1
|
Chen L, Wang Z, Wu X, Zhang Q, Ni Y. Comparison on the conformation folding and structure change of serum albumin induced by methyl parathion and its metabolite p-nitrophenol. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2025; 210:106393. [PMID: 40262891 DOI: 10.1016/j.pestbp.2025.106393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 03/15/2025] [Accepted: 03/24/2025] [Indexed: 04/24/2025]
Abstract
Residues of organophosphorus pesticides (OPPs) and their metabolites pose potential risks to the environment and human health. In the work, multiple spectroscopy, atomic force microscope and computational simulations were utilized to compare the interaction between methyl parathion (MP) and its metabolite p-nitrophenol (PNP) with human serum albumin (HSA). The results showed that both MP and PNP spontaneously formed complexes with HSA predominantly facilitated by hydrogen bonds and van der Waals forces, following static quenching mechanisms. The binding constant of PNP (15.16 ± 0.10 × 104 L mol-1) with HSA was nearly 5 times larger than that of MP (3.58 ± 0.09 × 104 L mol-1), suggesting PNP had a stronger affinity with HSA, which was consistent with density functional theory (DFT) calculation. Molecular docking revealed that the binding energy of PNP (-4.54 kcal mol-1) was lower than that of MP (-4.07 kcal mol-1), which potentially contributed a longer in vivo half-life of PNP and greater potential harm. Moreover, synchronous, 3D, FTIR and CD spectroscopy analyses indicated that the binding of MP and PNP to HSA significantly altered the microenvironment of amino acid residues and the secondary structure of HSA. Molecular dynamics simulations further demonstrated these findings. The study provides insights on the interaction between the pesticide MP and its metabolite PNP with HSA, which help understand the impact of pesticide residues on the food safety and environmental protection at the molecular level.
Collapse
Affiliation(s)
- Lu Chen
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Zhu Wang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Xianglong Wu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Qiulan Zhang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China.
| | - Yongnian Ni
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| |
Collapse
|
2
|
Yenigun S, Basar Y, Ipek Y, Behcet L, Demirtas I, Ozen T. DNA protection, molecular docking, molecular dynamic, enzyme inhibition, and kinetics studies of apigenin isolated from Nepeta baytopii Hedge & Lamond by bioactivity-guided fractionation. J Biomol Struct Dyn 2024:1-12. [PMID: 39692135 DOI: 10.1080/07391102.2024.2442753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 04/29/2024] [Indexed: 12/19/2024]
Abstract
Plant-derived bioactive substances have demonstrated significant qualities that suggest they may be crucial in preventing various chronic diseases. Flavonoids, which include apigenin, are the biggest group of polyphenols. In our study, we aimed to obtain the methanol-chloroform (1:1) extract from the aerial parts of Nepeta baytopii Hedge & Lamond and purify the apigenin using bioactivity-guided isolation to separate the active fraction. The current in vitro study provides updated knowledge on apigenin regarding its previously unresearched DNA protection activity and enzyme inhibition, enzyme inhibition kinetics, and enzyme-apigenin interactions. In this context, these studies will be the first and will contribute to the literature. Apigenin had high urease (IC50-5.00 ± 0.00 µM), butyrlcholinesterase (BChE:IC50-10.48 ± 0.00 µM), and tyrosinase (IC50-177.82 ± 14.40 µM) inhibition activities, while inhibition binding constants were high in urease (Ki-0.05 mM), tyrosinase (Ki-0.06 mM), and carbonic anhydrase (Ki-0.08 mM). The binding affinities and constants of the interaction were also ascertained to be high for BChE (-9.50 kcal/mol, and Ki-0.11 µM), and tyrosinase (-8.80 kcal/mol, and Ki, 0.62 µM) with apigenin. In summary, apigenin can be used as an inhibitor for five enzymes. These results will give priority to further studies. Apigenin showed high DNA protection activity with a Form I value of 67.37%. These data demonstrated that the interaction formed by BChE-apigenin gave the best results regarding enzyme inhibition and enzyme-molecule interaction. The stability of this complex was evaluated using molecular dynamics modeling.
Collapse
Affiliation(s)
- Semiha Yenigun
- Department of Chemistry, Faculty of Science, Kurupelit Campus, Ondokuz Mayıs University, Samsun, Turkey
| | - Yunus Basar
- Department of Biochemistry, Faculty of Arts and Sciences, Iğdır University, Iğdır, Turkey
| | - Yasar Ipek
- Department of Chemistry, Faculty of Science, Uluyazı Campus, Çankırı Karatekin University, Çankırı, Turkey
| | - Lutfi Behcet
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Bingöl University, Bingöl, Turkey
| | - Ibrahim Demirtas
- Department of Biochemistry, Faculty of Arts and Sciences, Iğdır University, Iğdır, Turkey
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ondokuz Mayıs University, Samsun, Turkey
| | - Tevfik Ozen
- Department of Chemistry, Faculty of Science, Kurupelit Campus, Ondokuz Mayıs University, Samsun, Turkey
| |
Collapse
|
3
|
Frans P, Mkabayi L, Pletschke BI, Frost CL. The effects of Cannabis sativa and cannabinoids on the inhibition of pancreatic lipase - An enzyme involved in obesity. Biomed Pharmacother 2024; 179:117357. [PMID: 39232382 DOI: 10.1016/j.biopha.2024.117357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/16/2024] [Accepted: 08/23/2024] [Indexed: 09/06/2024] Open
Abstract
INTRODUCTION Obesity is a chronic noncommunicable disease characterized by excessive body fat that can have negative health consequences. Obesity is a complex disease caused by a combination of genetic, environmental, and lifestyle factors. It is characterized by a discrepancy between caloric intake and expenditure. Obesity increases the risk of acquiring major chronic diseases, including heart disease, stroke, cancer, and Type 2 diabetes mellitus (T2DM). Currently, the inhibition of pancreatic lipases (PL) is a promising pharmacological therapy for obesity and weight management. In this study, the inhibition of pancreatic lipase by Cannabis sativa (C. sativa) plant extract and cannabinoids was investigated. METHODS The inhibitory effect was assessed using p-nitrophenyl butyrate (pNPB), and the results were obtained by calculating the percentage relative activity and assessed using one-way analysis of variance (ANOVA). Kinetic studies and spectroscopy techniques were used to evaluate the mode of inhibition. Diet-induced; and diabetic rat models were studied to evaluate the direct effects of C. sativa extract on PL activity. RESULTS Kinetic analyses showed that the plant extracts inhibited pancreatic lipase, with tetrahydrocannabinol (THC) and cannabinol (CBN) being the potential cause of the inhibition noted for the C. sativa plant extract. CBN and THC inhibited the pancreatic lipase activity in a competitive manner, with the lowest residual enzyme activity of 52 % observed at a 10 μg/mL concentration of CBN and 39 % inhibition at a 25 μg/mL concentration of THC. Circular dichroism (CD) spectroscopy revealed that the inhibitors caused a change in the enzyme's secondary structure. At low concentrations, THC showed potential for synergistic inhibition with orlistat. C.sativa treatment in an in vivo rat model confirmed its inhibitory effects on pancreatic lipase activity. CONCLUSION The findings in this study provided insight into the use of cannabinoids as pancreatic lipase inhibitors and the possibility of using these compounds to develop new pharmacological treatments for obesity.
Collapse
Affiliation(s)
- Phelokazi Frans
- Department of Biochemistry and Microbiology, Nelson Mandela University, Port Elizabeth 6031, South Africa
| | - Lithalethu Mkabayi
- Enzyme Science Programme (ESP), Department of Biochemistry and Microbiology, Rhodes University, Makhanda 6140, South Africa
| | - Brett I Pletschke
- Enzyme Science Programme (ESP), Department of Biochemistry and Microbiology, Rhodes University, Makhanda 6140, South Africa
| | - Carminita L Frost
- Department of Biochemistry and Microbiology, Nelson Mandela University, Port Elizabeth 6031, South Africa.
| |
Collapse
|
4
|
Singh A, Singh J, Parween G, Khator R, Monga V. A comprehensive review of apigenin a dietary flavonoid: biological sources, nutraceutical prospects, chemistry and pharmacological insights and health benefits. Crit Rev Food Sci Nutr 2024:1-37. [PMID: 39154213 DOI: 10.1080/10408398.2024.2390550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2024]
Abstract
A multitude of plant-derived bioactive compounds have shown significant promise in preventing chronic illnesses, with flavonoids constituting a substantial class of naturally occurring polyphenolic compounds. Apigenin, a flavone identified as 4',5,7-trihydroxyflavone, holds immense promise as a preventative agent against chronic illnesses. Despite its extensive research and recognized nutraceutical value, its therapeutic application remains underexplored, necessitating further clinical investigations. This review delves into the biological sources, nutraceutical prospects, chemistry, pharmacological insights, and health benefits of apigenin. Through multifaceted analytical studies, we explore its diverse pharmacological profile and potential therapeutic applications across various health domains. The manuscript comprehensively examines apigenin's role as a neuroprotective , anti-inflammatory compound, and a potent antioxidant agent. Additionally, its efficacy in combating cardiovascular diseases, anti-diabetic properties, and anticancer potential has been discussed. Furthermore, the antimicrobial attributes and the challenges surrounding its bioavailability, particularly from herbal supplements have been addressed. Available in diverse forms including tablets, capsules, solid dispersions, co-crystals, inclusion complexes and nano formulations. Additionally, it is prevalent as a nutraceutical supplement in herbal formulations. While strides have been made in overcoming pharmacokinetic hurdles, further research into apigenin's clinical effectiveness and bioavailability from herbal supplements remains imperative for its widespread utilization in preventive medicine.
Collapse
Affiliation(s)
- Abhinav Singh
- Drug Design and Molecular Synthesis Laboratory, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, VPO-Ghudda, Bathinda, India
| | - Jagjit Singh
- Drug Design and Molecular Synthesis Laboratory, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, VPO-Ghudda, Bathinda, India
| | - Gulistan Parween
- Drug Design and Molecular Synthesis Laboratory, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, VPO-Ghudda, Bathinda, India
| | - Rakesh Khator
- Drug Design and Molecular Synthesis Laboratory, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, VPO-Ghudda, Bathinda, India
| | - Vikramdeep Monga
- Drug Design and Molecular Synthesis Laboratory, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, VPO-Ghudda, Bathinda, India
| |
Collapse
|
5
|
Niu W, Feng Y, Peng M, Cai J. A narrative review on the mechanism of natural flavonoids in improving glucolipid metabolism disorders. Phytother Res 2024. [PMID: 38924256 DOI: 10.1002/ptr.8276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/29/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024]
Abstract
Glucolipid metabolism disorder (GLMD) is a complex chronic disease characterized by glucose and lipid metabolism disorders with a complex and diverse etiology and rapidly increasing incidence. Many studies have identified the role of flavonoids in ameliorating GLMD, with mechanisms related to peroxisome proliferator-activated receptors, nuclear factor kappa-B, AMP-activated protein kinase, nuclear factor (erythroid-derived 2)-like 2, glucose transporter type 4, and phosphatidylinositol-3-kinase/protein kinase B pathway. However, a comprehensive summary of the flavonoid effects on GLMD is lacking. This study reviewed the roles and mechanisms of natural flavonoids with different structures in the treatment of GLMD reported globally in the past 5 years and provides a reference for developing flavonoids as drugs for treating GLMD.
Collapse
Affiliation(s)
- Wenjing Niu
- Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Provincial TCM Key Laboratory for Metabolic Diseases, Guangzhou, China
| | - Yongshi Feng
- Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Provincial TCM Key Laboratory for Metabolic Diseases, Guangzhou, China
| | - Minwen Peng
- Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Provincial TCM Key Laboratory for Metabolic Diseases, Guangzhou, China
| | - Jinyan Cai
- Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Provincial TCM Key Laboratory for Metabolic Diseases, Guangzhou, China
| |
Collapse
|
6
|
On-Nom N, Thangsiri S, Inthachat W, Temviriyanukul P, Sahasakul Y, Aursalung A, Chupeerach C, Suttisansanee U. Optimized Conditions for the Extraction of Phenolic Compounds from Aeginetia indica L. and Its Potential Biological Applications. Molecules 2024; 29:1050. [PMID: 38474563 DOI: 10.3390/molecules29051050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
Aeginetia indica L., a parasitic root in the Orobanchaceae family, is used as a food colorant in traditional Thai desserts. However, scant information is available on its food applications as well as medicinal properties, while overharvesting by the local people has severely depleted wild plant populations. This research, thus, aimed to extract optimized total phenolic content (TPC) in varying extraction conditions using response surface methodology (RSM) and the Box-Behnken design (BBD). Results indicated that an extraction temperature of 90 °C, 80% (v/v) aqueous ethanol, and 0.5% (w/v) solid-to-liquid ratio yielded the highest TPC at 129.39 mg gallic acid equivalent (GAE)/g dry weight (DW). Liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) identified the predominant phenolics as apigenin (109.06 mg/100 g extract) and luteolin (35.32 mg/100 g extract) with trace amounts of naringenin and rutin. Under the optimal extraction condition, the plant extract exhibited antioxidant activities of 5620.58 and 641.52 µmol Trolox equivalent (TE)/g DW determined by oxygen radical absorbance capacity (ORAC) and ferric ion reducing antioxidant power (FRAP) assay, while the scavenging capacity of total radicals at 50% (SC50) was determined to be 135.50 µg/mL using 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay. The plant extract also exhibited inhibitory activities against the key enzymes relevant to type II diabetes, obesity, and Alzheimer's disease, suggesting the potential for medicinal applications.
Collapse
Affiliation(s)
- Nattira On-Nom
- Food and Nutrition Academic and Research Cluster, Institute of Nutrition, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Sirinapa Thangsiri
- Food and Nutrition Academic and Research Cluster, Institute of Nutrition, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Woorawee Inthachat
- Food and Nutrition Academic and Research Cluster, Institute of Nutrition, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Piya Temviriyanukul
- Food and Nutrition Academic and Research Cluster, Institute of Nutrition, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Yuraporn Sahasakul
- Food and Nutrition Academic and Research Cluster, Institute of Nutrition, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Amornrat Aursalung
- Food and Nutrition Academic and Research Cluster, Institute of Nutrition, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Chaowanee Chupeerach
- Food and Nutrition Academic and Research Cluster, Institute of Nutrition, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Uthaiwan Suttisansanee
- Food and Nutrition Academic and Research Cluster, Institute of Nutrition, Mahidol University, Nakhon Pathom 73170, Thailand
| |
Collapse
|
7
|
Tundis R, Grande F, Occhiuzzi MA, Sicari V, Loizzo MR, Cappello AR. Lavandula angustifolia mill. (Lamiaceae) ethanol extract and its main constituents as promising agents for the treatment of metabolic disorders: chemical profile, in vitro biological studies, and molecular docking. J Enzyme Inhib Med Chem 2023; 38:2269481. [PMID: 37850338 PMCID: PMC10586085 DOI: 10.1080/14756366.2023.2269481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 10/06/2023] [Indexed: 10/19/2023] Open
Abstract
Lavandula angustifolia Mill. (lavender) is one of the most used medicinal plants. Herein, we chemically characterised and investigated the antioxidant properties and the capability to inhibit key enzymes for the treatment of type 2 diabetes (TD2) and obesity such as pancreatic lipase, α-glucosidase, and α-amylase of the ethanolic extract of two lavender samples (La1 and La2) from southern Italy. Both extracts significantly inhibited α-glucosidase, while La1 inhibited α-amylase and lipase more effectively than La2. To investigate whether these properties could be due to a direct interaction of the main constituents of the extracts with the targeted enzymes, molecular docking studies have been performed. As a result, the selected compounds were able to interact with the key residues of the binding site of the three proteins, thus supporting biological data. Current findings indicate the new potential of lavender ethanolic extract for the development of novel agents for T2D and obesity.
Collapse
Affiliation(s)
- Rosa Tundis
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Fedora Grande
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Maria A. Occhiuzzi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Vincenzo Sicari
- Department of Agraria, Mediterranean University of Reggio Calabria, Reggio Calabria, Italy
| | - Monica R. Loizzo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Anna R. Cappello
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| |
Collapse
|
8
|
Jeyakumar P, Jasmin Suriya AR, Yolin Angel PASR, Mangala Nagasundari S, Natarajan PP, Murugan K. Diet-induced animal model anti-obesity, phytochemical profiling, and in silico analysis of culinary plant gokhru ( Pedalium murex L.) mucilage. J Biomol Struct Dyn 2023; 42:12954-12969. [PMID: 37902530 DOI: 10.1080/07391102.2023.2274516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 09/07/2023] [Indexed: 10/31/2023]
Abstract
Plant-based diets (PBDs) are renowned for managing and developing bioactive chemical inhibitors to combat obesity, a well-known global public health concern. There are currently no published research studies examining the effects of food plant mucilage dietary supplements on animal models of obesity induced by high-fat diets (HFD). The present research investigated the anti-obesity properties of the culinary plant Pedalium murex L. mucilage (PMM) in obese albino male rats models fed HFD. PMM's HR-LCMS phytochemical profiling and in silico evaluation of anti-obesity and drug-likeness using Schrodinger's Glide, QikProp, and GROMACS modules were also investigated. In vivo, anti-obesity model animal rat's daily dietary intake, common blood biochemical parameters, and histological examination of the liver and kidney tissues for the development of macrovesicular and microvesicular steatosis were all performed. Among the 46 Phytochemicals profiled, 7(14)-Bisabolene-2, 3, 10,11tetrol, Moschamine, and N-Feruloyltyramine show prominent anti-obesity activity and drug-like characteristics in silico. Rats given PMM showed significantly lower serum levels of total cholesterol (TC), low-density lipoprotein (LDL), and triglycerides (TGs), increased levels of high-density lipoprotein (HDL), as well as macro-and microvesicular steatosis, lobular inflammation of the liver and kidney tissues. This suggests that PMM is an effective natural anti-obesity therapeutic ingredient or dietary supplement with a high concentration of anti-obesity phytochemicals that mainly satisfies the needs for such natural anti-obesity medicine or a supplement.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Palanisamy Jeyakumar
- Department of Biotechnology, Bioprocesses and Biofilm Laboratory, Manonmaniam Sundaranar University, Tirunelveli, India
| | - Arul Raj Jasmin Suriya
- Department of Biotechnology, Bioprocesses and Biofilm Laboratory, Manonmaniam Sundaranar University, Tirunelveli, India
| | | | | | | | - Kasi Murugan
- Department of Biotechnology, Bioprocesses and Biofilm Laboratory, Manonmaniam Sundaranar University, Tirunelveli, India
| |
Collapse
|
9
|
Ahmad B, Friar EP, Vohra MS, Khan N, Serpell CJ, Garrett MD, Loo JSE, Fong IL, Wong EH. Hydroxylated polymethoxyflavones reduce the activity of pancreatic lipase, inhibit adipogenesis and enhance lipolysis in 3T3-L1 mouse embryonic fibroblast cells. Chem Biol Interact 2023; 379:110503. [PMID: 37084996 DOI: 10.1016/j.cbi.2023.110503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 04/13/2023] [Accepted: 04/18/2023] [Indexed: 04/23/2023]
Abstract
Hydroxylated polymethoxyflavones (HPMFs) have been shown to possess various anti-disease effects, including against obesity. This study investigates the anti-obesity effects of HPMFs in further detail, aiming to gain understanding of their mechanism of action in this context. The current study demonstrates that two HPMFs; 3'-hydroxy-5,7,4',5'-tetramethoxyflavone (3'OH-TetMF) and 4'-hydroxy-5,7,3',5'-tetramethoxyflavone (4'OH-TetMF) possess anti-obesity effects. They both significantly reduced pancreatic lipase activity in a competitive manner as demonstrated by molecular docking and kinetic studies. In cell studies, it was revealed that both of the HPMFs suppress differentiation of 3T3-L1 mouse embryonic fibroblast cells during the early stages of adipogenesis. They also reduced expression of key adipogenic and lipogenic marker genes, namely peroxisome proliferator-activated receptor-gamma (PPAR-γ), CCAAT/enhancer-binding protein α and β (C/EBP α and β), adipocyte binding protein 2 (aP2), fatty acid synthase (FASN), and sterol regulatory element-binding protein 1 (SREBF 1). They also enhanced the expression of cell cycle genes, i.e., cyclin D1 (CCND1) and C-Myc, and reduced cyclin A2 expression. When further investigated, it was also observed that these HPMFs accelerate lipid breakdown (lipolysis) and enhance lipolytic gene expression. Moreover, they also reduced the secretion of proteins (adipokines), including pro-inflammatory cytokines, from mature adipocytes. Taken together, this study concludes that these HPMFs have anti-obesity effects, which are worthy of further investigation.
Collapse
Affiliation(s)
- Bilal Ahmad
- School of Biosciences, Faculty of Health and Medical Sciences Taylor's University Lakeside Campus, No1 Jalan Taylor's, 47500, Subang Jaya, Malaysia
| | - Emily P Friar
- School of Chemistry and Forensic Science, Ingram Building, University of Kent, Canterbury, Kent, CT2 7NH, United Kingdom
| | - Muhammad Sufyan Vohra
- School of Medicine, Faculty of Health and Medical Sciences Taylor's University Lakeside Campus, No1 Jalan Taylor's, 47500, Subang Jaya, Malaysia
| | - Nasar Khan
- R3 Medical Research, 10045 East Dynamite Boulevard Suite 260, Scottsdale, AZ, 85262, United States
| | - Christopher J Serpell
- School of Chemistry and Forensic Science, Ingram Building, University of Kent, Canterbury, Kent, CT2 7NH, United Kingdom.
| | - Michelle D Garrett
- School of Biosciences, Stacey Building, University of Kent, Canterbury, Kent, CT2 7NJ, United Kingdom
| | - Jason Siau Ee Loo
- School of Pharmacy, Faculty of Health and Medical Sciences Taylor's University Lakeside Campus, No1 Jalan Taylor's, 47500, Subang Jaya, Malaysia
| | - Isabel Lim Fong
- Department of Paraclinical Sciences, Faculty of Medicine and Health Sciences, Universiti Malaysia Sarawak (UNIMAS), 94300, Kota Samarahan, Sarawak, Malaysia
| | - Eng Hwa Wong
- School of Medicine, Faculty of Health and Medical Sciences Taylor's University Lakeside Campus, No1 Jalan Taylor's, 47500, Subang Jaya, Malaysia.
| |
Collapse
|
10
|
Dong X, Wan C, Huang A, Xu H, Lei H. Novel Umami Peptides from Hypsizygus marmoreus and Interaction with Umami Receptor T1R1/T1R3. Foods 2023; 12:foods12040703. [PMID: 36832778 PMCID: PMC9955199 DOI: 10.3390/foods12040703] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/18/2023] [Accepted: 01/31/2023] [Indexed: 02/09/2023] Open
Abstract
Umami peptides are important taste components of foods. In this study, umami peptides from Hypsizygus marmoreus hydrolysate were purified through ultrafiltration, gel filtration chromatography, and RP-HPLC, and then identified using LC-MS/MS. The binding mechanism of umami peptides with the receptor, T1R1/T1R3, was investigated using computational simulations. Five novel umami peptides were obtained: VYPFPGPL, YIHGGS, SGSLGGGSG, SGLAEGSG, and VEAGP. Molecular docking results demonstrated that all five umami peptides could enter the active pocket in T1R1; Arg277, Tyr220, and Glu301 were key binding sites; and hydrogen bonding and hydrophobic interaction were critical interaction forces. VL-8 had the highest affinity for T1R3. Molecular dynamics simulations demonstrated that VYPFPGPL (VL-8) could be steadily packed inside the binding pocket of T1R1 and the electrostatic interaction was the dominant driving force of the complex (VL-8-T1R1/T1R3) formation. Arg residues (151, 277, 307, and 365) were important contributors to binding affinities. These findings provide valuable insights for the development of umami peptides in edible mushrooms.
Collapse
Affiliation(s)
| | | | | | | | - Hongjie Lei
- Correspondence: ; Tel./Fax: +86-029-87092486
| |
Collapse
|
11
|
Cytotoxicity and Lipase Inhibition of Essential Oils from Amazon Annonaceae Species. CHEMISTRY 2022. [DOI: 10.3390/chemistry4040081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Essential oils from Amazonian species are gaining increasing interest worldwide due to their medicinal and cosmetic applications; however, the relation among the chemical constituents and their biological properties are not well explored. Therefore, the present research aims to obtain an understanding of the bioactivity of chemical compounds in the essential oils of plants from the Annonaceae family (Bocageopsis pleiosperma, Onychopetalum amazonicum, Unonopsis duckei, U. floribunda, U. rufescens, U.stipitata, U. guatterioides, Duguetia flagellaris and Xylopia benthamii). By means of gas chromatography coupled to mass spectrometry, in vitro cytotoxic and anti-lipase assays, principal component analysis and molecular docking, it was possible to establish the main compounds that may be responsible for the cytotoxic effect of O. amazonicum and B. pleiosperma. Moreover, the anti-lipase potential of D. flagellaris was also established, as well as its composition related to the activity. Thus, by the employed strategy, allo-aromadendrene, cryptomerione, δ-cadinene and β-bisabolene were suggested as plausible cytotoxic agents against cancer cell lines, and dehydroaromadendrene, spathulenol and elemol, against lipase. The present study provides significant information on the chemical profile and bioactivity studies of Amazon Annonaceae aromatic plants.
Collapse
|