Y.Z.); (S.-H.Y.)
- Institute of Food Safety and Risk Management, National Taiwan Ocean University, Keelung City 20224, Taiwan
- Correspondence: ; Tel.: +886-2-2462-2192 (ext. 5152)
| |
Collapse
|
27
|
|
28
|
Abstract
Many recent studies in the field of cosmetics have focused on organically sourced substances. Products made from organic materials are safe, high quality, cruelty-free, and more effective than those made from synthetic materials. Many organic compounds are known to be physiologically active in humans and have an extended storage capacity and long-lasting environmental effects. Agro-industrial waste has recently increased substantially, and the disposal of date palm waste, often performed in primitive ways such as burning, is harmful to the environment. Fruit processing industries generate over 10% of the total date seed waste daily, which could be converted into useful food products. Date fruit and seed are rich in sugar, vitamins, fiber, minerals, and phenolic compounds with antioxidant and anti-inflammatory properties that significantly promote human and animal health. This waste is rich in bioactive compounds and essential oils used in many kinds of food, medicine, and cosmetics. Most active cosmetic ingredients come from natural sources such as fruit, fish, and dairy, and recent research shows that date extract and seed oil help to reduce melanin, eczema, acne, and dry patches, while increasing skin moisture and elasticity. This review details the bioactive compounds and nutraceutical properties of date fruit and seed, and their use as cosmetic ingredients.
Collapse
|
29
|
Echegaray N, Gullón B, Pateiro M, Amarowicz R, Misihairabgwi JM, Lorenzo JM. Date Fruit and Its By-products as Promising Source of Bioactive Components: A Review. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1934003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Noemí Echegaray
- Centro Tecnológico De La Carne De Galicia, Parque Tecnológico De Galicia, Ourense, Spain
| | - Beatriz Gullón
- Department of Chemical Engineering, Faculty of Science, University of Vigo (Campus Ourense), Ourense, Spain
| | - Mirian Pateiro
- Centro Tecnológico De La Carne De Galicia, Parque Tecnológico De Galicia, Ourense, Spain
| | - Ryszard Amarowicz
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Jane M. Misihairabgwi
- Department of Biochemistry and Microbiology, School of Medicine, Faculty of Health Sciences, University of Namibia, Windhoek, Namibia
| | - José M. Lorenzo
- Centro Tecnológico De La Carne De Galicia, Parque Tecnológico De Galicia, Ourense, Spain
- Área De Tecnología De Los Alimentos, Facultad De Ciencias De Ourense, Universidad De Vigo, Ourense, Spain
| |
Collapse
|
30
|
Murali C, Mudgil P, Gan CY, Tarazi H, El-Awady R, Abdalla Y, Amin A, Maqsood S. Camel whey protein hydrolysates induced G2/M cellcycle arrest in human colorectal carcinoma. Sci Rep 2021; 11:7062. [PMID: 33782460 PMCID: PMC8007640 DOI: 10.1038/s41598-021-86391-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/01/2021] [Indexed: 12/25/2022] Open
Abstract
Camel milk has been gaining immmense importance due to high nutritious value and medicinal properties. Peptides from milk proteins is gaining popularity in various therapeutics including human cancer. The study was aimed to investigate the anti-cancerous and anti-inflammatory properties of camel whey protein hydrolysates (CWPHs). CWPHs were generated at three temperatures (30 ℃, 37 ℃, and 45 ℃), two hydrolysis timepoints (120 and 360 min) and with three different enzyme concentrations (0.5, 1 and 2 %). CWPHs demonstrated an increase in anti-inflammatory effect between 732.50 (P-6.1) and 3779.16 (P-2.1) µg Dicolfenac Sodium Equivalent (DSE)/mg protein. CWPHs (P-4.3 & 5.2) inhibited growth of human colon carcinoma cells (HCT116) with an IC50 value of 231 and 221 μg/ml, respectively. P-4.3 induced G2/M cell cycle arrest and modulated the expression of Cdk1, p-Cdk1, Cyclin B1, p-histone H3, p21 and p53. Docking of two peptides (AHLEQVLLR and ALPNIDPPTVER) from CWPHs (P-4.3) identified Polo like kinase 1 as a potential target, which strongly supports our in vitro data and provides an encouraging insight into developing a novel peptide-based anticancer formulation. These results suggest that the active component, CWPHs (P-4.3), can be further studied and modeled to form a small molecule anti-cancerous therapy.
Collapse
Affiliation(s)
- Chandraprabha Murali
- Biology Department, College of Science, United Arab Emirates University, P.O. Box 15551, Al Ain, UAE
| | - Priti Mudgil
- Food, Nutrition and Health Department, College of Food and Agriculture, United Arab Emirates University, P.O. Box 15551, Al Ain, UAE
| | - Chee-Yuen Gan
- Analytical Biochemistry Research Centre (ABrC), University Innovation Incubator Building, sains@usm campus, Universiti Sains Malaysia, 11900, Bayan Lepas, Penang, Malaysia
| | - Hamadeh Tarazi
- College of Pharmacy, University of Sharjah, Sharjah, UAE
| | | | - Youssef Abdalla
- Department of Kinesiology, Michigan State University, East Lansing, MI, 48824, USA
| | - Amr Amin
- Biology Department, College of Science, United Arab Emirates University, P.O. Box 15551, Al Ain, UAE.
| | - Sajid Maqsood
- Food, Nutrition and Health Department, College of Food and Agriculture, United Arab Emirates University, P.O. Box 15551, Al Ain, UAE.
| |
Collapse
|
31
|
Mudgil P, Kamal H, Priya Kilari B, Mohd Salim MAS, Gan CY, Maqsood S. Simulated gastrointestinal digestion of camel and bovine casein hydrolysates: Identification and characterization of novel anti-diabetic bioactive peptides. Food Chem 2021; 353:129374. [PMID: 33740505 DOI: 10.1016/j.foodchem.2021.129374] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 02/10/2021] [Accepted: 02/12/2021] [Indexed: 01/07/2023]
Abstract
Camel milk proteins are an important substrate for bioactive peptides generation. This study investigates in-vitro antidiabetic effect (via inhibition of α-amylase (AA), α-glucosidase (AG) and dipeptidyl peptidase IV (DPP-IV)) of bovine (BC) and camel casein (CC) hydrolysates. Further, effect of simulated gastrointestinal digestion (SGID) on inhibitory potential of generated hydrolysates was also explored. Both BC and CC hydrolysates displayed potent inhibitory properties against AA (IC50 value- 0.58 & 0.59 mg/mL), AG (IC50 value- 1.04 & 0.59 mg/mL) and DPP-IV (IC50 value- 0.62 & 0.66 mg/mL), respectively. Among different peptides identified in BC and CC hydrolysates, it was observed that FLWPEYGAL was predicted to be most potent inhibitory peptide against AA. While LPTGWLM, MFE and GPAHCLL as most active inhibitor of AG and HLPGRG, QNVLPLH and PLMLP were predicted to be active against DPP-IV. Overall, BC and CC hydrolysates can be proposed to be used in different food formulations as functional antidiabetic agents.
Collapse
Affiliation(s)
- Priti Mudgil
- Food, Nutrition and Health Department, College of Food and Agriculture, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
| | - Hina Kamal
- Food, Nutrition and Health Department, College of Food and Agriculture, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
| | - Bhanu Priya Kilari
- Food, Nutrition and Health Department, College of Food and Agriculture, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
| | | | - Chee-Yuen Gan
- Analytical Biochemistry Research Centre (ABrC), Universiti Sains Malaysia, 11800 USM Penang, Malaysia.
| | - Sajid Maqsood
- Food, Nutrition and Health Department, College of Food and Agriculture, United Arab Emirates University, Al-Ain 15551, United Arab Emirates.
| |
Collapse
|
32
|
Effect of maize germ protein hydrolysate addition on digestion, in vitro antioxidant activity and quality characteristics of bread. J Cereal Sci 2021. [DOI: 10.1016/j.jcs.2020.103148] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
33
|
Mirzapour-Kouhdasht A, Moosavi-Nasab M, Krishnaswamy K, Khalesi M. Optimization of gelatin production from Barred mackerel by-products: Characterization and hydrolysis using native and commercial proteases. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105970] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
34
|
Mirzapour-Kouhdasht A, Moosavi-Nasab M, Kim YM, Eun JB. Antioxidant mechanism, antibacterial activity, and functional characterization of peptide fractions obtained from barred mackerel gelatin with a focus on application in carbonated beverages. Food Chem 2020; 342:128339. [PMID: 33069523 DOI: 10.1016/j.foodchem.2020.128339] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/16/2020] [Accepted: 10/06/2020] [Indexed: 12/17/2022]
Abstract
The present study aimed to use fish by-products to generate gelatin peptides with potential applications in carbonated beverages. After ultrafiltration, the F < 3 kDa (fraction < 3 kDa) showed the highest peptide concentration (227.22 mg/g) as well as antibacterial (MIC of ≤ 0.5 mg/mL) and antioxidant activities, including hydroxyl and superoxide radical scavenging, ferrous chelation, and ferric reduction (with IC50 values of 0.88, 1.04, 0.50 mg/mL, and 0.58, respectively). 2,2-diphenyl-1-picrylhydrazyl scavenging was the highest in the 3 < F < 10 kDa (IC50 of 0.64 mg/mL). In vitro gastrointestinal digestion significantly decreased all biological activities. Solubility, water holding capacity, and emulsifying activity of the F < 3 kDa were the highest while foaming properties and overfoaming were reversibly related to the molecular weight. All abovementioned properties, in addition to in vitro cytotoxicity analysis in different cell lines and better flavor characteristics, indicated that the F < 3 kDa could be safely and properly used as an ingredient for the fortification of carbonated beverages.
Collapse
Affiliation(s)
- Armin Mirzapour-Kouhdasht
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz, Iran; Seafood Processing Research Group, School of Agriculture, Shiraz University, Shiraz, Iran; Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, South Korea
| | - Marzieh Moosavi-Nasab
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz, Iran; Seafood Processing Research Group, School of Agriculture, Shiraz University, Shiraz, Iran.
| | - Young-Min Kim
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, South Korea
| | - Jong-Bang Eun
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, South Korea.
| |
Collapse
|
35
|
Reuse of spent espresso coffee as sustainable source of fibre and antioxidants. A map on functional, microstructure and sensory effects of novel enriched muffins. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2019.108877] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
36
|
Maqsood S, Adiamo O, Ahmad M, Mudgil P. Bioactive compounds from date fruit and seed as potential nutraceutical and functional food ingredients. Food Chem 2019; 308:125522. [PMID: 31669945 DOI: 10.1016/j.foodchem.2019.125522] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 09/10/2019] [Accepted: 09/11/2019] [Indexed: 01/18/2023]
Abstract
Date palm is an important fruit bearing tree grown widely in the arid and semi-arid regions of the world. The date fruit and its by-products, such as seeds, have both nutritional and medicinal value. However, date fruit and seeds have not been fully considered as potential functional food ingredients to develop foods with promising health benefits. Based on the available information in the literature, fruit and seed of date palm are rich in phytochemicals, such as phenolics, anthocyanin, carotenoids, tocopherols, tocotrienols, phytosterols and dietary fiber. In addition, they were reported to possess several beneficial health properties explored under in-vitro and in-vivo conditions. Further research in this area would provide valuable information for the potential utilization of date fruit and seed as functional food ingredients. This review presents a comprehensive information about the bioactive compounds and nutraceutical properties of different varieties of date fruit and seed, as well as the potential for using them as functional food ingredients.
Collapse
Affiliation(s)
- Sajid Maqsood
- Department of Food, Nutrition and Health, College of Food and Agriculture, United Arab Emirates University, Al Ain 15551, United Arab Emirates; Emirates Center for Energy and Environment Research, United Arab Emirates University, Al Ain 15551, United Arab Emirates.
| | - Oladipupo Adiamo
- Department of Food, Nutrition and Health, College of Food and Agriculture, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| | - Mudasir Ahmad
- Department of Food, Nutrition and Health, College of Food and Agriculture, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| | - Priti Mudgil
- Department of Food, Nutrition and Health, College of Food and Agriculture, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| |
Collapse
|
37
|
Khemakhem B, El Abed H, Chakroun M, Fendri I, Smaoui S. Functional effects of ice plant amylases on cake and bun quality. FOOD BIOSCI 2019. [DOI: 10.1016/j.fbio.2019.04.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
38
|
Červenka L, Fruhbauerová M, Velichová H. Functional properties of muffin as affected by substituing wheat flour with carob powder. POTRAVINARSTVO 2019. [DOI: 10.5219/1033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Carob (Cerationa soliqua L.) pod is the good source of dietary fiber, minerals and polyphenolic substances. The aim of this study was to prepare muffin where wheat flour was substituted with carob powder, and determine some physicochemical properties. Carob powder was prepared by milling dry carob pods to particles smaller than 600 μm. Then wheat flour in muffin dough was replaced by carob powder in 5, 10, 15 and 20% (w/w) and subsequently baked at 180 °C for 20 min. It was found that the height of the muffin fortified with carob powder decreased in comparison with that in control muffin sample. Although the height of muffins decreased with the increase in level of carob powder, the differences were not statistically significant. Weight loss was similar for all the muffin samples in this study. Moisture content of muffins with carob powder was significantly higher than that in control. Addition of carob powder had also effect on water activity of muffin. While 0.905 aw was observed in control sample, significantly higher aw values were determinated in fortified muffins (0.912 – 0.923 aw). The antioxidant characteristics were determinated using spectrophotometric assays for total phenolics (TPC), total flavonoids (TFC), radical scavenging activities (DPPH, ABTS) and hydrogen peroxide scavenging (HPS). TPC values gradually increased with the increase in level of carob powder from 348.1 to 829.1 μg gallic acid.g-1 dry matter but TFC values significantly increased in muffin with 15 and 20% (w/w) of carob powder. All the antioxidant assays showed strong and positive association with the increase in level of carob powder. Addition of carob powder resulted in the increase of browning index and FAST index as a metrics of the formation of Maillard products.
Collapse
|
39
|
Ambigaipalan P, Shahidi F. Bioactive peptides from shrimp shell processing discards: Antioxidant and biological activities. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.04.013] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
40
|
Ambigaipalan P, de Camargo AC, Shahidi F. Phenolic Compounds of Pomegranate Byproducts (Outer Skin, Mesocarp, Divider Membrane) and Their Antioxidant Activities. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:6584-604. [PMID: 27509218 DOI: 10.1021/acs.jafc.6b02950] [Citation(s) in RCA: 161] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Pomegranate peel was separated into outer leathery skin (PS), mesocarp (PM), and divider membrane (PD), and its phenolic compounds were extracted as free (F), esterified (E), and insoluble-bound (B) forms for the first time. The total phenolic content followed the order PD > PM > PS. ABTS(•+), DPPH, and hydroxyl radical scavenging activities and metal chelation were evaluated. In addition, pomegranate peel extracts showed inhibitory effects against α-glucosidase activity, lipase activity, and cupric ion-induced LDL-cholesterol oxidation as well as peroxyl and hydroxyl radical-induced DNA scission. Seventy-nine phenolic compounds were identified using HPLC-DAD-ESI-MS(n) mainly in the form of insoluble-bound. Thirty compounds were identified for the first time. Gallic acid was the major phenolic compound in pomegranate peel, whereas kaempferol 3-O-glucoside was the major flavonoid. Moreover, ellagic acid and monogalloyl-hexoside were the major hydrolyzable tannins, whereas the dominant proanthocyanidin was procyanidin dimers. Proanthocyanidins were detected for the first time.
Collapse
Affiliation(s)
- Priyatharini Ambigaipalan
- Department of Biochemistry, Memorial University of Newfoundland , St. John's, Newfoundland, Canada A1B 3X9
| | - Adriano Costa de Camargo
- Department of Biochemistry, Memorial University of Newfoundland , St. John's, Newfoundland, Canada A1B 3X9
- Department of Agri-Food Industry, Food & Nutrition, "Luiz de Queiroz" College of Agriculture, University of São Paulo , Av. Pádua Dias 11, P.O. Box 9, CEP 13418-900 Piracicaba, São Paulo, Brazil
| | - Fereidoon Shahidi
- Department of Biochemistry, Memorial University of Newfoundland , St. John's, Newfoundland, Canada A1B 3X9
| |
Collapse
|
41
|
Abdel-Moemin AR. Analysis of phenolic acids and anthocyanins of pasta-like product enriched with date kernels (Phoenix dactylifera L.) and purple carrots (Daucus carota L. sp. sativus var. atrorubens). JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2016. [DOI: 10.1007/s11694-016-9329-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|