1
|
Li B, Jin Z, Yang F, Li H, Liu J, Jiang Z. Proteomic investigation reveals the role of bacterial laccase from Bacillus pumilus in oxidative stress defense. J Proteomics 2024; 292:105047. [PMID: 37981008 DOI: 10.1016/j.jprot.2023.105047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/28/2023] [Accepted: 11/02/2023] [Indexed: 11/21/2023]
Abstract
The wide distribution of laccases in nature makes them involved in different biological processes. However, little information is known about how laccase participates in the defense machinery of bacteria against oxidative stress. The present study aimed to elucidate the oxidative stress response mechanism of Bacillus pumilus ZB1 and the functional role of bacterial laccase in stress defense. The oxidative stress caused by methyl methanesulfonate (MMS) significantly induced laccase activity and its transcript level. The morphological analysis revealed that the defense of B. pumilus ZB1 against oxidative stress was activated. Based on the proteomic study, 114 differentially expressed proteins (DEPs) were up-regulated and 79 DEPs were down-regulated. In COG analysis, 66.40% DEPs were classified into the category "Metabolism". We confirmed that laccase was up-regulated in response to MMS stress and its functional annotation was related to "Secondary metabolites biosynthesis, transport and catabolism". Based on protein-protein interaction prediction, two up-regulated DEPs (YcnJ and GabP) showed interaction with laccase and contributed to the formation of laccase stability and adaptability. The overexpressed laccase might improve the antioxidative property of B. pumilus ZB1. These findings provide an insight and the guidelines for better exploitation of bioremediation using bacterial laccase. SIGNIFICANCE: Bacillus pumilus is a gram-positive bacterium that has the potential for many applications, such as bioremediation. The expression of bacterial laccase is significantly influenced by oxidative stress, while the underlying mechanism of laccase overexpression in bacteria has not been fully studied. Elucidation of the biological process may benefit the bioremediation using bacteria in the future. In this study, the differentially expressed proteins were analyzed using a TMT-labeling proteomic approach when B. pumilus was treated with methyl methanesulfonate (MMS). Reactive oxygen species induced by MMS activated the secondary metabolites biosynthesis, transport, and catabolism in B. pumilus, including laccase overexpression. Moreover, the simultaneously up-regulated YcnJ and GabP may benefit the synthesis and the stability of laccase, then improve the antioxidative property of B. pumilus against environmental stress. Our findings advance the understanding of the adaptive mechanism of B. pumilus to environmental conditions.
Collapse
Affiliation(s)
- Bianxia Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan 430062, PR China; School of Life Science, Hubei University, Wuhan 430062, PR China
| | - Zhuocheng Jin
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan 430062, PR China; School of Life Science, Hubei University, Wuhan 430062, PR China
| | - Fan Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan 430062, PR China; School of Life Science, Hubei University, Wuhan 430062, PR China
| | - Huanan Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan 430062, PR China; School of Life Science, Hubei University, Wuhan 430062, PR China
| | - Jiashu Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan 430062, PR China; School of Life Science, Hubei University, Wuhan 430062, PR China.
| | - Zhengbing Jiang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan 430062, PR China; School of Life Science, Hubei University, Wuhan 430062, PR China.
| |
Collapse
|
2
|
Yue-han Z, Yi-peng C, Zhao-hua H. Effect of different drying techniques on rose ( Rosa rugosa cv. Plena) proteome based on label-free quantitative proteomics. Heliyon 2023; 9:e13158. [PMID: 36747566 PMCID: PMC9898662 DOI: 10.1016/j.heliyon.2023.e13158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/22/2023] Open
Abstract
To explore the molecular mechanisms of different processing technologies on rose tea (Rosa rugosa cv. Plena), we investigated the rose tea proteome (fresh rose tea [CS], vacuum freeze-drying rose tea [FD], and vacuum microwave rose tea [VD]) using label-free quantification proteomics (LFQ). A total of 2187 proteins were identified, with 1864, 1905, and 1660 proteins identified in CS, FD, and VD, respectively. Of those, 1500 proteins were quantified. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) annotation and enrichment analysis of differential expression proteins (DEPs) in VD vs. CS, FD vs. CS, and FD vs. VD showed that these pathways were associated with energy metabolism, the metabolic breakdown of energy substances and protein biosynthesis, such as oxidative phosphorylation, citrate cycle, carbon metabolism pathways, and ribosome and protein processing in endoplasmic reticulum. FD could ensure the synthesis of protein translation and energy metabolism, thereby maintaining the high quality of rose tea.
Collapse
|
3
|
Agregán R, Pateiro M, Kumar M, Franco D, Capanoglu E, Dhama K, Lorenzo JM. The potential of proteomics in the study of processed meat products. J Proteomics 2023; 270:104744. [PMID: 36220542 DOI: 10.1016/j.jprot.2022.104744] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/06/2022]
Abstract
Proteomics is a field that has grown rapidly since its emergence in the mid-1990s, reaching many disciplines such as food technology. The application of proteomic techniques in the study of complex biological samples such as foods, specifically meat products, allows scientists to decipher the underlying cellular mechanisms behind different quality traits. Lately, much emphasis has been placed on the discovery of biomarkers that facilitate the prediction of biochemical transformations of the product and provide key information on parameters associated with traceability and food safety. This review study focuses on the contribution of proteomics in the improvement of processed meat products. Different techniques and strategies have recently been successfully carried out in the study of the proteome of these products that can help the development of foods with a higher sensory quality, while ensuring consumer safety through early detection of microbiological contamination and fraud. SIGNIFICANCE: The food industry and the academic world work together with the aim of responding to market demands, always seeking excellence. In particular, the meat industry has to face a series of challenges such as, achieving sensory attributes in accordance with the standards required by the consumer and maintaining a high level of safety and transparency, avoiding deliver adulterated and/or contaminated products. This review work exposes how the aforementioned challenges are attempted to be solved through proteomic technology, discussing the latest and most outstanding research in this regard, which undoubtedly contribute to improving the quality, in all the extension of the word, of meat products, providing relevant knowledge in the field of proteomic research.
Collapse
Affiliation(s)
- Rubén Agregán
- Centro Tecnológico de la Carne de Galicia, Adva. Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
| | - Mirian Pateiro
- Centro Tecnológico de la Carne de Galicia, Adva. Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR-Central Institute for Research on Cotton Technology, Mumbai 400019, India
| | - Daniel Franco
- Centro Tecnológico de la Carne de Galicia, Adva. Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; Department of Chemical Engineering, Universidade de Santiago de Compostela, Campus Vida, 15782 Santiago de Compostela, Spain.
| | - Esra Capanoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute (IVRI), Izatnagar, 243122 Bareilly, Uttar Pradesh, India
| | - José M Lorenzo
- Centro Tecnológico de la Carne de Galicia, Adva. Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; Universidade de Vigo, Área de Tecnoloxía dos Alimentos, Facultade de Ciencias de Ourense, 32004 Ourense, Spain.
| |
Collapse
|
4
|
Escobar-Sánchez M, Carrasco-Navarro U, Juárez-Castelán C, Lozano-Aguirre Beltrán L, Pérez-Chabela ML, Ponce-Alquicira E. Probiotic Properties and Proteomic Analysis of Pediococcus pentosaceus 1101. Foods 2022; 12:foods12010046. [PMID: 36613263 PMCID: PMC9818561 DOI: 10.3390/foods12010046] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/10/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Pediococcus pentosaceus 1101 was identified by using 16S rRNA and MALDI-Biotyper. The strain was exposed to conditions that resemble the gastrointestinal tract (GT) to evaluate its probiotic properties. That included the growth kinetics, proteolytic and inhibitory activities within a pH range, survival at low pH and in the presence of bile salts, antagonistic activity, cell-adhesion properties, and antibiotic resistance. The evaluation was followed by a genomic and proteomic analysis that involved the identification of proteins obtained under control and gastrointestinal conditions. The strain showed antagonistic activity against Gram-negative and Gram-positive bacteria, high resistance to acidity (87% logarithmic survival rate, pH 2) and bile salts (99% logarithmic survival rate, 0.5% w/v), and hydrophobic binding, as well as sensitivity to penicillin, amoxicillin, and chloramphenicol. On the other hand, P. pentosaceus 1101 has a genome size of 1.76 Mbp, with 1754 coding sequences, 55 rRNAs, and 33 tRNAs. The proteomic analysis showed that 120 proteins were involved in mechanisms in which the strain senses the effects of acid and bile salts. Moreover, the strain produces at least one lytic enzyme (N-acetylmuramoyl-L-alanine amidase; 32 kDa) that may be related to the antimicrobial activity. Therefore, proteins identified might be a key factor when it comes to the adaptation of P. pentosaceus 1101 into the GT and associated with its technological and probiotic properties.
Collapse
Affiliation(s)
- Monserrat Escobar-Sánchez
- Departamento de Biotecnología, Universidad Autónoma Metropolitana Unidad Iztapalapa, Ciudad de México 09340, Mexico
| | - Ulises Carrasco-Navarro
- Departamento de Biotecnología, Universidad Autónoma Metropolitana Unidad Iztapalapa, Ciudad de México 09340, Mexico
| | - Carmen Juárez-Castelán
- Cinvestav, Departamento de Genética y Biología Molecular, Ciudad de México 07360, Mexico
| | | | - M. Lourdes Pérez-Chabela
- Departamento de Biotecnología, Universidad Autónoma Metropolitana Unidad Iztapalapa, Ciudad de México 09340, Mexico
| | - Edith Ponce-Alquicira
- Departamento de Biotecnología, Universidad Autónoma Metropolitana Unidad Iztapalapa, Ciudad de México 09340, Mexico
- Correspondence: ; Tel.: +52-55-58044600 (ext. 2676)
| |
Collapse
|
5
|
The Changes Occurring in Proteins during Processing and Storage of Fermented Meat Products and Their Regulation by Lactic Acid Bacteria. Foods 2022; 11:foods11162427. [PMID: 36010427 PMCID: PMC9407609 DOI: 10.3390/foods11162427] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/08/2022] [Accepted: 08/11/2022] [Indexed: 11/16/2022] Open
Abstract
Protein, which is the main component of meat, is degraded and oxidized during meat fermentation. During fermentation, macromolecular proteins are degraded into small peptides and free amino acids, and oxidation leads to amino acid side chain modification, molecular crosslinking polymerization, and peptide chain cleavage. At different metabolic levels, these reactions may affect the protein structure and the color, tenderness, flavor, and edible value of fermented meat products. Lactic acid bacteria are currently a research hotspot for application in the fermented meat industry. Its growth metabolism and derivative metabolites formed during the fermentation of meat products regulate protein degradation and oxidation to a certain extent and improve product quality. Therefore, this paper mainly reviews the changes occurring in proteins in fermented meat products and their effects on the quality of the products. Referring to studies on the effects of lactic acid bacteria on protein degradation and oxidation from all over the world, this review aims to provide a relevant reference for improving the quality of fermented meat products.
Collapse
|
6
|
Padilla P, Estévez M, Andrade MJ, Peña FJ, Delgado J. Proteomics reveal the protective effects of chlorogenic acid on Enterococcus faecium Q233 in a simulated pro-oxidant colonic environment. Food Res Int 2022; 157:111464. [PMID: 35761697 DOI: 10.1016/j.foodres.2022.111464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/29/2022] [Accepted: 06/01/2022] [Indexed: 11/26/2022]
Abstract
Certain phytochemicals have been found to promote the beneficial effects of probiotic bacteria although the molecular mechanisms of such interactions are poorly understood. The objective of the present study was to evaluate the impact of the exposure to 0.5 mM chlorogenic acid (CA) on the redox status and proteome of Enterococcus faecium isolated from cheese and challenged with 2.5 mM hydrogen peroxide (H2O2). The bacterium was incubated in anaerobic conditions for 48 h at 37 °C. CA exposure led to a more intense oxidative stress and accretion of bacterial protein carbonyls than those induced by H2O2. The oxidative damage to bacterial proteins was even more severe in the bacterium treated with both CA and H2O2, yet, such combination led to a strengthening of the antioxidant defenses, namely, a catalase-like activity. The proteomic study indicated that H2O2 caused a decrease in energy supply and the bacterium responded by reinforcing the membrane and wall structures and counteracting the redox and pH imbalance. CA stimulated the accretion of proteins related to translation and transcription regulators, and hydrolases. This phytochemical was able to counteract certain proteomic changes induced by H2O2 (i.e. increase of ATP binding cassete (ABC) transporter complex) and cause the increase of Rex, a redox-sensitive protein implicated in controlling metabolism and responses to oxidative stress. Although this protection should be confirmed under in vivo conditions, such effects point to benefits in animals or humans affected by disorders in which oxidative stress plays a major role.
Collapse
Affiliation(s)
- P Padilla
- Food Technology and Quality (TECAL), Institute of Meat and Meat Products (IPROCAR), University of Extremadura, Cáceres, Spain; Food Hygiene and Safety (HISEALI), Institute of Meat and Meat Products (IPROCAR), University of Extremadura, Cáceres, Spain
| | - M Estévez
- Food Technology and Quality (TECAL), Institute of Meat and Meat Products (IPROCAR), University of Extremadura, Cáceres, Spain.
| | - M J Andrade
- Food Hygiene and Safety (HISEALI), Institute of Meat and Meat Products (IPROCAR), University of Extremadura, Cáceres, Spain
| | - F J Peña
- Spermatology Laboratory, University of Extremadura, Cáceres, Spain
| | - J Delgado
- Food Hygiene and Safety (HISEALI), Institute of Meat and Meat Products (IPROCAR), University of Extremadura, Cáceres, Spain
| |
Collapse
|