1
|
Fath-All AA, Atia T, Mohamed AS, Khalil NM, Abdelaziz TD, Mahmoud NA, Elagali AM, Sakr HI, Abd El-Ghany MN. Efficacy of yeast-mediated SeNPs on gastric ulcer healing and gut microbiota dysbiosis in male albino rats. Tissue Cell 2025; 96:102953. [PMID: 40334393 DOI: 10.1016/j.tice.2025.102953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 05/01/2025] [Accepted: 05/01/2025] [Indexed: 05/09/2025]
Abstract
BACKGROUND Gastric ulcer is one of the most common gastrointestinal tract diseases with a higher extent in male patients to. Selenium nanoparticles (SeNPs) possess therapeutic benefits, including antimicrobial, antioxidant, anti-inflammatory, and anti-ulcerative agents. The study aimed to investigate the modulatory effect of yeast-mediated SeNPs on gastric ulcers and microbiota dysbiosis in a rat model. METHOD Twenty-four rats were randomly divided into four groups. Both the control and SeNPs-only groups received distilled water orally, and after 1 h, they received 2 % carboxymethyl cellulose (CMC). The ulcer model and SeNPs-treated groups received 99 % ethanol (5 ml/kg orally) for ulcer induction, followed by 2 % CMC after one hour. The SeNPs-treated group got SeNPs (60 mg/kg) suspended in 2 % CMC. We measured ulcer markers (ulcer index and gastric juice pH and volume and stomach tissue oxidative stress markers (malondialdehyde (MDA), glutathione (GSH), nitric oxide (NO), and catalase (CAT)), in addition to histopathological examination of gastric tissues stained with three different satins: hematoxylin-eosin (H&E), periodic acid-Schiff (PAS), and Masson's trichrome stains (many-color dye), and microbiological analysis of freshly collected fecal sample. RESULTS SeNPs treatment significantly decreased gastric volume, ulcer index, malondialdehyde, and increased glutathione levels. A macroscopic examination of the treated stomach revealed decreased ulcer lesion numbers. Furthermore, histopathological examination showed that SeNPs treatment repaired ulcerative gastric tissue through the regeneration of epithelial cells and reduction in damaged areas and collagen fibers. In the treated group, microbiological analysis of rat feces showed a significant increase in Leuconostoc pseudomesenteroides, Escherichia coli, and Enterococcus faecium counts. CONCLUSION This research suggests that SeNPs exhibit anti-ulcer activity and can accelerate ulcer healing via their antioxidant action. They also have a modulatory effect on gut microbiota dysbiosis associated with gastric ulcers. This is the first research studying the impact of safe yeast-mediated SeNPs on rat's gastric ulcer and gut microbiota.
Collapse
Affiliation(s)
- Aya Adel Fath-All
- Botany and Microbiology Department, Faculty of Science, Cairo University, Giza 12613, Egypt; Faculty of Biotechnology, October University for Modern Sciences and Arts, Giza, Egypt.
| | - Tarek Atia
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University in Al-Kharj, Saudi Arabia.
| | - Ayman Saber Mohamed
- Zoology Department, Faculty of Science, Cairo University, Giza 12613, Egypt.
| | - Neveen M Khalil
- Botany and Microbiology Department, Faculty of Science, Cairo University, Giza 12613, Egypt; Faculty of Biotechnology, October University for Modern Sciences and Arts, Giza, Egypt.
| | - Tamer D Abdelaziz
- Department of Chemistry, Preparatory Year Program, Batterjee Medical College, Jeddah 21442, Saudi Arabia.
| | - Neamat A Mahmoud
- Department of Medical Physiology, Kasr Al-Aini Faculty of Medicine, Cairo University, Cairo, Egypt.
| | | | - Hader I Sakr
- Department of Medical Physiology, Kasr Al-Aini Faculty of Medicine, Cairo University, Cairo, Egypt; Department of Medical Physiology, General Medicine Practice Program, Batterjee Medical College, Jeddah 21442, Saudi Arabia.
| | - Mohamed N Abd El-Ghany
- Botany and Microbiology Department, Faculty of Science, Cairo University, Giza 12613, Egypt; Faculty of Biotechnology, October University for Modern Sciences and Arts, Giza, Egypt.
| |
Collapse
|
2
|
Tian B, Ye P, Zhou X, Hu J, Wang P, Cai M, Yang K, Sun P, Zou X. Gallic Acid Ameliorated Chronic DSS-Induced Colitis Through Gut Microbiota Modulation, Intestinal Barrier Improvement, and Inflammation. Mol Nutr Food Res 2025:e70024. [PMID: 40123223 DOI: 10.1002/mnfr.70024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 02/05/2025] [Accepted: 02/25/2025] [Indexed: 03/25/2025]
Abstract
SCOPE Gallic acid (GA) is recognized for its purported antiinflammatory properties. GA has been demonstrated to prevent and alleviate the symptoms of chronic colitis through the modulation of the gut microbiota, improvement of the intestinal barrier, and reduction of inflammation. METHODS AND RESULTS In order to determine the mechanism by which GA exerts its protective effect against chronic colitis, mice were induced by dextran sulfate sodium (DSS). The reduction in the disease activity index by 25% and the decrease in colon tissue damage indicated that 36 days of GA intervention alleviated chronic DSS-induced colitis symptoms. GA was observed to mitigate weight loss by 2.5% and the shortening of colon by 17.3%, and to diminish the expression of pivotal proteins within the TLR4/nuclear factor κB (NF-κB) signaling cascades, consequently lowering the generation of inflammatory cytokines. Furthermore, GA effectively corrected the gut microbiota imbalance, increased the content of short-chain fatty acids (SCFAs), which in turn suppressed inflammation, and enhanced tight junction protein expression, thereby strengthening the intestinal barrier. CONCLUSION GA has the capacity to enhance the efficacy of chronic colitis through a multifaceted mechanism, influencing the gut microbiota, intestinal barrier function, and inflammatory processes. The findings highlight the potential of GA as a preventative strategy for chronic colitis.
Collapse
Affiliation(s)
- Baoming Tian
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou, PR China
- Eco-Industrial Innovation Institute of Zhejiang University of Technology, Quzhou, PR China
| | - Peng Ye
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou, PR China
- Eco-Industrial Innovation Institute of Zhejiang University of Technology, Quzhou, PR China
| | - Xue Zhou
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou, PR China
| | - Jiangning Hu
- Zhejiang Institute of Modern TCM and Natural Medicine Co., Ltd, Hangzhou, PR China
| | - Peiyi Wang
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou, PR China
| | - Ming Cai
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou, PR China
| | - Kai Yang
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou, PR China
| | - Peilong Sun
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou, PR China
- Eco-Industrial Innovation Institute of Zhejiang University of Technology, Quzhou, PR China
| | - Xianguo Zou
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou, PR China
| |
Collapse
|
3
|
Xiao Y, Zhao Q, Ni D, Zhang X, Hao W, Yuan Q, Xu W, Mu W, Wu D, Wu X, Wang S. Polymerization of dietary fructans differentially affects interactions among intestinal microbiota of colitis mice. THE ISME JOURNAL 2025; 19:wrae262. [PMID: 39745882 PMCID: PMC11742283 DOI: 10.1093/ismejo/wrae262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/27/2024] [Accepted: 12/31/2024] [Indexed: 01/04/2025]
Abstract
The intestinal microbiota plays a critical role in maintaining human health and can be modulated by dietary interventions and lifestyle choices. Fructans, a dietary carbohydrate, are selectively utilized by the intestinal microbiota to confer health benefits. However, the specific effects of different fructan types on microbial changes and functions remain incompletely understood. Here, we investigated how the intestinal microbiota responds to fructans with varying degrees of polymerization in the context of gut dysbiosis. Both low molecular weight fructo-oligosaccharides and high molecular weight levan suppressed intestinal inflammation in a colitis mouse model, mitigating intestinal fibrosis and dysbiosis. Although both the effects of fructo-oligosaccharides and levan are microbiota-dependent, distinct modulation patterns of the intestinal microbiota were observed based on the molecular weight of the fructans. Levan had a more pronounced and persistent impact on gut microbiota compared to fructo-oligosaccharides. Levan particularly promoted the abundance of Dubosiella newyorkensis, which exhibited preventive effects against colitis. Our findings highlight the importance of polymerization levels of dietary fructans in microbiota alterations and identify Dubosiella newyorkensis as a potential probiotic for treating inflammatory diseases.
Collapse
Affiliation(s)
- Yaqin Xiao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macao 999078, China
| | - Qianyun Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, Southwest Medical University, Xianglin Road, Longmatan District, Luzhou, Sichuan 646000, China
| | - Dawei Ni
- State Key Laboratory of Food Science and Resources, Jiangnan University, Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Xiaoqi Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Wei Hao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macao 999078, China
| | - Qin Yuan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macao 999078, China
| | - Wei Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Dingtao Wu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengluo Avenue, Chengdu, Sichuan 616106, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, Southwest Medical University, Xianglin Road, Longmatan District, Luzhou, Sichuan 646000, China
| | - Shengpeng Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macao 999078, China
| |
Collapse
|
4
|
Wang L, Zeng Z, Lin Y, Zheng B, Zhang Y, Pan L. In vitro dynamic digestion properties and fecal fermentation of Dictyophora indusiata polysaccharide: Structural characterization and gut microbiota. Int J Biol Macromol 2024; 282:136713. [PMID: 39427788 DOI: 10.1016/j.ijbiomac.2024.136713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/23/2024] [Accepted: 10/17/2024] [Indexed: 10/22/2024]
Abstract
The in vitro dynamic digestive model more realistically simulates the human digestive system compared to static digestive model. In this study, the dynamic in vitro stomach-intestine digestive system and fecal fermentation was used to investigate the dynamic digestion properties and fermentation properties of Dictyophora indusiata polysaccharide. The results showed that there were no significant changes in molecular weight, functional groups and surface morphology after the in vitro dynamic simulated digestion, indicating that D. indusiata polysaccharide maintained a relatively stable structure during the dynamic in vitro salivary-gastrointestinal digestion. In addition, D. indusiata polysaccharide improved the abundance of beneficial bacteria, including Blautia, Coprobacter and Fusicatenibacter. It is remarkable that D. indusiata polysaccharide significantly increased the level of acetic acid and propionic acid. In conclusion, these results suggested that D. indusiata polysaccharide was a potential source of prebiotics, which provides a basis for the development of D. indusiata polysaccharide in the food or medical field.
Collapse
Affiliation(s)
- Lin Wang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Integrated Scientific Research Base of Edible Fungi Processing and Comprehensive Utilization Technology, Ministry of Agriculture and Rural Affairs, Fuzhou, Fujian 350002, China
| | - Zhikun Zeng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Integrated Scientific Research Base of Edible Fungi Processing and Comprehensive Utilization Technology, Ministry of Agriculture and Rural Affairs, Fuzhou, Fujian 350002, China
| | - Yaqing Lin
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Integrated Scientific Research Base of Edible Fungi Processing and Comprehensive Utilization Technology, Ministry of Agriculture and Rural Affairs, Fuzhou, Fujian 350002, China
| | - Baodong Zheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Integrated Scientific Research Base of Edible Fungi Processing and Comprehensive Utilization Technology, Ministry of Agriculture and Rural Affairs, Fuzhou, Fujian 350002, China
| | - Yi Zhang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Integrated Scientific Research Base of Edible Fungi Processing and Comprehensive Utilization Technology, Ministry of Agriculture and Rural Affairs, Fuzhou, Fujian 350002, China
| | - Lei Pan
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Integrated Scientific Research Base of Edible Fungi Processing and Comprehensive Utilization Technology, Ministry of Agriculture and Rural Affairs, Fuzhou, Fujian 350002, China.
| |
Collapse
|
5
|
Wang XY, Hao M, Li YP, Zhang J, Xu QS, Yang F, Yang ZC, Xiong YR, Gong ES, Luo JH, Zou Q. Structural characteristics of a purified Evodiae fructus polysaccharide and its gastroprotection and relevant mechanism against alcohol-induced gastric lesions in rats. Int J Biol Macromol 2024; 281:136410. [PMID: 39395514 DOI: 10.1016/j.ijbiomac.2024.136410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/12/2024] [Accepted: 10/06/2024] [Indexed: 10/14/2024]
Abstract
Evodiae fructus polysaccharide (EFP) has been previously shown to protect against alcohol-induced gastric lesions. However, which and how active fractions in EFP exert gastroprotection remains unclear. This study aimed to characterize the structure of the purified fraction (EFP-2-1) of EFP, and investigate its gastroprotection and underlying mechanisms. EFP-2-1 was obtained through column chromatography, and was characterized using instrumental analytical techniques. Gastroprotective effect of EFP-2-1 was evaluated using alcohol-induced gastric lesions in rats, and its mechanism was explored through proteomics, metabolomics and diversity sequencing. Results showed that EFP-2-1 had a molecular weight of 7.3 kDa, and consisted mainly of rhamnose, galacturonic acid, galactose and arabinose. Its backbone contained HG and RG-I domains, and branched with →5)-α-l-Araf-(1→, α-l-Araf-(1→ and →4)-β-d-Galp-(1→ residues. EFP-2-1 reduced gastric lesions and the levels of MDA, TNF-α and IL-6, activated PPARγ, primarily altered protein digestion and absorption and bile secretion metabolic pathways, regulated gut microbiota like Faecalibaculum and Lachnoclostridium, and increased short-chain fatty acids production. Correlations were observed among the gut microbiota, metabolites and biochemical indexes influenced by EFP-2-1. These findings suggest that EFP-2-1 is an active fraction of EFP for protecting against alcohol-induced gastric lesions, which may be linked to PPARγ activation, gut microbiota and serum metabolism.
Collapse
Affiliation(s)
- Xiao-Yin Wang
- School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China.
| | - Ming Hao
- School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China.
| | - Yan-Ping Li
- Scientific Research Center, Gannan Medical University, Ganzhou 341000, China.
| | - Jun Zhang
- School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China.
| | - Quan-Sheng Xu
- School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China.
| | - Fan Yang
- School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China.
| | - Zi-Chao Yang
- School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China.
| | - Yu-Rou Xiong
- School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China.
| | - Er-Sheng Gong
- School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China.
| | - Jiang-Hong Luo
- School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China.
| | - Qi Zou
- School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China.
| |
Collapse
|
6
|
Huang J, Zou Q, Hao M, Shen J, Zhang M, Li F, Xu Q, Zhang H, Zhang J, Wang X. Exploring the potential mechanisms of polysaccharides against gastric ulcer: Network pharmacology analysis and molecular docking validation. FOOD SAFETY AND HEALTH 2024. [DOI: 10.1002/fsh3.12079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 10/16/2024] [Indexed: 01/02/2025]
Abstract
AbstractGastric ulcer is a common peptic ulcer that affects human health and life quality seriously. As anti‐gastric ulcer drugs usually cause side‐effects, polysaccharides may be the potential alternatives because of better effectiveness and less toxicity. Although the anti‐gastric ulcer activities of polysaccharides have been widely reported, the mechanisms have not yet been well‐disclosed. In this study, network pharmacology analysis was performed to explore the potential mechanisms of polysaccharides against gastric ulcer, and the results were validated by molecular docking. Results indicated that β‐glucan, arabinogalactan, xylan, and arabinan were the key structures, and ABL1, AKT1, androgen receptor, epidermal growth factor receptor, v‐Ha‐ras Harvey rat sarcoma viral oncogene homolog, HSP90AA1, mitogen‐activated protein kinase 8 (MAPK8), MAPK14, NOS2, PIK3R1, RAC1, ras homolog gene family member A, and proto‐oncogene tyrosine‐protein kinase Src were the core targets for polysaccharides in treating gastric ulcer. Polysaccharides have influences on 1958 GO items and 199 KEGG pathways, and their anti‐gastric ulcer activities are related to MAPK, Ras, PI3K‐Akt, vascular endothelial growth factor, prolactin, FoxO and Rap1 signaling pathways, etc. Molecular docking validation showed that the results of network pharmacology analysis were credible, and interactions between polysaccharide structures and core targets were observed. This study contributes to understanding the mechanisms of polysaccharides in treating gastric ulcer and provides references for future activity screening and mechanism research in anti‐gastric ulcer.
Collapse
Affiliation(s)
- Jia‐Yu Huang
- School of Public Health and Health Management Gannan Medical University Ganzhou China
| | - Qi Zou
- School of Public Health and Health Management Gannan Medical University Ganzhou China
- Key Laboratory of Development and Utilization of Gannan Characteristic Food Function Component of Ganzhou Gannan Medical University Ganzhou China
| | - Ming Hao
- School of Public Health and Health Management Gannan Medical University Ganzhou China
| | - Jian‐Lin Shen
- School of Public Health and Health Management Gannan Medical University Ganzhou China
| | - Meng‐Tong Zhang
- School of Public Health and Health Management Gannan Medical University Ganzhou China
| | - Fei Li
- School of Public Health and Health Management Gannan Medical University Ganzhou China
| | - Quan‐Sheng Xu
- School of Public Health and Health Management Gannan Medical University Ganzhou China
| | - Han‐Yue Zhang
- School of Public Health and Health Management Gannan Medical University Ganzhou China
| | - Jun Zhang
- School of Public Health and Health Management Gannan Medical University Ganzhou China
| | - Xiao‐Yin Wang
- School of Public Health and Health Management Gannan Medical University Ganzhou China
- Key Laboratory of Development and Utilization of Gannan Characteristic Food Function Component of Ganzhou Gannan Medical University Ganzhou China
- State Key Laboratory of Food Science and Technology Nanchang University Nanchang China
| |
Collapse
|
7
|
Gao XF, Ji BY, Zhang JJ, Wang Z, Jiang S, Hu JN, Gong XJ, Zhang JT, Tsopmejio ISN, Li W. Ginsenoside Rg2 Attenuates Aging-Induced Liver Injury via Inhibiting Caspase 8-Mediated Pyroptosis, Apoptosis and Modulating Gut Microbiota. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:1427-1449. [PMID: 39192676 DOI: 10.1142/s0192415x24500563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Aging is an irresistible natural law of the progressive decline of body molecules, organs, and overall function with the passage of time, resulting in eventual death. World Health Organization data show that aging is correlated with a wide range of common chronic diseases in the elderly, and is an essential driver of many diseases. Panax Ginseng C.A Meyer is an ancient herbal medicine, which has an effect of "long service, light weight, and longevity" recorded in the ancient Chinese medicine book "Compendium of Materia Medica." Ginsenoside Rg2, the main active ingredient of ginseng, also exerts a marked effect on the treatment of liver injury. However, it remains unclear whether Rg2 has the potential to ameliorate aging-induced liver injury. Hence, exploring the hepatoprotective properties of Rg2 and its possible molecular mechanism by Senescence Accelerate Mouse Prone 8 (SAMP8) and gut microbiota. Our study demonstrated that Rg2 can inhibit pyroptosis and apoptosis through caspase 8, and regulate the gut-liver axis to alleviate liver inflammation by changing the composition of gut microbiota, thus improving aging-induced liver injury. These findings provide theoretical support for the pharmacological effects of ginsenosides in delaying aging-induced liver injury.
Collapse
Affiliation(s)
- Xu-Fei Gao
- College of Chinese Medicinal Materials, Jilin Provincial International Joint Research Center for the Development and Utilization of Authentic Medicinal Materials, Jilin Agricultural University, Changchun 130118, P. R. China
| | - Bao-Yu Ji
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, P. R. China
- Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Jun-Jie Zhang
- College of Chinese Medicinal Materials, Jilin Provincial International Joint Research Center for the Development and Utilization of Authentic Medicinal Materials, Jilin Agricultural University, Changchun 130118, P. R. China
| | - Zi Wang
- College of Chinese Medicinal Materials, Jilin Provincial International Joint Research Center for the Development and Utilization of Authentic Medicinal Materials, Jilin Agricultural University, Changchun 130118, P. R. China
| | - Shuang Jiang
- College of Chinese Medicinal Materials, Jilin Provincial International Joint Research Center for the Development and Utilization of Authentic Medicinal Materials, Jilin Agricultural University, Changchun 130118, P. R. China
| | - Jun-Nan Hu
- College of Chinese Medicinal Materials, Jilin Provincial International Joint Research Center for the Development and Utilization of Authentic Medicinal Materials, Jilin Agricultural University, Changchun 130118, P. R. China
| | - Xiao-Jie Gong
- Department of Biological Engineering, College of Life Science, Dalian Minzu University, Dalian 116600, P. R. China
| | - Jing-Tian Zhang
- College of Chinese Medicinal Materials, Jilin Provincial International Joint Research Center for the Development and Utilization of Authentic Medicinal Materials, Jilin Agricultural University, Changchun 130118, P. R. China
| | - Ivan Stève Nguepi Tsopmejio
- College of Chinese Medicinal Materials, Jilin Provincial International Joint Research Center for the Development and Utilization of Authentic Medicinal Materials, Jilin Agricultural University, Changchun 130118, P. R. China
| | - Wei Li
- College of Chinese Medicinal Materials, Jilin Provincial International Joint Research Center for the Development and Utilization of Authentic Medicinal Materials, Jilin Agricultural University, Changchun 130118, P. R. China
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, P. R. China
| |
Collapse
|
8
|
Ma T, Ji P, Wu FL, Li CC, Dong JQ, Yang HC, Wei YM, Hua YL. Research on the mechanism of Guanyu Zhixie Granule in intervening gastric ulcers in rats based on network pharmacology and multi-omics. Front Vet Sci 2024; 11:1390473. [PMID: 38835897 PMCID: PMC11149358 DOI: 10.3389/fvets.2024.1390473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/22/2024] [Indexed: 06/06/2024] Open
Abstract
Objective Guanyu Zhixie Granule (GYZXG) is a traditional Chinese medicine compound with definite efficacy in intervening in gastric ulcers (GUs). However, the effect mechanisms on GU are still unclear. This study aimed to explore its mechanism against GU based on amalgamated strategies. Methods The comprehensive chemical characterization of the active compounds of GYZXG was conducted using UHPLC-Q/TOF-MS. Based on these results, key targets and action mechanisms were predicted through network pharmacology. GU was then induced in rats using anhydrous ethanol (1 mL/200 g). The intervention effects of GYZXG on GU were evaluated by measuring the inhibition rate of GU, conducting HE staining, and assessing the levels of IL-6, TNF-α, IL-10, IL-4, Pepsin (PP), and epidermal growth factor (EGF). Real-time quantitative PCR (RT-qPCR) was used to verify the mRNA levels of key targets and pathways. Metabolomics, combined with 16S rRNA sequencing, was used to investigate and confirm the action mechanism of GYZXG on GU. The correlation analysis between differential gut microbiota and differential metabolites was conducted using the spearman method. Results For the first time, the results showed that nine active ingredients and sixteen targets were confirmed to intervene in GU when using GYZXG. Compared with the model group, GYZXG was found to increase the ulcer inhibition rate in the GYZXG-M group (p < 0.05), reduce the levels of IL-6, TNF-α, PP in gastric tissue, and increase the levels of IL-10, IL-4, and EGF. GYZXG could intervene in GU by regulating serum metabolites such as Glycocholic acid, Epinephrine, Ascorbic acid, and Linoleic acid, and by influencing bile secretion, the HIF-1 signaling pathway, and adipocyte catabolism. Additionally, GYZXG could intervene in GU by altering the gut microbiota diversity and modulating the relative abundance of Bacteroidetes, Bacteroides, Verrucomicrobia, Akkermansia, and Ruminococcus. The differential gut microbiota was strongly associated with serum differential metabolites. KEGG enrichment analysis indicated a significant role of the HIF-1 signaling pathway in GYZXG's intervention on GU. The changes in metabolites within metabolic pathways and the alterations in RELA, HIF1A, and EGF mRNA levels in RT-qPCR experiments provide further confirmation of this result. Conclusion GYZXG can intervene in GU induced by anhydrous ethanol in rats by regulating gut microbiota and metabolic disorders, providing a theoretical basis for its use in GU intervention.
Collapse
Affiliation(s)
- Ting Ma
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Peng Ji
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Fan-Lin Wu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Chen-Chen Li
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Jia-Qi Dong
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Hao-Chi Yang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Yan-Ming Wei
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Yong-Li Hua
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|