1
|
Subban K, Kempken F. Insights into Taxol® biosynthesis by endophytic fungi. Appl Microbiol Biotechnol 2023; 107:6151-6162. [PMID: 37606790 PMCID: PMC10560151 DOI: 10.1007/s00253-023-12713-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 08/23/2023]
Abstract
There have been two hundred reports that endophytic fungi produce Taxol®, but its production yield is often rather low. Although considerable efforts have been made to increase Taxol/taxanes production in fungi by manipulating cocultures, mutagenesis, genome shuffles, and gene overexpression, little is known about the molecular signatures of Taxol biosynthesis and its regulation. It is known that some fungi have orthologs of the Taxol biosynthetic pathway, but the overall architecture of this pathway is unknown. A biosynthetic putative gene homology approach, combined with genomics and transcriptomics analysis, revealed that a few genes for metabolite residues may be located on dispensable chromosomes. This review explores a number of crucial topics (i) finding biosynthetic pathway genes using precursors, elicitors, and inhibitors; (ii) orthologs of the Taxol biosynthetic pathway for rate-limiting genes/enzymes; and (iii) genomics and transcriptomics can be used to accurately predict biosynthetic putative genes and regulators. This provides promising targets for future genetic engineering approaches to produce fungal Taxol and precursors. KEY POINTS: • A recent trend in predicting Taxol biosynthetic pathway from endophytic fungi. • Understanding the Taxol biosynthetic pathway and related enzymes in fungi. • The genetic evidence and formation of taxane from endophytic fungi.
Collapse
Affiliation(s)
- Kamalraj Subban
- Department of Genetics & Molecular Biology in Botany, Botanical Institute and Botanical Garden, Christian-Albrecht University of Kiel, Olshausenstraße 40, 24098, Kiel, Germany
| | - Frank Kempken
- Department of Genetics & Molecular Biology in Botany, Botanical Institute and Botanical Garden, Christian-Albrecht University of Kiel, Olshausenstraße 40, 24098, Kiel, Germany.
| |
Collapse
|
2
|
Mohamed NZ, Shaban L, Safan S, El-Sayed ASA. Physiological and metabolic traits of Taxol biosynthesis of endophytic fungi inhabiting plants: Plant-microbial crosstalk, and epigenetic regulators. Microbiol Res 2023; 272:127385. [PMID: 37141853 DOI: 10.1016/j.micres.2023.127385] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 04/08/2023] [Accepted: 04/09/2023] [Indexed: 05/06/2023]
Abstract
Attenuating the Taxol productivity of fungi with the subculturing and storage under axenic conditions is the challenge that halts the feasibility of fungi to be an industrial platform for Taxol production. This successive weakening of Taxol productivity by fungi could be attributed to the epigenetic down-regulation and molecular silencing of most of the gene clusters encoding Taxol biosynthetic enzymes. Thus, exploring the epigenetic regulating mechanisms controlling the molecular machinery of Taxol biosynthesis could be an alternative prospective technology to conquer the lower accessibility of Taxol by the potent fungi. The current review focuses on discussing the different molecular approaches, epigenetic regulators, transcriptional factors, metabolic manipulators, microbial communications and microbial cross-talking approaches on restoring and enhancing the Taxol biosynthetic potency of fungi to be industrial platform for Taxol production.
Collapse
Affiliation(s)
- Nabil Z Mohamed
- Enzymology and Fungal Biotechnology Lab, Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | - Lamis Shaban
- Enzymology and Fungal Biotechnology Lab, Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt.
| | - Samia Safan
- Enzymology and Fungal Biotechnology Lab, Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | - Ashraf S A El-Sayed
- Enzymology and Fungal Biotechnology Lab, Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt.
| |
Collapse
|
3
|
Roth MG, Westrick NM, Baldwin TT. Fungal biotechnology: From yesterday to tomorrow. FRONTIERS IN FUNGAL BIOLOGY 2023; 4:1135263. [PMID: 37746125 PMCID: PMC10512358 DOI: 10.3389/ffunb.2023.1135263] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 03/07/2023] [Indexed: 09/26/2023]
Abstract
Fungi have been used to better the lives of everyday people and unravel the mysteries of higher eukaryotic organisms for decades. However, comparing progress and development stemming from fungal research to that of human, plant, and bacterial research, fungi remain largely understudied and underutilized. Recent commercial ventures have begun to gain popularity in society, providing a new surge of interest in fungi, mycelia, and potential new applications of these organisms to various aspects of research. Biotechnological advancements in fungal research cannot occur without intensive amounts of time, investments, and research tool development. In this review, we highlight past breakthroughs in fungal biotechnology, discuss requirements to advance fungal biotechnology even further, and touch on the horizon of new breakthroughs with the highest potential to positively impact both research and society.
Collapse
Affiliation(s)
- Mitchell G. Roth
- Department of Plant Pathology, The Ohio State University, Wooster, OH, United States
| | - Nathaniel M. Westrick
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, United States
| | - Thomas T. Baldwin
- Department of Plant Pathology, North Dakota State University, Fargo, ND, United States
| |
Collapse
|
4
|
An Overview on Taxol Production Technology and Its Applications as Anticancer Agent. BIOTECHNOL BIOPROC E 2022. [DOI: 10.1007/s12257-022-0063-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
5
|
Vélëz H, Gauchan DP, García-Gil MDR. Taxol and β-tubulins from endophytic fungi isolated from the Himalayan Yew, Taxus wallichiana Zucc. Front Microbiol 2022; 13:956855. [PMID: 36246258 PMCID: PMC9557061 DOI: 10.3389/fmicb.2022.956855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 09/08/2022] [Indexed: 11/13/2022] Open
Abstract
Paclitaxel, better known as the anticancer drug Taxol®, has been isolated from several plant species and has been shown to be produced by fungi, actinomycetes, and even bacteria isolated from marine macroalgae. Given its cytostatic effect, studies conducted in the 1990's showed that paclitaxel was toxic to many pathogenic fungi and oomycetes. Further studies led to the idea that the differences in paclitaxel sensitivity exhibited by different fungi were due to differences in the β-tubulin protein sequence. With the recent isolation of endophytic fungi from the leaves and bark of the Himalayan Yew, Taxus wallichiana Zucc., and the availability of genomes from paclitaxel-producing fungi, we decided to further explore the idea that endophytic fungi isolated from Yews should be well-adapted to their environment by encoding β-tubulin proteins that are insensitive to paclitaxel. Our results found evidence of episodic positive/diversifying selection at 10 sites (default p-value threshold of 0.1) in the β-tubulin sequences, corresponding to codon positions 33, 55, 172, 218, 279, 335, 359, 362, 379, and 406. Four of these positions (i.e., 172, 279, 359, and 362) have been implicated in the binding of paclitaxel by β-tubulin or formed part of the binding pocket. As expected, all the fungal endophytes grew in different media regardless of the paclitaxel concentration tested. Furthermore, our results also showed that Taxomyces andreanae CBS 279.92, the first fungus shown to produce paclitaxel, is a Basidiomycete fungus as the two beta tubulins encoded by the fungus clustered together with other Basidiomycete fungi.
Collapse
Affiliation(s)
- Heriberto Vélëz
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
- *Correspondence: Heriberto Vélëz
| | - Dhurva Prasad Gauchan
- Department of Biotechnology, School of Science, Kathmandu University, Dhulikhel, Nepal
| | - María del Rosario García-Gil
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, Sweden
| |
Collapse
|
6
|
Abstract
Lignin is an underutilized sustainable source of aromatic compounds. To valorize the low-value lignin monomers, we proposed an efficient strategy, involving enzymatic conversion from trans-p-hydroxycinnamic acids to generate valued-added canonical and non-canonical aromatic amino acids. Among them, β-amino acids are recognized as building blocks for bioactive natural products and pharmaceutical ingredients due to their attractive antitumor properties. Using computational enzyme design, the (R)-β-selective phenylalanine aminomutase from Taxus chinensis (TchPAM) was successfully mutated to accept β-tyrosine as the substrate, as well as to generate the (R)-β-tyrosine with excellent enantiopurity (ee > 99%) as the unique product from trans-p-hydroxycinnamic acid. Moreover, the kinetic parameters were determined for the reaction of four Y424 enzyme variants with the synthesis of different phenylalanine and tyrosine enantiomers. In the ammonia elimination reaction of (R)-β-tyrosine, the variants Y424N and Y424C displayed a two-fold increased catalytic efficiency of the wild type. In this work, a binding pocket in the active site, including Y424, K427, I431, and E455, was examined for its influence on the β-enantioselectivity of this enzyme family. Combining the upstream lignin depolymerization and downstream production, a sustainable value chain based on lignin is enabled. In summary, we report a β-tyrosine synthesis process from a monolignol component, offering a new way for lignin valorization by biocatalyst modification.
Collapse
|
7
|
Abdel-Fatah SS, El-Batal AI, El-Sherbiny GM, Khalaf MA, El-Sayed AS. Production, bioprocess optimization and γ-irradiation of Penicillium polonicum, as a new Taxol producing endophyte from Ginko biloba. ACTA ACUST UNITED AC 2021; 30:e00623. [PMID: 34026575 PMCID: PMC8120861 DOI: 10.1016/j.btre.2021.e00623] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 04/19/2021] [Accepted: 04/21/2021] [Indexed: 11/27/2022]
Abstract
Twenty-eight fungal endophytes were recovered from the different parts of Ginkgo biloba and screened for their Taxol producing potency. Among these isolates, Penicillium polonicum AUMC14487 was reported as the potent Taxol producer (90.53 μg/l). The chemical identity of the extracted Taxol was verified from the TLC, HPLC, NMR, EDX, and FTIR analyses. The extracted Taxol displayed a strong antiproliferative activity against HEPG2 (IC50 4.06 μM) and MCF7 (IC50 6.07 μM). The yield of Taxol by P. polonicum was optimized by nutritional optimization with the Response Surface Methodology (RSM) using Plackett-Burman and Central Composite Designs. In addition to nutritional optimization, the effect of γ-irradiation of the spores of P. polonicum on its Taxol producing potency was evaluated. The yield of Taxol by P. polonicum was increased via nutritional optimization by response surface methodology with Plackett-Burman and FCCD designs, and γ-irradiation by about 4.5 folds, comparing to the control culture. The yield of Taxol was increased by about 1.2 folds (401.2 μg/l) by γ -irradiation of the isolates at 0.5-0.75 kGy, comparing to the control cultures (332.2 μg/l). The highest Taxol yield was obtained by growing P. polonicum on modified Czapek's- Dox medium (sucrose 40.0 g/l, malt extract 20.0 g/l, peptone 2.0 g/l, K2PO4 2.0 g/l, KCl 1.0 g/l, NaNO3 2.0 g/l, MgSO4. 5H2O 1.0 g/l) of pH 7.0 at 30.0 °C for 7.0 days. From the FCCD design, sucrose, malt extract and incubation time being the highest significant variables medium components affecting the Taxol production by P. polonicum.
Collapse
Affiliation(s)
- Sobhy S Abdel-Fatah
- Drug Radiation Research Dep., Biotechnology Division, National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority, Cairo, Egypt
| | - Ahmed I El-Batal
- Drug Radiation Research Dep., Biotechnology Division, National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority, Cairo, Egypt
| | - Gamal M El-Sherbiny
- Botany and Microbiology Department, Faculty of Science (Boys), Al-Azhar University, Cairo, Egypt
| | - Mahmoud A Khalaf
- Drug Radiation Research Dep., Biotechnology Division, National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority, Cairo, Egypt.,Microbiology Dep., Biotechnology Division, National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority, Cairo, Egypt
| | - Ashraf S El-Sayed
- Enzymology and Fungal Biotechnology Lab (EFBL), Botany and Microbiology Department, Faculty of Science, Zagazig University, 44519, Egypt
| |
Collapse
|
8
|
Wang T, Li L, Zhuang W, Zhang F, Shu X, Wang N, Wang Z. Recent Research Progress in Taxol Biosynthetic Pathway and Acylation Reactions Mediated by Taxus Acyltransferases. Molecules 2021; 26:molecules26102855. [PMID: 34065782 PMCID: PMC8151764 DOI: 10.3390/molecules26102855] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/07/2021] [Accepted: 05/10/2021] [Indexed: 11/17/2022] Open
Abstract
Taxol is one of the most effective anticancer drugs in the world that is widely used in the treatments of breast, lung and ovarian cancer. The elucidation of the taxol biosynthetic pathway is the key to solve the problem of taxol supply. So far, the taxol biosynthetic pathway has been reported to require an estimated 20 steps of enzymatic reactions, and sixteen enzymes involved in the taxol pathway have been well characterized, including a novel taxane-10β-hydroxylase (T10βOH) and a newly putative β-phenylalanyl-CoA ligase (PCL). Moreover, the source and formation of the taxane core and the details of the downstream synthetic pathway have been basically depicted, while the modification of the core taxane skeleton has not been fully reported, mainly concerning the developments from diol intermediates to 2-debenzoyltaxane. The acylation reaction mediated by specialized Taxus BAHD family acyltransferases (ACTs) is recognized as one of the most important steps in the modification of core taxane skeleton that contribute to the increase of taxol yield. Recently, the influence of acylation on the functional and structural diversity of taxanes has also been continuously revealed. This review summarizes the latest research advances of the taxol biosynthetic pathway and systematically discusses the acylation reactions supported by Taxus ACTs. The underlying mechanism could improve the understanding of taxol biosynthesis, and provide a theoretical basis for the mass production of taxol.
Collapse
Affiliation(s)
- Tao Wang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; (T.W.); (L.L.); (W.Z.); (F.Z.); (X.S.); (N.W.)
| | - Lingyu Li
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; (T.W.); (L.L.); (W.Z.); (F.Z.); (X.S.); (N.W.)
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Weibing Zhuang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; (T.W.); (L.L.); (W.Z.); (F.Z.); (X.S.); (N.W.)
| | - Fengjiao Zhang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; (T.W.); (L.L.); (W.Z.); (F.Z.); (X.S.); (N.W.)
| | - Xiaochun Shu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; (T.W.); (L.L.); (W.Z.); (F.Z.); (X.S.); (N.W.)
| | - Ning Wang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; (T.W.); (L.L.); (W.Z.); (F.Z.); (X.S.); (N.W.)
| | - Zhong Wang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; (T.W.); (L.L.); (W.Z.); (F.Z.); (X.S.); (N.W.)
- Correspondence: ; Tel.: +86-025-84347055
| |
Collapse
|
9
|
Ezeobiora CE, Igbokwe NH, Amin DH, Mendie UE. Endophytic microbes from Nigerian ethnomedicinal plants: a potential source for bioactive secondary metabolites-a review. BULLETIN OF THE NATIONAL RESEARCH CENTRE 2021; 45:103. [PMID: 34121835 PMCID: PMC8185314 DOI: 10.1186/s42269-021-00561-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 05/31/2021] [Indexed: 05/14/2023]
Abstract
BACKGROUND Endophytes are highly beneficial species of microbes that live in symbiosis with plant tissues in the setting. Endophytes are difficult to isolate in their natural environment, and they are understudied despite being a rich source of bioactive molecules. There are varieties of new infectious diseases emerging across the world, necessitating a constant and expanded search for newer and more efficient bioactive molecules. Nigeria is known for its biodiversity in ethnomedicinal plants, yet these plants are understudied for endophytic microbes harbouring novel bioactive molecules. MAIN BODY Endophytes are a source of novel organic natural molecules and are thought to be drug discovery frontiers. Endophyte research has contributed to the discovery of possible anticancer agents following the discovery of taxol. Endophyte research has contributed to the discovery of possible drug compounds with antimicrobial, antioxidant, antiviral, antidiabetic, anti-Alzheimers disease and immunosuppressive properties among others. These breakthroughs provide hope for combating incurable diseases, drug resistance, the emergence of new infectious diseases, and other human health issues. Finding new medicines that may be effective candidates for treating newly emerging diseases in humans has a lot of promise. Most studies have been on fungi endophytes, with just a few reports on bacterial endophytes. The biology of endophytic bacteria and fungi, as well as endophytic microbes isolated from Nigerian medicinal plants, their isolation methods, identification by morphological and molecular methods, fermentation, purification, identification of bioactive compounds and biosynthetic gene clusters are all covered in this study. CONCLUSION In Nigeria, the sourcing and isolation of endophytes harboring biosynthetic gene clusters are still understudied, necessitating a rigorous quest for bioactive molecules in endophytes inhabiting various ethnomedicinal plants.
Collapse
Affiliation(s)
- Chijioke E. Ezeobiora
- Department of Pharmaceutical Microbiology and Biotechnology, Faculty of Pharmacy, University of Lagos, Lagos, Nigeria
| | - Nwamaka H. Igbokwe
- Department of Pharmaceutical Microbiology and Biotechnology, Faculty of Pharmacy, University of Lagos, Lagos, Nigeria
| | - Dina H. Amin
- Department of Microbiology, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Udoma E. Mendie
- Department of Pharmaceutical Microbiology and Biotechnology, Faculty of Pharmacy, University of Lagos, Lagos, Nigeria
| |
Collapse
|
10
|
Chakravarthi BVSK, Singh S, Kamalraj S, Gupta VK, Jayabaskaran C. Evaluation of spore inoculum and confirmation of pathway genetic blueprint of T13αH and DBAT from a Taxol-producing endophytic fungus. Sci Rep 2020; 10:21139. [PMID: 33273486 PMCID: PMC7712836 DOI: 10.1038/s41598-020-77605-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 10/21/2020] [Indexed: 02/06/2023] Open
Abstract
Taxol (paclitaxel), a plant-derived anticancer drug, has been among the most successful anticancer drugs of natural origin. Endophytic fungi have been proposed as a prominent alternative source for Taxol and its intermediate Baccatin III, however the very low yields remain a hinderance to their commercial utilization. Significant research efforts towards this end are underway globally. Here, we report the results on our earlier reported Taxol-producing endophytic fungus, Fusarium solani from the standpoint of spores as seed inoculum and media selection for enhanced Taxol and baccatin III yields. Spores produced on M1D medium with 94.76% viability were used for further media optimization for Taxol and Baccatin III production in five different liquid media under static and shaker condition at different cultivation days. Taxol and Baccatin III when quantified through competitive inhibition enzyme immunoassay (CIEIA), showed maximum production at 136.3 µg L−1 and 128.3 µg L−1, respectively in the modified flask basal broth (MFBB) under shaking condition. Further, two important genes of this pathway, namely taxane 13α-hydroxylase (T13αH) and 10-deacetylbaccatin III-10-β-O-acetyltransferase (DBAT) have been identified in this fungus. These findings are hoped to assist in further manipulation and metabolic engineering of the parent F. solani strain towards the enhanced production of Taxol and baccatin III.
Collapse
Affiliation(s)
| | - Satpal Singh
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Subban Kamalraj
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Vijai Kumar Gupta
- Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), SRUC Barony Campus, Parkgate, Dumfries, DG1 3NE, UK
| | | |
Collapse
|
11
|
El-Sayed ESR, Zaki AG, Ahmed AS, Ismaiel AA. Production of the anticancer drug taxol by the endophytic fungus Epicoccum nigrum TXB502: enhanced production by gamma irradiation mutagenesis and immobilization technique. Appl Microbiol Biotechnol 2020; 104:6991-7003. [DOI: 10.1007/s00253-020-10712-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/20/2020] [Accepted: 06/01/2020] [Indexed: 12/11/2022]
|
12
|
El-Sayed AS, El-Sayed MT, Rady AM, Zein N, Enan G, Shindia A, El-Hefnawy S, Sitohy M, Sitohy B. Exploiting the Biosynthetic Potency of Taxol from Fungal Endophytes of Conifers Plants; Genome Mining and Metabolic Manipulation. Molecules 2020; 25:E3000. [PMID: 32630044 PMCID: PMC7412027 DOI: 10.3390/molecules25133000] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 06/17/2020] [Accepted: 06/23/2020] [Indexed: 11/17/2022] Open
Abstract
Endophytic fungi have been considered as a repertoire for bioactive secondary metabolites with potential application in medicine, agriculture and food industry. The biosynthetic pathways by fungal endophytes raise the argument of acquisition of these machineries of such complex metabolites from the plant host. Diterpenoids "Taxol" is the most effective anticancer drug with highest annual sale, since its discovery in 1970 from the Pacific yew tree, Taxus brevifolia. However, the lower yield of Taxol from this natural source (bark of T. brevifolia), availability and vulnerability of this plant to unpredicted fluctuation with the ecological and environmental conditions are the challenges. Endophytic fungi from Taxus spp. opened a new avenue for industrial Taxol production due to their fast growth, cost effectiveness, independence on climatic changes, feasibility of genetic manipulation. However, the anticipation of endophytic fungi for industrial Taxol production has been challenged by the loss of its productivity, due to the metabolic reprograming of cells, downregulating the expression of its encoding genes with subculturing and storage. Thus, the objectives of this review were to (1) Nominate the endophytic fungal isolates with the Taxol producing potency from Taxaceae and Podocarpaceae; (2) Emphasize the different approaches such as molecular manipulation, cultural optimization, co-cultivation for enhancing the Taxol productivities; (3) Accentuate the genome mining of the rate-limiting enzymes for rapid screening the Taxol biosynthetic machinery; (4) Triggering the silenced rate-limiting genes and transcriptional factors to activates the biosynthetic gene cluster of Taxol.
Collapse
Affiliation(s)
- Ashraf S.A. El-Sayed
- Enzymology and Fungal Biotechnology Lab (EFBL), Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt; (M.T.E.-S.); (G.E.); (A.S.); (S.E.-H.)
| | - Manal T. El-Sayed
- Enzymology and Fungal Biotechnology Lab (EFBL), Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt; (M.T.E.-S.); (G.E.); (A.S.); (S.E.-H.)
| | - Amgad M. Rady
- Faculty of Biotechnology, October University for Modern Sciences and Arts, Cairo 12566, Egypt;
| | - Nabila Zein
- Chemistry Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt;
| | - Gamal Enan
- Enzymology and Fungal Biotechnology Lab (EFBL), Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt; (M.T.E.-S.); (G.E.); (A.S.); (S.E.-H.)
| | - Ahmed Shindia
- Enzymology and Fungal Biotechnology Lab (EFBL), Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt; (M.T.E.-S.); (G.E.); (A.S.); (S.E.-H.)
| | - Sara El-Hefnawy
- Enzymology and Fungal Biotechnology Lab (EFBL), Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt; (M.T.E.-S.); (G.E.); (A.S.); (S.E.-H.)
| | - Mahmoud Sitohy
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig 44519, Egypt;
| | - Basel Sitohy
- Department of Clinical Microbiology, Infection and Immunology, Umeå University, SE-90185 Umeå, Sweden
- Department of Radiation Sciences, Oncology, Umeå University, SE-90185 Umeå, Sweden
| |
Collapse
|
13
|
Comparative transcriptome analysis of a taxol-producing endophytic fungus, Aspergillus aculeatinus Tax-6, and its mutant strain. Sci Rep 2020; 10:10558. [PMID: 32601443 PMCID: PMC7324598 DOI: 10.1038/s41598-020-67614-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 06/11/2020] [Indexed: 12/02/2022] Open
Abstract
Taxol is a rare but extremely effective antitumor agent extracted from Taxus yew barks. Taxus plants are valuable and rare species, and the production of taxol from them is a complex process. Therefore, taxol-producing endophytic fungi seem to be a promising alternative because of their high practical value and convenient progress. In this study, the transcriptome of an endophytic fungus, Aspergillus aculeatinus Tax-6 was analyzed in order to understand the molecular mechanisms of producing fungal taxol. The results showed that genes involved in the mevalonate (MVA) pathway and non-mevalonate (MEP) pathway were expressed, including isopentenyl pyrophosphate transferase, geranyl pyrophosphate transferase, and geranylgeranyl pyrophosphate synthetase. However, those downstream genes involved in the conversion of taxa-4(5)-11(12)-diene from geranylgeranyl pyrophosphate were not expressed except for taxane 10-beta-hydroxylase. Additionally, a mutant strain, A. aculeatinus BT-2 was obtained from the original strain, A. aculeatinus Tax-6, using fungicidin as the mutagenic agent. The taxol yield of BT-2 was 560 µg L−1, which was higher than that of Tax-6. To identify the mechanism of the difference in taxol production, we compared the transcriptomes of the two fungi and explored the changes in the gene expression between them. When compared with the original strain, Tax-6, most genes related to the MVA pathway in the mutant strain BT-2 showed upregulation, including GGPPS. Moreover, most of the downstream genes were not expressed in the mutant fungi as well. Overall, the results revealed the pathway and mechanism of taxol synthesis in endophytic fungi and the potential for the construction of taxol-producing genetic engineering strains.
Collapse
|
14
|
Sah B, Subban K, Jayabaskaran C. Biochemical insights into the recombinant 10-deacetylbaccatin III-10-β-O-acetyltransferase enzyme from the Taxol-producing endophytic fungus Lasiodiplodia theobromae. FEMS Microbiol Lett 2020; 366:5435445. [PMID: 31062024 DOI: 10.1093/femsle/fnz072] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 04/06/2019] [Indexed: 12/19/2022] Open
Abstract
10-deacetylbaccatin III-10-β-O-acetyltransferase (DBAT) is a key rate-limiting enzyme of the Taxol biosynthetic pathway, which is uncharacterized in Taxol-producing endophytic fungi. Here, an open reading frame of DBAT was cloned from the Taxol-producing endophytic fungus Lasiodiplodia theobromae (LtDBAT). The LtDBAT enzyme was heterologously expressed and purified by the affinity and gel filtration chromatography methods. The molecular weight of the purified protein was 49 kDa and its identity was confirmed by western blot. The purified LtDBAT enzyme was capable of catalyzing 10-deacetylbaccatin III into baccatin III, as shown by liquid chromatography-mass spectroscopy. The mass spectra of baccatin III were identical to the authentic baccatin III. The LtDBAT enzyme was characterized and the kinetic parameters of catalysis were determined. In addition, localization of LtDBAT was performed by using confocal microscopy and the result showed that the enzyme was localized in lipid droplets. Together, this study provides biochemical insights into the fungal recombinant DBAT enzyme that is involved in the Taxol biosynthetic pathway. In the near future, engineering of the LtDBAT enzyme and the Taxol biosynthetic pathway in endophytic fungi could be an eco-friendly and economically feasible alternative source for production of Taxol and its precursors.
Collapse
Affiliation(s)
- Balendra Sah
- Department of Biochemistry, Indian Institute of Science, Bangalore-560012, India
| | - Kamalraj Subban
- Department of Biochemistry, Indian Institute of Science, Bangalore-560012, India
| | | |
Collapse
|
15
|
Kumar P, Singh B, Thakur V, Thakur A, Thakur N, Pandey D, Chand D. Hyper-production of taxol from Aspergillus fumigatus, an endophytic fungus isolated from Taxus sp. of the Northern Himalayan region. ACTA ACUST UNITED AC 2019; 24:e00395. [PMID: 31799144 PMCID: PMC6881681 DOI: 10.1016/j.btre.2019.e00395] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 11/04/2019] [Accepted: 11/06/2019] [Indexed: 12/01/2022]
Abstract
Taxol® (generic name Paclitaxel) is a chemotherapeutic drug, effective against head, neck, breast, lung, bladder, ovary, and cervix cancers. Rising demands in chemotherapy and limited supply of natural taxol have ultimately increased the cost of the drug. Semi synthesis using taxol precursors is not able to meet the global supply and has intensified the need to find alternative ways of taxol production. In the present study, 34 different endophytes were isolated from Taxus sp. collected from Shimla, Himachal Pradesh (India). Primary screening of taxol-producing fungi was carried out based on the presence of dbat gene, essential for the taxol biosynthetic pathway. A fungal isolate TPF-06 was screened to be a taxol-producing strain based on the PCR amplification results. It was characterized and identified as Aspergillus fumigatus by 18S rRNA (Accession No. KU-837249). Multiple sequence alignment (MSA) of nuclear ribosomal internal transcribed spacer (ITS) region and phylogenetic analysis confirmed that strain belonged to A. fumigatus clade (Accession No. MF-374798) and is endophytic in nature. Presence of taxol was detected and quantified by High-Performance Liquid Chromatography (HPLC) and characterized by using Thin Layer Chromatography (TLC), Ultraviolet (UV) spectroscopy, Mass spectrometry (MS), Fourier-Transform Infrared Spectroscopy (FTIR) and Nuclear Magnetic Resonance (NMR) spectroscopy. Microbial fermentation in the S7 medium yielded 1.60 g/L of taxol, which to the best of our knowledge is the highest taxol production from an endophytic fungus. Findings of the present study suggest that the A. fumigatus is an excellent alternate source for taxol supply, and it may become a highly potent strain on a commercial scale. The involvement of dbat gene in A. fumigatus KU-837249 strain further suggested a way of increasing taxol yield in fungi by medium engineering and recombinant DNA technology in the future.
Collapse
Key Words
- AIDS, Acquired Immuno-Deficiency Syndrome
- Aspergillus fumigatus
- BLAST, Basic Local Alignment Search Tool
- Cancer
- DNA, Deoxyribose Nucleic Acid
- Endophytes
- FTIR, Fourier Transform Infrared Spectroscopy
- HPLC, High Performance Liquid Chromatography
- ITS, Internal Transcribed Spacer
- MEGA, Molecular Evolutionary Genetics Analysis 7
- MMA, Modified Mycological Agar
- MS, Mass Spectroscopy
- NMR, Nuclear Magnetic Resonance
- PCR, Polymerase Chain Reaction
- TLC, Thin Layer Chromatography
- Taxol
- Taxus sp.
- UV, Ultra-Violet
- bapt, baccatin III-aminophenylpropanoyl-13-O-transferase
- dbat, 10-deacetylbaccatin III-10-O-acetyl transferase
- ts, taxadiene synthase
Collapse
Affiliation(s)
- Pradeep Kumar
- Department of Biotechnology, Himachal Pradesh University, Shimla, Himachal Pradesh, India.,Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh, India
| | - Balwant Singh
- Department of Biotechnology, Himachal Pradesh University, Shimla, Himachal Pradesh, India
| | - Vikram Thakur
- Department of Biotechnology, Himachal Pradesh University, Shimla, Himachal Pradesh, India
| | - Abhishek Thakur
- Department of Biotechnology, Himachal Pradesh University, Shimla, Himachal Pradesh, India
| | - Nandita Thakur
- Department of Biotechnology, Himachal Pradesh University, Shimla, Himachal Pradesh, India
| | - Deepak Pandey
- Department of Reproductive Biology, All India Institute of Medical Sciences, Delhi, India
| | - Duni Chand
- Department of Biotechnology, Himachal Pradesh University, Shimla, Himachal Pradesh, India
| |
Collapse
|
16
|
Isolation of taxol producing endophytic fungus Alternaria brassicicola from non-Taxus medicinal plant Terminalia arjuna. World J Microbiol Biotechnol 2019; 35:74. [DOI: 10.1007/s11274-019-2651-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 04/26/2019] [Indexed: 01/16/2023]
|
17
|
Jeewon R, Luckhun AB, Bhoyroo V, Sadeer NB, Mahomoodally MF, Rampadarath S, Puchooa D, Sarma VV, Durairajan SSK, Hyde KD. Pharmaceutical Potential of Marine Fungal Endophytes. BIOACTIVE MOLECULES IN FOOD 2019. [DOI: 10.1007/978-3-319-76900-4_6-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
18
|
El-Sayed AS, Ali DM, Yassin MA, Zayed RA, Ali GS. Sterol inhibitor “Fluconazole” enhance the Taxol yield and molecular expression of its encoding genes cluster from Aspergillus flavipes. Process Biochem 2019. [DOI: 10.1016/j.procbio.2018.10.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
19
|
Andrade HFD, Araújo LCAD, Santos BSD, Paiva PMG, Napoleão TH, Correia MTDS, Oliveira MBMD, Lima GMDS, Ximenes RM, Silva TDD, Silva GRD, Silva MVD. Screening of endophytic fungi stored in a culture collection for taxol production. Braz J Microbiol 2018; 49 Suppl 1:59-63. [PMID: 30174203 PMCID: PMC6328807 DOI: 10.1016/j.bjm.2018.06.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 05/25/2018] [Accepted: 06/06/2018] [Indexed: 12/20/2022] Open
Abstract
In this work, four isolates of endophytic fungi (Alternaria alternata, Colletotrichum gloesporioides, Glomerella cingulata and Nigrospora sphaerica), deposited in the culture collection 'University Recife Mycologia' (URM) at the Universidade Federal de Pernambuco, were characterized for the genes ITS 1 and 4 (region 5.8 S) and evaluated for taxol production.
Collapse
Affiliation(s)
| | | | - Bruno Souza Dos Santos
- Universidade Federal de Pernambuco, Centro de Biociências, Departamento de Bioquímica, Recife, PE, Brazil
| | | | - Thiago Henrique Napoleão
- Universidade Federal de Pernambuco, Centro de Biociências, Departamento de Bioquímica, Recife, PE, Brazil
| | | | | | | | - Rafael Matos Ximenes
- Universidade Federal de Pernambuco, Centro de Biociências, Departamento de Antibióticos, Recife, PE, Brazil
| | | | - Girliane Regina da Silva
- Universidade Federal Rural de Pernambuco, Centro de Apoio à Pesquisa (CENAPESQ), Recife, PE, Brazil
| | - Márcia Vanusa da Silva
- Universidade Federal de Pernambuco, Centro de Biociências, Departamento de Bioquímica, Recife, PE, Brazil
| |
Collapse
|
20
|
Are Microbial Endophytes the ‘Actual’ Producers of Bioactive Antitumor Agents? Trends Cancer 2018; 4:662-670. [DOI: 10.1016/j.trecan.2018.08.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 08/10/2018] [Accepted: 08/13/2018] [Indexed: 11/22/2022]
|
21
|
Miao LY, Mo XC, Xi XY, Zhou L, De G, Ke YS, Liu P, Song FJ, Jin WW, Zhang P. Transcriptome analysis of a taxol-producing endophytic fungus Cladosporium cladosporioides MD2. AMB Express 2018; 8:41. [PMID: 29556854 PMCID: PMC5859003 DOI: 10.1186/s13568-018-0567-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 03/03/2018] [Indexed: 01/19/2023] Open
Abstract
The shortage of molecular information for taxol-producing fungi has greatly impeded the understanding of fungal taxol biosynthesis mechanism. In this study, the transcriptome of one taxol-producing endophytic fungus Cladosporium cladosporioides MD2 was sequenced for the first time. About 1.77 Gbp clean reads were generated and further assembled into 16,603 unigenes with an average length of 1110 bp. All of the unigenes were annotated against seven public databases to present the transcriptome characteristics of C. cladosporioides MD2. A total of 12,479 unigenes could be annotated with at least one database, and 1593 unigenes could be annotated in all queried databases. In total, 8425 and 3350 unigenes were categorized into 57 GO functional groups and 262 KEGG pathways, respectively, exhibiting the dominant GO terms and metabolic pathways in the C. cladosporioides MD2 transcriptome. One potential and partial taxol biosynthetic pathway was speculated including 9 unigenes related to terpenoid backbone biosynthesis and 40 unigenes involved in the biosynthetic steps from geranylgeranyl diphosphate to 10-deacetylbaccatin III. These results provided valuable information for the molecular mechanism research of taxol biosynthesis in C. cladosporioides MD2.
Collapse
Affiliation(s)
- Li-Yun Miao
- Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, Key Laboratory of State Ethnic Affairs Commission for Biological Technology, College of Life Science, South-Central University for Nationalities, Wuhan, 430074 China
- School of Life Science, Wuchang University of Technology, Wuhan, 430074 China
- School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - Xin-Chun Mo
- School of Applied Technology, Lijiang Teacher College, Lijiang, 674100 China
| | - Xiao-Yuan Xi
- Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, Key Laboratory of State Ethnic Affairs Commission for Biological Technology, College of Life Science, South-Central University for Nationalities, Wuhan, 430074 China
| | - Lan Zhou
- Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, Key Laboratory of State Ethnic Affairs Commission for Biological Technology, College of Life Science, South-Central University for Nationalities, Wuhan, 430074 China
| | - Ge De
- Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, Key Laboratory of State Ethnic Affairs Commission for Biological Technology, College of Life Science, South-Central University for Nationalities, Wuhan, 430074 China
| | - You-Sheng Ke
- Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, Key Laboratory of State Ethnic Affairs Commission for Biological Technology, College of Life Science, South-Central University for Nationalities, Wuhan, 430074 China
| | - Pan Liu
- Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, Key Laboratory of State Ethnic Affairs Commission for Biological Technology, College of Life Science, South-Central University for Nationalities, Wuhan, 430074 China
| | - Fa-Jun Song
- Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, Key Laboratory of State Ethnic Affairs Commission for Biological Technology, College of Life Science, South-Central University for Nationalities, Wuhan, 430074 China
| | - Wen-Wen Jin
- School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - Peng Zhang
- Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, Key Laboratory of State Ethnic Affairs Commission for Biological Technology, College of Life Science, South-Central University for Nationalities, Wuhan, 430074 China
| |
Collapse
|
22
|
Sah B, Subban K, Chelliah J. Cloning and sequence analysis of 10-deacetylbaccatin III-10-O-acetyl transferase gene and WRKY1 transcription factor from taxol-producing endophytic fungus Lasiodiplodia theobromea. FEMS Microbiol Lett 2017; 364:4675215. [DOI: 10.1093/femsle/fnx253] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 11/26/2017] [Indexed: 11/12/2022] Open
|
23
|
Videira S, Groenewald J, Nakashima C, Braun U, Barreto R, de Wit P, Crous P. Mycosphaerellaceae - Chaos or clarity? Stud Mycol 2017; 87:257-421. [PMID: 29180830 PMCID: PMC5693839 DOI: 10.1016/j.simyco.2017.09.003] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The Mycosphaerellaceae represent thousands of fungal species that are associated with diseases on a wide range of plant hosts. Understanding and stabilising the taxonomy of genera and species of Mycosphaerellaceae is therefore of the utmost importance given their impact on agriculture, horticulture and forestry. Based on previous molecular studies, several phylogenetic and morphologically distinct genera within the Mycosphaerellaceae have been delimited. In this study a multigene phylogenetic analysis (LSU, ITS and rpb2) was performed based on 415 isolates representing 297 taxa and incorporating ex-type strains where available. The main aim of this study was to resolve the phylogenetic relationships among the genera currently recognised within the family, and to clarify the position of the cercosporoid fungi among them. Based on these results many well-known genera are shown to be paraphyletic, with several synapomorphic characters that have evolved more than once within the family. As a consequence, several old generic names including Cercosporidium, Fulvia, Mycovellosiella, Phaeoramularia and Raghnildiana are resurrected, and 32 additional genera are described as new. Based on phylogenetic data 120 genera are now accepted within the family, but many currently accepted cercosporoid genera still remain unresolved pending fresh collections and DNA data. The present study provides a phylogenetic framework for future taxonomic work within the Mycosphaerellaceae.
Collapse
Key Words
- Adelopus gaeumannii T. Rohde
- Amycosphaerella keniensis (Crous & T.A. Cout.) Videira & Crous
- Australosphaerella Videira & Crous
- Australosphaerella nootherensis (Carnegie) Videira & Crous
- Biharia vangueriae Thirum. & Mishra
- Brunswickiella Videira & Crous
- Brunswickiella parsonsiae (Crous & Summerell) Videira & Crous
- Catenulocercospora C. Nakash., Videira & Crous
- Catenulocercospora fusimaculans (G.F. Atk.) C. Nakash., Videira & Crous
- Cercoramularia Videira, H.D. Shin, C. Nakash. & Crous
- Cercoramularia koreana Videira, H.D. Shin, C. Nakash. & Crous
- Cercospora brachycarpa Syd.
- Cercospora cajani Henn.
- Cercospora desmodii Ellis & Kellerm.
- Cercospora ferruginea Fuckel
- Cercospora gnaphaliacea Cooke
- Cercospora gomphrenicola Speg.
- Cercospora henningsii Allesch.
- Cercospora mangiferae Koord.
- Cercospora microsora Sacc.
- Cercospora rosicola Pass.
- Cercospora smilacis Thüm.
- Cercospora tiliae Peck
- Cercosporidium californicum (S.T. Koike & Crous) Videira & Crous
- Cercosporidium helleri Earle
- Chuppomyces Videira & Crous
- Chuppomyces handelii (Bubák) U. Braun, C. Nakash., Videira & Crous
- Cladosporium bacilligerum Mont. & Fr.
- Cladosporium chaetomium Cooke
- Cladosporium fulvum Cooke
- Cladosporium lonicericola Yong H. He & Z.Y. Zhang
- Cladosporium personatum Berk. & M.A. Curtis
- Clarohilum Videira & Crous
- Clarohilum henningsii (Allesch.) Videira & Crous
- Clasterosporium degenerans Syd. & P. Syd.
- Clypeosphaerella calotropidis (Ellis & Everh.) Videira & Crous
- Collarispora Videira & Crous
- Collarispora valgourgensis (Crous) Videira & Crous
- Coremiopassalora U. Braun, C. Nakash., Videira & Crous
- Coremiopassalora eucalypti (Crous & Alfenas) U. Braun, C. Nakash., Videira & Crous
- Coremiopassalora leptophlebae (Crous et al.) U. Braun, C. Nakash., Videira & Crous
- Coryneum vitiphyllum Speschnew
- Cryptosporium acicola Thüm.
- Deightonomyces Videira & Crous
- Deightonomyces daleae (Ellis & Kellerm.) Videira & Crous
- Devonomyces Videira & Crous
- Devonomyces endophyticus (Crous & H. Sm. Ter) Videira & Crous
- Distocercosporaster Videira, H.D. Shin, C. Nakash. & Crous
- Distocercosporaster dioscoreae (Ellis & G. Martin) Videira, H.D. Shin, C. Nakash. & Crous
- Distomycovellosiella U. Braun, C. Nakash., Videira & Crous
- Distomycovellosiella brachycarpa (Syd.) U. Braun, C. Nakash., Videira & Crous
- Exopassalora Videira & Crous
- Exopassalora zambiae (Crous & T.A. Cout.) Videira & Crous
- Exosporium livistonicola U. Braun, Videira & Crous for Distocercospora livistonae U. Braun & C.F. Hill
- Exutisphaerella Videira & Crous
- Exutisphaerella laricina (R. Hartig) Videira & Crous
- Fusoidiella anethi (Pers.) Videira & Crous
- Graminopassalora U. Braun, C. Nakash., Videira & Crous
- Graminopassalora graminis (Fuckel) U. Braun, C. Nakash., Videira & Crous
- Helicoma fasciculatum Berk. & M.A. Curtis.
- Hyalocercosporidium Videira & Crous
- Hyalocercosporidium desmodii Videira & Crous
- Hyalozasmidium U. Braun, C. Nakash., Videira & Crous
- Hyalozasmidium aerohyalinosporum (Crous & Summerell) Videira & Crous
- Hyalozasmidium sideroxyli U. Braun, C. Nakash., Videira & Crous
- Isariopsis griseola Sacc.
- Madagascaromyces U. Braun, C. Nakash., Videira & Crous
- Madagascaromyces intermedius (Crous & M.J. Wingf.) Videira & Crous
- Micronematomyces U. Braun, C. Nakash., Videira & Crous
- Micronematomyces caribensis (Crous & Den Breeÿen) U. Braun, C. Nakash., Videira & Crous
- Micronematomyces chromolaenae (Crous & Den Breeÿen) U. Braun, C. Nakash., Videira & Crous
- Multi-gene phylogeny
- Mycosphaerella
- Neoceratosperma haldinae U. Braun, C. Nakash., Videira & Crous
- Neoceratosperma legnephoricola U. Braun, C. Nakash., Videira & Crous
- Neocercosporidium Videira & Crous
- Neocercosporidium smilacis (Thüm.) U. Braun, C. Nakash., Videira & Crous
- Neophloeospora Videira & Crous
- Neophloeospora maculans (Bérenger) Videira & Crous
- Nothopassalora U. Braun, C. Nakash., Videira & Crous
- Nothopassalora personata (Berk. & M.A. Curtis) U. Braun, C. Nakash., Videira & Crous
- Nothopericoniella Videira & Crous
- Nothopericoniella perseae-macranthae (Hosag. & U. Braun) Videira & Crous
- Nothophaeocryptopus Videira, C. Nakash., U. Braun, Crous
- Nothophaeocryptopus gaeumannii (T. Rohde) Videira, C. Nakash., U. Braun, Crous
- Pachyramichloridium Videira & Crous
- Pachyramichloridium pini (de Hoog & Rahman) U. Braun, C. Nakash., Videira & Crous
- Paracercosporidium Videira & Crous
- Paracercosporidium microsorum (Sacc.) U. Braun, C. Nakash., Videira & Crous
- Paracercosporidium tiliae (Peck) U. Braun, C. Nakash., Videira & Crous
- Paramycosphaerella wachendorfiae (Crous) Videira & Crous
- Paramycovellosiella Videira, H.D. Shin & Crous
- Paramycovellosiella passaloroides (G. Winter) Videira, H.D. Shin & Crous
- Parapallidocercospora Videira, Crous, U. Braun, C. Nakash.
- Parapallidocercospora colombiensis (Crous et al.) Videira & Crous
- Parapallidocercospora thailandica (Crous et al.) Videira & Crous
- Phaeocercospora juniperina (Georgescu & Badea) U. Braun, C. Nakash., Videira & Crous
- Plant pathogen
- Pleopassalora Videira & Crous
- Pleopassalora perplexa (Beilharz et al.) Videira & Crous
- Pleuropassalora U. Braun, C. Nakash., Videira & Crous
- Pleuropassalora armatae (Crous & A.R. Wood) U. Braun, C. Nakash., Videira & Crous
- Pluripassalora Videira & Crous
- Pluripassalora bougainvilleae (Munt.-Cvetk.) U. Braun, C. Nakash., Videira & Crous
- Pseudocercospora convoluta (Crous & Den Breeÿen) U. Braun, C. Nakash., Videira & Crous
- Pseudocercospora nodosa (Constant.) U. Braun, C. Nakash., Videira & Crous
- Pseudocercospora platanigena Videira & Crous for Stigmella platani Fuckel, non Pseudocercospora platani (J.M. Yen) J.M. Yen 1979
- Pseudocercospora zambiensis (Deighton) Crous & U. Braun
- Pseudopericoniella Videira & Crous
- Pseudopericoniella levispora (Arzanlou, W. Gams & Crous) Videira & Crous
- Pseudophaeophleospora U. Braun, C. Nakash., Videira & Crous
- Pseudophaeophleospora atkinsonii (Syd.) U. Braun, C. Nakash., Videira & Crous
- Pseudophaeophleospora stonei (Crous) U. Braun, C. Nakash., Videira & Crous
- Pseudozasmidium Videira & Crous
- Pseudozasmidium eucalypti (Crous & Summerell) Videira & Crous
- Pseudozasmidium nabiacense (Crous & Carnegie) Videira & Crous
- Pseudozasmidium parkii (Crous & Alfenas) Videira & Crous
- Pseudozasmidium vietnamense (Barber & T.I. Burgess) Videira & Crous
- Ragnhildiana ampelopsidis (Peck) U. Braun, C. Nakash., Videira & Crous
- Ragnhildiana diffusa (Heald & F.A. Wolf) Videira & Crous
- Ragnhildiana ferruginea (Fuckel) U. Braun, C. Nakash., Videira & Crous
- Ragnhildiana gnaphaliaceae (Cooke) Videira, H.D. Shin, C. Nakash. & Crous
- Ragnhildiana perfoliati (Ellis & Everh.) U. Braun, C. Nakash., Videira & Crous
- Ragnhildiana pseudotithoniae (Crous & Cheew.) U. Braun, C. Nakash., Videira & Crous
- Ramulispora sorghiphila U. Braun, C. Nakash., Videira & Crous
- Rhachisphaerella Videira & Crous
- Rhachisphaerella mozambica (Arzanlou & Crous) Videira & Crous
- Rosisphaerella Videira & Crous
- Rosisphaerella rosicola (Pass.) U. Braun, C. Nakash., Videira & Crous
- Scolicotrichum roumeguerei Briosi & Cavara
- Septoria martiniana Sacc
- Sphaerella araneosa Rehm
- Sphaerella laricina R. Hartig
- Stictosepta cupularis Petr.
- Stigmella platani Fuckel
- Sultanimyces Videira & Crous
- Sultanimyces vitiphyllus (Speschnew) Videira & Crous
- Tapeinosporium viride Bonord
- Taxonomy
- Utrechtiana roumeguerei (Cavara) Videira & Crous
- Virosphaerella Videira & Crous
- Virosphaerella irregularis (Cheew. et al.) Videira & Crous
- Virosphaerella pseudomarksii (Cheew. et al.) Videira & Crous
- Xenosonderhenioides Videira & Crous
- Xenosonderhenioides indonesiana C. Nakash., Videira & Crous
- Zasmidium arcuatum (Arzanlou et al.) Videira & Crous
- Zasmidium biverticillatum (Arzanlou & Crous) Videira & Crous
- Zasmidium cerophilum (Tubaki) U. Braun, C. Nakash., Videira & Crous
- Zasmidium daviesiae (Cooke & Massee) U. Braun, C. Nakash., Videira & Crous
- Zasmidium elaeocarpi U. Braun, C. Nakash., Videira & Crous
- Zasmidium eucalypticola U. Braun, C. Nakash., Videira & Crous
- Zasmidium grevilleae U. Braun, C. Nakash., Videira & Crous
- Zasmidium gupoyu (R. Kirschner) U. Braun, C. Nakash., Videira & Crous
- Zasmidium hakeae U. Braun, C. Nakash., Videira & Crous
- Zasmidium iteae (R. Kirschner) U. Braun, C. Nakash., Videira & Crous
- Zasmidium musae-banksii Videira & Crous for Ramichloridium australiense Arzanlou & Crous, non Zasmidium australiense (J.L. Mulder) U. Braun & Crous 2013
- Zasmidium musigenum Videira & Crous for Veronaea musae Stahel ex M.B. Ellis, non Zasmidium musae (Arzanlou & Crous) Crous & U. Braun 2010
- Zasmidium proteacearum (D.E. Shaw & Alcorn) U. Braun, C. Nakash. & Crous
- Zasmidium pseudotsugae (V.A.M. Mill. & Bonar) Videira & Crous
- Zasmidium pseudovespa (Carnegie) U. Braun, C. Nakash., Videira & Crous
- Zasmidium schini U. Braun, C. Nakash., Videira & Crous
- Zasmidium strelitziae (Arzanlou et al.) Videira & Crous
- Zasmidium tsugae (Dearn.) Videira & Crous
- Zasmidium velutinum (G. Winter) Videira & Crous
Collapse
Affiliation(s)
- S.I.R. Videira
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
- Wageningen University and Research Centre (WUR), Laboratory of Phytopathology, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - J.Z. Groenewald
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - C. Nakashima
- Graduate School of Bioresources, Mie University, 1577 Kurima-machiya, Tsu, Mie, 514-8507, Japan
| | - U. Braun
- Martin-Luther-Universität Halle-Wittenberg, Institut für Biologie, Bereich Geobotanik, Herbarium, Neuwerk 21, 06099, Halle (Saale), Germany
| | - R.W. Barreto
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - P.J.G.M. de Wit
- Wageningen University and Research Centre (WUR), Laboratory of Phytopathology, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - P.W. Crous
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
- Wageningen University and Research Centre (WUR), Laboratory of Phytopathology, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| |
Collapse
|
24
|
Venugopalan A, Potunuru UR, Dixit M, Srivastava S. Reprint of: Effect of fermentation parameters, elicitors and precursors on camptothecin production from the endophyte Fusarium solani. BIORESOURCE TECHNOLOGY 2016; 213:311-318. [PMID: 27189536 DOI: 10.1016/j.biortech.2016.05.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Volumetric productivity of camptothecin from the suspension culture of the endophyte Fusarium solani was enhanced up to ∼152 fold (from 0.19μgl(-1)d(-1) to 28.9μgl(-1)d(-1)) under optimized fermentation conditions including initial pH (6.0), temperature (32°C) and agitation speed (80rpm) with (5% (v/v)) ethanol as medium component. Among various elicitors and precursors studied, tryptamine (0.5mM) as precursor and bovine serum albumin (BSA) (0.075mM) as an elicitor added on day 6 of the cultivation period resulted in maximum enhancement of camptothecin concentration (up to 4.5 and 3.4-fold, respectively). These leads provide immense scope for further enhancement in camptothecin productivity at bioreactor level. The cytotoxicity analysis of the crude camptothecin extract from the fungal biomass revealed its high effectiveness against colon and mammary gland cancer cell lines.
Collapse
Affiliation(s)
- Aarthi Venugopalan
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600 036, India
| | - Uma Rani Potunuru
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600 036, India
| | - Madhulika Dixit
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600 036, India
| | - Smita Srivastava
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600 036, India.
| |
Collapse
|
25
|
Venugopalan A, Potunuru UR, Dixit M, Srivastava S. Effect of fermentation parameters, elicitors and precursors on camptothecin production from the endophyte Fusarium solani. BIORESOURCE TECHNOLOGY 2016; 206:104-111. [PMID: 26851893 DOI: 10.1016/j.biortech.2016.01.079] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 01/21/2016] [Accepted: 01/22/2016] [Indexed: 06/05/2023]
Abstract
Volumetric productivity of camptothecin from the suspension culture of the endophyte Fusarium solani was enhanced up to ∼152 fold (from 0.19 μg l(-1) d(-1) to 28.9 μg l(-1) d(-1)) under optimized fermentation conditions including initial pH (6.0), temperature (32 °C) and agitation speed (80 rpm) with (5% (v/v)) ethanol as medium component. Among various elicitors and precursors studied, tryptamine (0.5 mM) as precursor and bovine serum albumin (BSA) (0.075 mM) as an elicitor added on day 6 of the cultivation period resulted in maximum enhancement of camptothecin concentration (up to 4.5 and 3.4-fold, respectively). These leads provide immense scope for further enhancement in camptothecin productivity at bioreactor level. The cytotoxicity analysis of the crude camptothecin extract from the fungal biomass revealed its high effectiveness against colon and mammary gland cancer cell lines.
Collapse
Affiliation(s)
- Aarthi Venugopalan
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600 036, India
| | - Uma Rani Potunuru
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600 036, India
| | - Madhulika Dixit
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600 036, India
| | - Smita Srivastava
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600 036, India.
| |
Collapse
|
26
|
Abstract
The protection and sustainable utilization of natural resources are among the most pressing global problems of the 21st century.
Collapse
Affiliation(s)
- W. C. Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines
- Institute of Materia Medica
- Chinese Academy of Medical Sciences
- Peking Union Medical College
- Beijing 100050
| | - T. Gong
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines
- Institute of Materia Medica
- Chinese Academy of Medical Sciences
- Peking Union Medical College
- Beijing 100050
| | - P. Zhu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines
- Institute of Materia Medica
- Chinese Academy of Medical Sciences
- Peking Union Medical College
- Beijing 100050
| |
Collapse
|
27
|
Soliman S, Greenwood J, Bombarely A, Mueller L, Tsao R, Mosser D, Raizada M. An Endophyte Constructs Fungicide-Containing Extracellular Barriers for Its Host Plant. Curr Biol 2015; 25:2570-6. [DOI: 10.1016/j.cub.2015.08.027] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 08/08/2015] [Accepted: 08/12/2015] [Indexed: 10/23/2022]
|