1
|
Hurtado-Navarro M, Garcia-Ibañez P, Pascual JA, Carvajal M. Interaction of beneficial microorganisms and phenolic compounds in hydroponically cultivated tomato plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 222:109793. [PMID: 40106932 DOI: 10.1016/j.plaphy.2025.109793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 02/26/2025] [Accepted: 03/13/2025] [Indexed: 03/22/2025]
Abstract
The combined effects of applying extracts derived from plant debris and biostimulant microorganisms have not been thoroughly investigated. Furthermore, the interaction between these components and plants remains poorly understood. Utilizing the commercial cherry tomato (Solanum lycopersicum cv. Unidarkwin) as a study model, we conducted a hydroponic experiment in a controlled growth chamber to assess the impact of foliar application of phenolic compounds extracted from Vitis vinifera leaves, combined with the inoculation of Trichoderma harzianum or Bacillus velezensis via roots. Plant growth, gas exchange and root architecture were measured and mineral nutrients, chlorophylls and phenolic compounds were analysed. The results showed that phenolic compounds produced an increase in root fresh weight, by the enhanced root length. This could be related to the improved transpiration rate, sub-stomatal CO2 concentration, phosphorus and iron concentration in the roots. A positive effect was also found by B. velezensis application in root length development that could be related to the increase in hydraulic conductance. However, T. harzianum inoculation only showed higher root diameter and volume in combination to phenolic application, but with no effect on growth. The absence of caffeic acid and sinapic acid in the Hoagland solution used in the B. velezensis treatments and of chlorogenic acid in all treatments with added microorganisms suggested their metabolization. Therefore, our findings establish that the phenolic exudation could regulate the interaction of microorganism with plants resulting in beneficial physiological changes.
Collapse
Affiliation(s)
- María Hurtado-Navarro
- Aquaporins Group, Plant Nutrition Department, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Campus Universitario de Espinardo, Edificio 25, 30100, Murcia, Spain; Enzymology and Bioremediation of Soils and Organic Waste Group, Soil and Water Conservation and Organic Waste Management Department, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Campus Universitario de Espinardo, Edificio 25, 30100, Murcia, Spain
| | - Paula Garcia-Ibañez
- Aquaporins Group, Plant Nutrition Department, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Campus Universitario de Espinardo, Edificio 25, 30100, Murcia, Spain
| | - Jose Antonio Pascual
- Enzymology and Bioremediation of Soils and Organic Waste Group, Soil and Water Conservation and Organic Waste Management Department, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Campus Universitario de Espinardo, Edificio 25, 30100, Murcia, Spain
| | - Micaela Carvajal
- Aquaporins Group, Plant Nutrition Department, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Campus Universitario de Espinardo, Edificio 25, 30100, Murcia, Spain.
| |
Collapse
|
2
|
El-Sharkawy HHA, Mostafa NA, Yousef SAM, El-Blasy SAS, Badeea OAE. Enhancing Trichoderma efficacy in managing wheat stem rust disease and boosting production through the application of certain chemical inducers. BMC PLANT BIOLOGY 2025; 25:562. [PMID: 40301750 PMCID: PMC12042491 DOI: 10.1186/s12870-025-06434-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 03/20/2025] [Indexed: 05/01/2025]
Abstract
BACKGROUND Wheat stem rust (WSR), caused by Puccinia graminis f. sp. tritici (Pgt), represents a significant threat to global wheat production. Biocontrol agents, such as Trichoderma harzianum HE22 (TH), offer sustainable strategies for managing this disease. This study evaluates the efficacy of TH cultured in potato dextrose broth (PDB) supplemented with various chemical inducers (TSDCIS), including potassium tartrate (T1), a mixture of micronutrients (T2), and thiamine (T3). These treatments were compared to unmodified TH (T4) to evaluate their potential in controlling WSR at both the seedling stage and under field conditions, with the primary objective of enhancing disease management while improving wheat yield and quality. RESULTS Under both greenhouse and field conditions, T1 significantly reduced disease severity by 86.2% and 77.7%, respectively, and decreased the area under the disease progress curve (AUDPC) by 77.5% compared to the untreated control. T1 also extended the incubation and latent periods, reduced pustule density, and mitigated oxidative damage. Biochemical analyses revealed elevated levels of total phenols and enhanced activity of antioxidant enzymes, including peroxidase (POD) and polyphenol oxidase (PPO), along with increased concentrations of ascorbic acid and proline. Additionally, T1 reduced lipid peroxidation, lowered H₂O₂ concentrations, and minimized electrolyte leakage, demonstrating its protective effects on plant tissues. Microscopic analyses using transmission electron microscopy (TEM) and scanning electron microscopy (SEM) confirmed these protective effects. Treated plants exhibited intact cellular membranes, well-organized chloroplasts, and enhanced cellular integrity, whereas untreated plants showed severe structural damage, including plasmolysis and distorted chloroplast morphology. CONCLUSION T. harzianum HE22 supplemented with potassium tartrate (T1) demonstrates significant potential as an environmentally friendly and highly effective strategy for managing wheat stem rust. This approach not only reduces disease severity but also enhances wheat yield and overall plant health, making it a promising tool for sustainable agricultural practices.
Collapse
Affiliation(s)
- Hany H A El-Sharkawy
- Mycology and Diseases Survey Research Department, Plant Pathology Research Institute, Agricultural Research Center, Giza, Egypt.
- Wheat Diseases Research Department, Plant Pathology Research Institute, Agricultural Research Center, Giza, Egypt.
| | - Nada A Mostafa
- Agricultural Botany Department, Faculty of Agriculture, Mansoura University, Mansoura, Egypt
| | - Safaa A M Yousef
- Mycology and Diseases Survey Research Department, Plant Pathology Research Institute, Agricultural Research Center, Giza, Egypt
| | - Salama A S El-Blasy
- Mycology and diseases Survey Research Department, Plant Pathology Research Institute, Agricultural Research Center, Giza, Egypt
| | - Osama Abd El Badeea
- Leguminous and Forage Crop Diseases Department, Plant Pathology Research Institute, Agricultural Research Center, Giza, Egypt
| |
Collapse
|
3
|
Mondal A, Parvez SS, Majumder A, Sharma K, Das B, Bakshi U, Alam M, Banik A. Co-inoculation of Trichoderma and tea root-associated bacteria enhance flavonoid production and abundance of mycorrhizal colonization in tea (Camellia sinensis). Microbiol Res 2025; 293:128084. [PMID: 39903999 DOI: 10.1016/j.micres.2025.128084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 01/21/2025] [Accepted: 01/24/2025] [Indexed: 02/06/2025]
Abstract
Tea is one of the most popular nonalcoholic beverages, that contains several medicinally important flavonoids. Due to seasonal variation and various environmental stresses, the overall consistency of tea flavonoids affects the tea quality. To combat stress, plants stimulate symbiotic relationships with root-associated beneficial microbiomes that sustain nutrient allocation. Therefore, a study has been designed to understand the role of the tea root microbiome in sustaining tea leaf flavonoid production. To enumerate the microbiome, tea root and rhizoplane soil were collected from 3 years of healthy plants from Jalpaiguri district, West Bengal, India. A culture-independent approach was adopted to identify root and rhizosphere microbial diversity (BioSample: SAMN31404869; SRA: SRS15503027 [rhizosphere soil metagenome] BioSample: SAMN31404868;SRA:SRS15503030 [root metagenome]. In addition to diverse microbes, four mycorrhiza fungi, i.e., Glomus intraradices, Glomus irregulare, Paraglomus occultum and Scutellospora heterogama were predominant in collected root samples. A culture-dependent approach was also adopted to isolate several plant growth-promoting bacteria [Bacillus sp. D56, Bacillus sp. D42, Bacillus sp. DR15, Rhizobium sp. DR23 (NCBI Accession: OR821747-OR821750)] and one fungal [Trichoderma sp. AM6 (NCBI Accession:OM915414)] strain. A pot experiment was designed to assess the impact of that isolated microbiome on tea seedlings. After six months of microbiome inoculation, tea plants' physicochemical and transcriptional parameters were evaluated. The results confer that the microbiome-treated treatments [(T1-without any microbial inoculation; NCBI Accession: SAMN33591153), Trichoderma sp. AM6 (T2; NCBI Accession: SAMN33591155) and Trichoderma sp. AM6 +VAM containing tea root+synthetic microbial consortia (T5; NCBI Accession: SAMN33591154)] could enhance the total flavonoid content in tea seedlings by upregulating certain transcripts associated with the flavonoid biosynthesis pathway of tea.
Collapse
Affiliation(s)
- Anupam Mondal
- Laboratory of Microbial Interaction, Institute of Health Sciences, Presidency University, Canal Bank Road, DG Block (Newtown), Action Area 1D, Newtown, Kolkata, West Bengal 700156, India; Microbial Ecology and Physiology Lab, Department of Biological Sciences, Aliah University, IIA/27 New Town, Kolkata, West Bengal 700160, India
| | - Sk Soyal Parvez
- Laboratory of Microbial Interaction, Institute of Health Sciences, Presidency University, Canal Bank Road, DG Block (Newtown), Action Area 1D, Newtown, Kolkata, West Bengal 700156, India
| | - Anusha Majumder
- Laboratory of Microbial Interaction, Institute of Health Sciences, Presidency University, Canal Bank Road, DG Block (Newtown), Action Area 1D, Newtown, Kolkata, West Bengal 700156, India
| | - Kalpna Sharma
- R&D Centre, Danguajhar Tea Garden, Goodricke Group Ltd., Jalpaiguri, West Bengal, India
| | - Bimal Das
- Department of Genetics and Plant Breeding College of Agriculture, (Extended Campus) Uttar Banga Krishi Viswavidyalaya, Majhian, Dakshin Dinajpur, West Bengal 733133, India
| | - Utpal Bakshi
- Institute of Health Sciences, Presidency University, Canal Bank Road, DG Block (Newtown), Action Area 1D, Newtown, Kolkata, West Bengal 700156, India
| | - Masrure Alam
- Microbial Ecology and Physiology Lab, Department of Biological Sciences, Aliah University, IIA/27 New Town, Kolkata, West Bengal 700160, India.
| | - Avishek Banik
- Laboratory of Microbial Interaction, Institute of Health Sciences, Presidency University, Canal Bank Road, DG Block (Newtown), Action Area 1D, Newtown, Kolkata, West Bengal 700156, India.
| |
Collapse
|
4
|
Chen H, Ruan L, Cao S, He W, Yang H, Liang Z, Li H, Wei W, Huang Z, Lan X. Cassava-soybean intercropping alleviates continuous cassava cropping obstacles by improving its rhizosphere microecology. Front Microbiol 2025; 16:1531212. [PMID: 39996072 PMCID: PMC11847900 DOI: 10.3389/fmicb.2025.1531212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 01/20/2025] [Indexed: 02/26/2025] Open
Abstract
Introduction Continuous cropping is the main cause of cassava yield reduction. To find an effective method to alleviate the obstacle of cassava continuous cropping and explore the effect of cassava-soybean intercropping, this study analysed the differences in cassava agronomic traits, yield, soil physicochemical properties, microbial community structure, and metabolites between cassava single cropping (M) and cassava-soybean intercropping (MD) and its effects on continuous cassava cropping soil. Methods The correlations between yield, agronomic traits, soil physicochemical properties, microbial diversity, and metabolites were explored, and the effect of the cassava-soybean intercropping model on cassava soil was revealed. Results The results showed that compared with group M, soil pH, porosity, organic matter, available nitrogen, and fresh potato yield in the MD group significantly increased by 8.59, 13.66, 20.68, 23.29, and 50.61%, respectively, and soil bulk density significantly decreased by 9.68%. Soil bacterial community diversity in the MD group did not change significantly but had significant effects on soil fungal community diversity. The relative abundances of Trichoderma and Micropsalliota in the MD group were significantly upregulated. The contents of phenol glucuronide, 2,3-butanediol, L-phenylalanine, deoxyguanosine, other carbohydrates, alcohols, purine nucleotides, and amino acids in the soil of the MD group were significantly upregulated. Organic acids, such as fumaric acid, succinic acid, phosphoenolpyruvic acid, decreased significantly. Correlation analysis showed that Trichoderma was significantly negatively correlated with fumaric acid, succinic acid, phosphoenolpyruvic acid, and soil bulk density. However, there was significant positive correlation with phenol glucuronide, alpha-CEHC deoxyguanosine and other carbohydrates, nucleotide substances, organic matter, and pH. Phenol glucuronide, 2,3-butanediol, L-phenylalanine, deoxyguanosine and other carbohydrates, alcohols, purine nucleotides, and amino acids were significantly positively correlated with organic matter, available nitrogen, soil porosity, and pH. Discussion Therefore, cassava-soybean intercropping can effectively alleviate the obstacles of continuous cassava cropping by affecting the accumulation of metabolites and microbial community structure in continuous cropping soil, thereby improving the adverse factors of severe soil acidification, soil compaction, and nutrient decline.
Collapse
Affiliation(s)
- Huixian Chen
- Cash Crops Research Center, Guangxi South Subtropical Agricultural Science Research Institute, Longzhou, China
| | - Lixia Ruan
- Cash Crops Research Center, Guangxi South Subtropical Agricultural Science Research Institute, Longzhou, China
| | - Sheng Cao
- Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Wen He
- Cash Crops Research Center, Guangxi South Subtropical Agricultural Science Research Institute, Longzhou, China
| | - Haixia Yang
- Cash Crops Research Center, Guangxi South Subtropical Agricultural Science Research Institute, Longzhou, China
| | - Zhenhua Liang
- Cash Crops Research Center, Guangxi South Subtropical Agricultural Science Research Institute, Longzhou, China
| | - Hengrui Li
- Cash Crops Research Center, Guangxi South Subtropical Agricultural Science Research Institute, Longzhou, China
| | - Wanling Wei
- Cash Crops Research Center, Guangxi South Subtropical Agricultural Science Research Institute, Longzhou, China
| | - Zhenling Huang
- Cash Crops Research Center, Guangxi South Subtropical Agricultural Science Research Institute, Longzhou, China
| | - Xiu Lan
- Cash Crops Research Center, Guangxi South Subtropical Agricultural Science Research Institute, Longzhou, China
| |
Collapse
|
5
|
Gallo MB, Bader AN, Torres-Nicolini A, Alvarez VA, Consolo VF. Proteomic analysis of Trichoderma harzianum secretome and their role in the biosynthesis of zinc/iron oxide nanoparticles. Sci Rep 2025; 15:3252. [PMID: 39863789 PMCID: PMC11762295 DOI: 10.1038/s41598-025-87581-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 01/20/2025] [Indexed: 01/27/2025] Open
Abstract
The fungal green synthesis of nanoparticles (NPs) has gained great interest since it is a cost-effective and easy handling method. The process is simple because fungi secrete metabolites and proteins capable of reducing metal salts in aqueous solution, however the mechanism remains largely unknown. The aim of this study was to analyze the secretome of a Trichoderma harzianum strain during the mycobiosynthesis process of zinc and iron nanoparticles. Different profiles of proteins secreted by the fungus grown in the culture media or in the aqueous filtrate were observed through SDS‒PAGE and LC‒MS/MS analysis identifying 99 and 304 proteins, respectively. Particularly, in the aqueous filtrate proteins of metabolic processes and stress response mainly oxidoreductases, were identified. Successfully, ZnO and FeO NPs were synthesized and characterized by transmission electron microscopy, energy dispersive X-ray spectroscopy, dynamic light scattering, thermogravimetric, and FTIR analysis. FTIR revealed organic compounds in nanoparticles acting as probably capping agents. This research is the first report in which a proteomic analysis identifies multiple enzymes involved in the biogenic process of NP biosynthesis from T. harzianum, and its role is clearly demonstrated by the formation of zincite and magnetite nanoparticles.
Collapse
Affiliation(s)
- Micaela B Gallo
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC-CONICET), Fundación para Investigaciones Biológicas Aplicadas (FIBA), Mar del Plata, 7600, Argentina
| | - Araceli N Bader
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC-CONICET), Fundación para Investigaciones Biológicas Aplicadas (FIBA), Mar del Plata, 7600, Argentina
| | - Andrés Torres-Nicolini
- Instituto de Investigaciones en Ciencia y Tecnología de Materiales (INTEMA- CONICET-UNMDP), Mar del Plata, 7600, Argentina
| | - Vera A Alvarez
- Instituto de Investigaciones en Ciencia y Tecnología de Materiales (INTEMA- CONICET-UNMDP), Mar del Plata, 7600, Argentina
| | - Verónica F Consolo
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC-CONICET), Fundación para Investigaciones Biológicas Aplicadas (FIBA), Mar del Plata, 7600, Argentina.
| |
Collapse
|
6
|
Pedrero-Méndez A, Illescas M, Monte E, Hermosa R. The hex1 gene of Trichoderma simmonsii is involved in stress responses, biocontrol potential and wheat plant growth. Microbiol Res 2025; 290:127958. [PMID: 39536512 DOI: 10.1016/j.micres.2024.127958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/18/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
Woronin bodies are unique organelles in Pezizomycotina fungi that allow hyphae compartmentalization and prevent cytoplasmatic bleeding after mechanical injury. Several studies have related the peroxisomal protein HEX1, the major component of Woronin bodies with other biological processes such as hyphal growth, osmotic stress tolerance and pathogenicity. Trichoderma spp. are plant-beneficial multipurpose biological control agents, and proteomic and transcriptomic studies have shown that HEX1 and its corresponding gene are overrepresented when grown in the presence of fungal cell walls and plant polymers. To further investigate the involvement of hex1 in Trichoderma biology, we generated hex1 deletion transformants using the wheat endophytic strain T. simmonsii T137 as host. Results confirmed that hex1 gene is involved in the prevention of cytoplasmatic bleeding, and also has a role in fungal growth and biocontrol potential against phytopathogenic fungi and oomycetes. The involvement of hex1 in the fungal response to osmotic and oxidative stresses is conditioned by the type of stress and by the nutrient richness of the culture medium. The hex1 deletion also affected the interaction with wheat, but did not affect the plant protective effect of T137 against water stress. Overall, this study shows the implication of HEX1 in a wide range of biological processes necessary for T. simmonsii to deploy its abilities to be used as an agriculturally beneficial fungus.
Collapse
Affiliation(s)
- Alberto Pedrero-Méndez
- Institute for Agribiotechnology Research (CIALE), Department of Microbiology and Genetics, University of Salamanca, C/ Duero 12, Campus Villamayor-Parque Científico, Villamayor, Salamanca 37185, Spain.
| | - María Illescas
- Institute for Agribiotechnology Research (CIALE), Department of Microbiology and Genetics, University of Salamanca, C/ Duero 12, Campus Villamayor-Parque Científico, Villamayor, Salamanca 37185, Spain.
| | - Enrique Monte
- Institute for Agribiotechnology Research (CIALE), Department of Microbiology and Genetics, University of Salamanca, C/ Duero 12, Campus Villamayor-Parque Científico, Villamayor, Salamanca 37185, Spain.
| | - Rosa Hermosa
- Institute for Agribiotechnology Research (CIALE), Department of Microbiology and Genetics, University of Salamanca, C/ Duero 12, Campus Villamayor-Parque Científico, Villamayor, Salamanca 37185, Spain.
| |
Collapse
|
7
|
Pin L, Sobolev AP, Testone G, Scioli G, Pinzari F, Magnanimi F, Colla G, Cardarelli M, Giannino D. Untargeted NMR Study of Metabolic Changes in Processing Tomato Treated with Trichoderma atroviride Under Open-Field Conditions and Exposed to Heatwave Temperatures. Molecules 2024; 30:97. [PMID: 39795154 PMCID: PMC11721353 DOI: 10.3390/molecules30010097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/18/2024] [Accepted: 12/26/2024] [Indexed: 01/30/2025] Open
Abstract
Rising temperatures due to climate change may affect the quality of open-field cultivated processing tomatoes by altering the nutrient content. Bioinoculants are growing in popularity as a nature-based strategy to mitigate these environmental stresses. Untargeted quantitative NMR spectroscopy was leveraged to characterize the metabolome of tomato fruits exposed to abiotic stress during the year 2022, which was marked by unexpected high temperatures and low rainfall compared to the year 2021 with average conditions. This study was conducted at growing sites in Tarquinia and Viterbo, comparing untreated plants to ones treated with a Trichoderma-based bioinoculant. The hotter year affected the water-soluble fraction (28 compounds), causing an increase in amino acids, citrate, and formate contents while decreasing carbohydrates together with a significant drop in β-sitosterol + campesterol in the organic fraction (11 compounds). The site mainly affected the linolenic acid levels, which were more abundant in Tarquinia than Viterbo in the hotter year, whereas ascorbate and myo-inositol were higher in Tarquinia in both years. The year × site interaction significantly affected the content of several amino acids, glucose, sucrose, and trigonelline. The bioinoculant effect was significant only for sucrose, while its interactions with the other factors showed little to no significance across all the measured metabolites.
Collapse
Affiliation(s)
- Lorenzo Pin
- Institute for Biological Systems, Italian National Research Council, Monterotondo, 00015 Rome, Italy; (L.P.); (G.T.); (G.S.); (F.P.); (F.M.)
| | - Anatoly Petrovich Sobolev
- Institute for Biological Systems, Italian National Research Council, Monterotondo, 00015 Rome, Italy; (L.P.); (G.T.); (G.S.); (F.P.); (F.M.)
| | - Giulio Testone
- Institute for Biological Systems, Italian National Research Council, Monterotondo, 00015 Rome, Italy; (L.P.); (G.T.); (G.S.); (F.P.); (F.M.)
| | - Giuseppe Scioli
- Institute for Biological Systems, Italian National Research Council, Monterotondo, 00015 Rome, Italy; (L.P.); (G.T.); (G.S.); (F.P.); (F.M.)
| | - Flavia Pinzari
- Institute for Biological Systems, Italian National Research Council, Monterotondo, 00015 Rome, Italy; (L.P.); (G.T.); (G.S.); (F.P.); (F.M.)
| | - Francesco Magnanimi
- Institute for Biological Systems, Italian National Research Council, Monterotondo, 00015 Rome, Italy; (L.P.); (G.T.); (G.S.); (F.P.); (F.M.)
- Department of Biology and Biotechnology, Sapienza University of Rome, 00185 Rome, Italy
| | - Giuseppe Colla
- Department of Agriculture and Forestry Science, University of Tuscia, 01100 Viterbo, Italy; (G.C.); (M.C.)
| | - Mariateresa Cardarelli
- Department of Agriculture and Forestry Science, University of Tuscia, 01100 Viterbo, Italy; (G.C.); (M.C.)
| | - Donato Giannino
- Institute for Biological Systems, Italian National Research Council, Monterotondo, 00015 Rome, Italy; (L.P.); (G.T.); (G.S.); (F.P.); (F.M.)
| |
Collapse
|
8
|
Li T, Wang Q, Liu Y, Wang J, Zhu H, Cao L, Liu D, Shen Q. Divergent roles of ADP-ribosylation factor GTPase-activating proteins in lignocellulose utilization of Trichoderma guizhouense NJAU4742. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:122. [PMID: 39294712 PMCID: PMC11411985 DOI: 10.1186/s13068-024-02570-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 09/15/2024] [Indexed: 09/21/2024]
Abstract
BACKGROUND The ability of lignocellulose degradation for filamentous fungi is always attributed to their efficient CAZymes system with broader applications in bioenergy development. ADP-ribosylation factor GTPase-activating proteins (Arf-GAPs), pivotal in fungal morphogenesis, lack comprehensive studies on their regulatory mechanisms in lignocellulose utilization. RESULTS Here, the orthologs (TgGlo3 and TgGcs1) of Arf-GAPs in S. cerevisiae were characterized in Trichoderma guizhouense NJAU4742. The results indicated that overexpression of Tggcs1 (OE-Tggcs1) enhanced the lignocellulose utilization, whereas increased expression of Tgglo3 (OE-Tgglo3) elicited antithetical responses. On the fourth day of fermentation with rice straw as the sole carbon source, the activities of endoglucanase, cellobiohydrolase, xylanase, and filter paper of the wild-type strain (WT) reached 8.20 U mL-1, 4.42 U mL-1, 14.10 U mL-1, and 3.56 U mL-1, respectively. Compared to WT, the four enzymes activities of OE-Tggcs1 increased by 7.93%, 6.11%, 9.08%, and 12.92%, respectively, while those decreased to varying degrees of OE-Tgglo3. During the nutritional growth, OE-Tgglo3 resulted in the hyphal morphology characterized by sparsity and constriction, while OE-Tggcs1 led to a notable increase in vacuole volume. In addition, OE-Tggcs1 exhibited higher transport efficiencies for glucose and cellobiose thereby sustaining robust cellular metabolic rates. Further investigations revealed that Tgglo3 and Tggcs1 differentially regulated the transcription level of a dynamin-like GTPase gene (Tggtp), eliciting distinct redox states and apoptotic reaction, thus orchestrating the cellular response to lignocellulose utilization. CONCLUSIONS Overall, these findings underscored the significance of TgArf-GAPs as pivotal regulators in lignocellulose utilization and provided initial insights into their differential modulation of downstream targets.
Collapse
Affiliation(s)
- Tuo Li
- Key Lab of Organic-Based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing, China
- Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Qin Wang
- Key Lab of Organic-Based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing, China
- Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Yang Liu
- Key Lab of Organic-Based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing, China
- Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Jiaguo Wang
- Key Lab of Organic-Based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing, China
- Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Han Zhu
- Key Lab of Organic-Based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing, China
- Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Linhua Cao
- Key Lab of Organic-Based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing, China
- Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Dongyang Liu
- Key Lab of Organic-Based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing, China.
- Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
| | - Qirong Shen
- Key Lab of Organic-Based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing, China
- Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| |
Collapse
|
9
|
Hong L, Wang Q, Zhang J, Chen X, Liu Y, Asiegbu FO, Wu P, Ma X, Wang K. Advances in the beneficial endophytic fungi for the growth and health of woody plants. FORESTRY RESEARCH 2024; 4:e028. [PMID: 39524434 PMCID: PMC11524292 DOI: 10.48130/forres-0024-0025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/17/2024] [Accepted: 07/31/2024] [Indexed: 11/16/2024]
Abstract
In recent years, the importance of microorganisms for plant survival has been increasingly recognized. Endophytic fungi, as part of holobiont, can confer growth advantages to plants. Most studies have shown that the endophytic fungi of forest trees can promote host plant growth, increase adversity resistance, and thus improve the survival competitiveness of forest trees. However, the beneficial examples of endophytic fungi on the growth and development of woody plants have not been systematically summarized. This review is focused on various aspects of beneficial endophytic fungi in forest trees (definition, classification, colonization mechanisms, etc.), with an emphasis on their beneficial roles in woody plant growth, protection against biotic and abiotic stresses, as well as the response of forest trees to endophytic fungi. In addition, this review lists a series of experiments on screening beneficial endophytic fungi from Chinese fir (Cunninghamia lanceolata) and verifying their beneficial functions, to explore the mutualistic relationships between them. This review not only provides a theoretical basis for the study of beneficial endophytic fungi in forest trees in the future but also sheds light on the molecular perspectives for a mechanistic understanding of their potential future significance for the sustainable utilization of forest resources and ecological environment protection.
Collapse
Affiliation(s)
- Liang Hong
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Chinese Fir Engineering Research Center of National Forestry and Grassland Administration, Fuzhou 350002, China
| | - Qingao Wang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Chinese Fir Engineering Research Center of National Forestry and Grassland Administration, Fuzhou 350002, China
| | - Junhao Zhang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xuan Chen
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuxin Liu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Chinese Fir Engineering Research Center of National Forestry and Grassland Administration, Fuzhou 350002, China
| | - Fred O. Asiegbu
- Department of Forest Sciences, PO Box 27, University of Helsinki, FIN-00014 Helsinki, Finland
| | - Pengfei Wu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Chinese Fir Engineering Research Center of National Forestry and Grassland Administration, Fuzhou 350002, China
| | - Xiangqing Ma
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Chinese Fir Engineering Research Center of National Forestry and Grassland Administration, Fuzhou 350002, China
| | - Kai Wang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Chinese Fir Engineering Research Center of National Forestry and Grassland Administration, Fuzhou 350002, China
| |
Collapse
|
10
|
Mehdi F, Cao Z, Zhang S, Gan Y, Cai W, Peng L, Wu Y, Wang W, Yang B. Factors affecting the production of sugarcane yield and sucrose accumulation: suggested potential biological solutions. FRONTIERS IN PLANT SCIENCE 2024; 15:1374228. [PMID: 38803599 PMCID: PMC11128568 DOI: 10.3389/fpls.2024.1374228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 04/12/2024] [Indexed: 05/29/2024]
Abstract
Environmental stresses are the main constraints on agricultural productivity and food security worldwide. This issue is worsened by abrupt and severe changes in global climate. The formation of sugarcane yield and the accumulation of sucrose are significantly influenced by biotic and abiotic stresses. Understanding the biochemical, physiological, and environmental phenomena associated with these stresses is essential to increase crop production. This review explores the effect of environmental factors on sucrose content and sugarcane yield and highlights the negative effects of insufficient water supply, temperature fluctuations, insect pests, and diseases. This article also explains the mechanism of reactive oxygen species (ROS), the role of different metabolites under environmental stresses, and highlights the function of environmental stress-related resistance genes in sugarcane. This review further discusses sugarcane crop improvement approaches, with a focus on endophytic mechanism and consortium endophyte application in sugarcane plants. Endophytes are vital in plant defense; they produce bioactive molecules that act as biocontrol agents to enhance plant immune systems and modify environmental responses through interaction with plants. This review provides an overview of internal mechanisms to enhance sugarcane plant growth and environmental resistance and offers new ideas for improving sugarcane plant fitness and crop productivity.
Collapse
Affiliation(s)
- Faisal Mehdi
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, China
| | - Zhengying Cao
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, China
| | - Shuzhen Zhang
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, China
| | - Yimei Gan
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, China
| | - Wenwei Cai
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, China
| | - Lishun Peng
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, China
| | - Yuanli Wu
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, China
| | - Wenzhi Wang
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, China
| | - Benpeng Yang
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, China
| |
Collapse
|
11
|
Castañeda-Casasola CC, Nieto-Jacobo MF, Soares A, Padilla-Padilla EA, Anducho-Reyes MA, Brown C, Soth S, Esquivel-Naranjo EU, Hampton J, Mendoza-Mendoza A. Unveiling a Microexon Switch: Novel Regulation of the Activities of Sugar Assimilation and Plant-Cell-Wall-Degrading Xylanases and Cellulases by Xlr2 in Trichoderma virens. Int J Mol Sci 2024; 25:5172. [PMID: 38791210 PMCID: PMC11121469 DOI: 10.3390/ijms25105172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/02/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
Functional microexons have not previously been described in filamentous fungi. Here, we describe a novel mechanism of transcriptional regulation in Trichoderma requiring the inclusion of a microexon from the Xlr2 gene. In low-glucose environments, a long mRNA including the microexon encodes a protein with a GAL4-like DNA-binding domain (Xlr2-α), whereas in high-glucose environments, a short mRNA that is produced encodes a protein lacking this DNA-binding domain (Xlr2-β). Interestingly, the protein isoforms differ in their impact on cellulase and xylanase activity. Deleting the Xlr2 gene reduced both xylanase and cellulase activity and growth on different carbon sources, such as carboxymethylcellulose, xylan, glucose, and arabinose. The overexpression of either Xlr2-α or Xlr2-β in T. virens showed that the short isoform (Xlr2-β) caused higher xylanase activity than the wild types or the long isoform (Xlr2-α). Conversely, cellulase activity did not increase when overexpressing Xlr2-β but was increased with the overexpression of Xlr2-α. This is the first report of a novel transcriptional regulation mechanism of plant-cell-wall-degrading enzyme activity in T. virens. This involves the differential expression of a microexon from a gene encoding a transcriptional regulator.
Collapse
Affiliation(s)
- Cynthia Coccet Castañeda-Casasola
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand; (C.C.C.-C.); (A.S.); (E.A.P.-P.); (S.S.); (E.U.E.-N.); (J.H.)
- Laboratorio de AgroBiotecnología, Universidad Politécnica de Pachuca, Carretera Pachuca-Cd. Sahagún, km 20, ExHacienda de Santa Bárbara, Zempoala 43830, Mexico;
- Servicio Nacional de Sanidad, Inocuidad y Calidad Agroalimentaria, Centro Nacional de Referencia Fitosanitaria, Tecamac 55740, Mexico
| | | | - Amanda Soares
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand; (C.C.C.-C.); (A.S.); (E.A.P.-P.); (S.S.); (E.U.E.-N.); (J.H.)
| | - Emir Alejandro Padilla-Padilla
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand; (C.C.C.-C.); (A.S.); (E.A.P.-P.); (S.S.); (E.U.E.-N.); (J.H.)
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand;
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca 04510, Mexico
| | - Miguel Angel Anducho-Reyes
- Laboratorio de AgroBiotecnología, Universidad Politécnica de Pachuca, Carretera Pachuca-Cd. Sahagún, km 20, ExHacienda de Santa Bárbara, Zempoala 43830, Mexico;
| | - Chris Brown
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand;
| | - Sereyboth Soth
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand; (C.C.C.-C.); (A.S.); (E.A.P.-P.); (S.S.); (E.U.E.-N.); (J.H.)
| | - Edgardo Ulises Esquivel-Naranjo
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand; (C.C.C.-C.); (A.S.); (E.A.P.-P.); (S.S.); (E.U.E.-N.); (J.H.)
- Unit for Basic and Applied Microbiology, Faculty of Natural Sciences, Autonomous University of Queretaro, Queretaro 76230, Mexico
| | - John Hampton
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand; (C.C.C.-C.); (A.S.); (E.A.P.-P.); (S.S.); (E.U.E.-N.); (J.H.)
| | - Artemio Mendoza-Mendoza
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand; (C.C.C.-C.); (A.S.); (E.A.P.-P.); (S.S.); (E.U.E.-N.); (J.H.)
| |
Collapse
|
12
|
Enriquez-Felix EE, Pérez-Salazar C, Rico-Ruiz JG, Calheiros de Carvalho A, Cruz-Morales P, Villalobos-Escobedo JM, Herrera-Estrella A. Argonaute and Dicer are essential for communication between Trichoderma atroviride and fungal hosts during mycoparasitism. Microbiol Spectr 2024; 12:e0316523. [PMID: 38441469 PMCID: PMC10986496 DOI: 10.1128/spectrum.03165-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 02/17/2024] [Indexed: 04/06/2024] Open
Abstract
Trichoderma species are known for their mycoparasitic activity against phytopathogenic fungi that cause significant economic losses in agriculture. During mycoparasitism, Trichoderma spp. recognize molecules produced by the host fungus and release secondary metabolites and hydrolytic enzymes to kill and degrade the host's cell wall. Here, we explored the participation of the Trichoderma atroviride RNAi machinery in the interaction with six phytopathogenic fungi of economic importance. We determined that both Argonaute-3 and Dicer-2 play an essential role during mycoparasitism. Using an RNA-Seq approach, we identified that perception, detox, and cell wall degradation depend on the T. atroviride-RNAi when interacting with Alternaria alternata, Rhizoctonia solani AG2, and R. solani AG5. Furthermore, we constructed a gene co-expression network that provides evidence of two gene modules regulated by RNAi, which play crucial roles in essential processes during mycoparasitism. In addition, based on small RNA-seq, we conclude that siRNAs regulate amino acid and carbon metabolism and communication during the Trichoderma-host interaction. Interestingly, our data suggest that siRNAs might regulate allorecognition (het) and transport genes in a cross-species manner. Thus, these results reveal a fine-tuned regulation in T. atroviride dependent on siRNAs that is essential during the biocontrol of phytopathogenic fungi, showing a greater complexity of this process than previously established.IMPORTANCEThere is an increasing need for plant disease control without chemical pesticides to avoid environmental pollution and resistance, and the health risks associated with the application of pesticides are increasing. Employing Trichoderma species in agriculture to control fungal diseases is an alternative plant protection strategy that overcomes these issues without utilizing chemical fungicides. Therefore, understanding the biocontrol mechanisms used by Trichoderma species to antagonize other fungi is critical. Although there has been extensive research about the mechanisms involved in the mycoparasitic capability of Trichoderma species, there are still unsolved questions related to how Trichoderma regulates recognition, attack, and defense mechanisms during interaction with a fungal host. In this work, we report that the Argonaute and Dicer components of the RNAi machinery and the small RNAs they process are essential for gene regulation during mycoparasitism by Trichoderma atroviride.
Collapse
Affiliation(s)
- Eli Efrain Enriquez-Felix
- Laboratorio Nacional de Genómica para la Biodiversidad-Unidad de Genómica Avanzada, Cinvestav Campus Guanajuato, Irapuato, Guanajuato, Mexico
| | - Camilo Pérez-Salazar
- Laboratorio Nacional de Genómica para la Biodiversidad-Unidad de Genómica Avanzada, Cinvestav Campus Guanajuato, Irapuato, Guanajuato, Mexico
| | - José Guillermo Rico-Ruiz
- Laboratorio Nacional de Genómica para la Biodiversidad-Unidad de Genómica Avanzada, Cinvestav Campus Guanajuato, Irapuato, Guanajuato, Mexico
| | | | - Pablo Cruz-Morales
- Novo Nordisk Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
- The LatAmBio Initiative, Irapuato, Guanajuato, Mexico
| | - José Manuel Villalobos-Escobedo
- Laboratorio Nacional de Genómica para la Biodiversidad-Unidad de Genómica Avanzada, Cinvestav Campus Guanajuato, Irapuato, Guanajuato, Mexico
- The LatAmBio Initiative, Irapuato, Guanajuato, Mexico
- Plant and Microbial Biology Department, University of California, Berkeley, Carlifornia, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, Carlifornia, USA
| | - Alfredo Herrera-Estrella
- Laboratorio Nacional de Genómica para la Biodiversidad-Unidad de Genómica Avanzada, Cinvestav Campus Guanajuato, Irapuato, Guanajuato, Mexico
- The LatAmBio Initiative, Irapuato, Guanajuato, Mexico
| |
Collapse
|
13
|
Silva GR, de Pina Cavalcanti F, Melo RM, Cintra E, Lima EM, Hamann PRV, do Vale LHF, Ulhoa CJ, Almeida F, Noronha EF. Extracellular vesicles from the mycoparasitic fungus Trichoderma harzianum. Antonie Van Leeuwenhoek 2024; 117:64. [PMID: 38565745 DOI: 10.1007/s10482-024-01958-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 03/06/2024] [Indexed: 04/04/2024]
Abstract
Trichoderma harzianum is a filamentous fungus that can act as a mycoparasite, saprophyte, or a plant symbiotic. It is widely used as a biological control agent against phytopathogenic fungi and can also be used for plant growth promotion and biofortification. Interaction between T. harzianum and phytopathogenic fungi involves mycoparasitism, competition, and antibiosis. Extracellular vesicles (EVs) have been described as presenting a central role in mechanisms of communication and interaction among fungus and their hosts. In this study, we characterized extracellular vesicles of T. harzianum produced during growth in the presence of glucose or S. sclerotiorum mycelia. A set of vesicular proteins was identified using proteomic approach, mainly presenting predicted signal peptides.
Collapse
Affiliation(s)
- Gabrielle Rosa Silva
- Laboratory of Enzymology, Department of Cell Biology, University of Brasília, Brasilia, DF, 70910-900, Brazil
| | - Felipe de Pina Cavalcanti
- Laboratory of Enzymology, Department of Cell Biology, University of Brasília, Brasilia, DF, 70910-900, Brazil
| | - Reynaldo Magalhães Melo
- Laboratory of Enzymology, Department of Cell Biology, University of Brasília, Brasilia, DF, 70910-900, Brazil
| | - Emilio Cintra
- Faculty of Pharmacy, Laboratory of Pharmaceutical Technology, Lab. FarmaTec., Federal University of Goiás, 74690310, Goiânia, GO, Brazil
| | - Eliana Martins Lima
- Faculty of Pharmacy, Laboratory of Pharmaceutical Technology, Lab. FarmaTec., Federal University of Goiás, 74690310, Goiânia, GO, Brazil
| | - Pedro Ricardo Vieira Hamann
- São Carlos Institute of Physics, University of São Paulo, Avenida Trabalhador São-Carlense, 400, Parque Arnold Schimidt, São Carlos, SP, 13566-590, Brazil
| | - Luis H F do Vale
- Laboratory of Enzymology, Department of Cell Biology, University of Brasília, Brasilia, DF, 70910-900, Brazil
| | - Cirano José Ulhoa
- Biological Sciences Institute, University of Goias, Goiânia, 74690-900, GO, Brazil
| | - Fausto Almeida
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of Sao Paulo, Ribeirao Preto, São Paulo, 14049-900, Brazil
| | - Eliane Ferreira Noronha
- Laboratory of Enzymology, Department of Cell Biology, University of Brasília, Brasilia, DF, 70910-900, Brazil.
| |
Collapse
|
14
|
Kabir AH, Bennetzen JL. Molecular insights into the mutualism that induces iron deficiency tolerance in sorghum inoculated with Trichoderma harzianum. Microbiol Res 2024; 281:127630. [PMID: 38295681 DOI: 10.1016/j.micres.2024.127630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/16/2024]
Abstract
Iron (Fe) deficiency is a common mineral stress in plants, including sorghum. Although the soil fungus Trichoderma harzianum has been shown to mitigate Fe deficiency in some circumstances, neither the range nor mechanism(s) of this process are well understood. In this study, high pH-induced Fe deficiency in sorghum cultivated in pots with natural field soil exhibited a significant decrease in biomass, photosynthetic rate, transpiration rate, stomatal conductance, water use efficiency, and Fe-uptake in both the root and shoot. However, the establishment of T. harzianum colonization in roots of Fe-deprived sorghum showed significant improvements in morpho-physiological traits, Fe levels, and redox status. Molecular detection of the fungal ThAOX1 (L-aminoacid oxidase) gene showed the highest colonization of T. harzianum in the root tips of Fe-deficient sorghum, a location thus targeted for further analysis. Expression studies by RNA-seq and qPCR in sorghum root tips revealed a significant upregulation of several genes associated with Fe uptake (SbTOM2), auxin synthesis (SbSAURX15), nicotianamine synthase 3 (SbNAS3), and a phytosiderophore transporter (SbYS1). Also induced was the siderophore synthesis gene (ThSIT1) in T. harzianum, a result supported by biochemical evidence for elevated siderophore and IAA (indole acetic acid) levels in roots. Given the high affinity of fungal siderophore to chelate insoluble Fe3+ ions, it is likely that elevated siderophore released by T. harzianum led to Fe(III)-siderophore complexes in the rhizosphere that were then transported into roots by the induced SbYS1 (yellow-stripe 1) transporter. In addition, the observed induction of several plant peroxidase genes and ABA (abscisic acid) under Fe deficiency after inoculation with T. harzianum may have helped induce tolerance to Fe-deficiency-induced oxidative stress and adaptive responses. This is the first mechanistic explanation for T. harzianum's role in helping alleviate Fe deficiency in sorghum and suggests that biofertilizers using T. harzianum will improve Fe availability to crops in high pH environments.
Collapse
Affiliation(s)
- Ahmad H Kabir
- School of Sciences, University of Louisiana at Monroe, LA 71209, USA; Department of Genetics, University of Georgia, Athens, GA 30602, USA.
| | | |
Collapse
|
15
|
Guzmán-Guzmán P, Valencia-Cantero E, Santoyo G. Plant growth-promoting bacteria potentiate antifungal and plant-beneficial responses of Trichoderma atroviride by upregulating its effector functions. PLoS One 2024; 19:e0301139. [PMID: 38517906 PMCID: PMC10959389 DOI: 10.1371/journal.pone.0301139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/08/2024] [Indexed: 03/24/2024] Open
Abstract
Trichoderma uses different molecules to establish communication during its interactions with other organisms, such as effector proteins. Effectors modulate plant physiology to colonize plant roots or improve Trichoderma's mycoparasitic capacity. In the soil, these fungi can establish relationships with plant growth-promoting bacteria (PGPBs), thus affecting their overall benefits on the plant or its fungal prey, and possibly, the role of effector proteins. The aim of this study was to determine the induction of Trichoderma atroviride gene expression coding for effector proteins during the interaction with different PGPBs, Arabidopsis or the phytopathogen Fusarium brachygibbosum, and to determine whether PGPBs potentiates the beneficial effects of T. atroviride. During the interaction with F. brachygibbosum and PGPBs, the effector coding genes epl1, tatrx2 and tacfem1 increased their expression, especially during the consortia with the bacteria. During the interaction of T. atroviride with the plant and PGPBs, the expression of epl1 and tatrx2 increased, mainly with the consortium formed with Pseudomonas fluorescens UM270, Bacillus velezensis AF12, or B. halotolerans AF23. Additionally, the consortium formed by T. atroviride and R. badensis SER3 stimulated A. thaliana PR1:GUS and LOX2:GUS for SA- and JA-mediated defence responses. Finally, the consortium of T. atroviride with SER3 was better at inhibiting pathogen growth, but the consortium of T. atroviride with UM270 was better at promoting Arabidopsis growth. These results showed that the biocontrol capacity and plant growth-promoting traits of Trichoderma spp. can be potentiated by PGPBs by stimulating its effector functions.
Collapse
Affiliation(s)
- Paulina Guzmán-Guzmán
- Institute of Chemical and Biological Research, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, México
| | - Eduardo Valencia-Cantero
- Institute of Chemical and Biological Research, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, México
| | - Gustavo Santoyo
- Institute of Chemical and Biological Research, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, México
| |
Collapse
|
16
|
Olmo R, Quijada NM, Morán-Diez ME, Hermosa R, Monte E. Identification of Tomato microRNAs in Late Response to Trichoderma atroviride. Int J Mol Sci 2024; 25:1617. [PMID: 38338899 PMCID: PMC10855890 DOI: 10.3390/ijms25031617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
The tomato (Solanum lycopersicum) is an important crop worldwide and is considered a model plant to study stress responses. Small RNAs (sRNAs), 21-24 nucleotides in length, are recognized as a conserved mechanism for regulating gene expression in eukaryotes. Plant endogenous sRNAs, such as microRNA (miRNA), have been involved in disease resistance. High-throughput RNA sequencing was used to analyze the miRNA profile of the aerial part of 30-day-old tomato plants after the application of the fungus Trichoderma atroviride to the seeds at the transcriptional memory state. Compared to control plants, ten differentially expressed (DE) miRNAs were identified in those inoculated with Trichoderma, five upregulated and five downregulated, of which seven were known (miR166a, miR398-3p, miR408, miR5300, miR6024, miR6027-5p, and miR9471b-3p), and three were putatively novel (novel miR257, novel miR275, and novel miR1767). miRNA expression levels were assessed using real-time quantitative PCR analysis. A plant sRNA target analysis of the DE miRNAs predicted 945 potential target genes, most of them being downregulated (84%). The analysis of KEGG metabolic pathways showed that most of the targets harbored functions associated with plant-pathogen interaction, membrane trafficking, and protein kinases. Expression changes of tomato miRNAs caused by Trichoderma are linked to plant defense responses and appear to have long-lasting effects.
Collapse
Affiliation(s)
| | | | | | | | - Enrique Monte
- Institute for Agribiotechnology Research (CIALE), Department of Microbiology and Genetics, University of Salamanca, 37185 Villamayor, Salamanca, Spain; (R.O.); (N.M.Q.); (M.E.M.-D.); (R.H.)
| |
Collapse
|
17
|
Ferreira NCDF, Ramos MLG, Gatto A. Use of Trichoderma in the Production of Forest Seedlings. Microorganisms 2024; 12:237. [PMID: 38399641 PMCID: PMC10893047 DOI: 10.3390/microorganisms12020237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/17/2023] [Accepted: 08/19/2023] [Indexed: 02/25/2024] Open
Abstract
Forest production has great relevance in the Brazilian economy, characterized by several production sectors, including the production of seedlings. With the focus on maximizing the capacity of survival, development, and adaptation of seedlings, Trichoderma is highlighted as a potentially useful genus of microorganisms for promoting growth and higher product quality. In this sense, this review aims to describe the main mechanisms of fungi action in forest seedlings' production. The different species of the genus Trichoderma have specific mechanisms of action, and the current scenario points to more advances in the number of species. The interaction process mediated by different mechanisms of action begins in the communication with plants, from the colonization process. After the interaction, chemical dialogues allow the plant to develop better because, from colonization, the forest seedlings can maximize height and increase shoot and root development. Fungi promote solubilization and availability of nutrients to seedlings, which show numerous benefits to the development. The use of beneficial microorganisms, such as fungi of the genus Trichoderma, has become a sustainable strategy to enhance seedling development, reducing the use of agrochemicals and industrial fertilizers.
Collapse
Affiliation(s)
| | | | - Alcides Gatto
- Department of Forestry Engineering, Faculty of Technology, University of Brasilia, Brasilia 70910-900, DF, Brazil
| |
Collapse
|
18
|
Aamir M, Shanmugam V, Dubey MK, Husain FM, Adil M, Ansari WA, Rai A, Sah P. Transcriptomic characterization of Trichoderma harzianum T34 primed tomato plants: assessment of biocontrol agent induced host specific gene expression and plant growth promotion. BMC PLANT BIOLOGY 2023; 23:552. [PMID: 37940862 PMCID: PMC10631224 DOI: 10.1186/s12870-023-04502-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 09/30/2023] [Indexed: 11/10/2023]
Abstract
In this study, we investigated the intricate interplay between Trichoderma and the tomato genome, focusing on the transcriptional and metabolic changes triggered during the late colonization event. Microarray probe set (GSE76332) was utilized to analyze the gene expression profiles changes of the un-inoculated control (tomato) and Trichoderma-tomato interactions for identification of the differentially expressed significant genes. Based on principal component analysis and R-based correlation, we observed a positive correlation between the two cross-comaparable groups, corroborating the existence of transcriptional responses in the host triggered by Trichoderma priming. The statistically significant genes based on different p-value cut-off scores [(padj-values or q-value); padj-value < 0.05], [(pcal-values); pcal-value < 0.05; pcal < 0.01; pcal < 0.001)] were cross compared. Through cross-comparison, we identified 156 common genes that were consistently significant across all probability thresholds, and showing a strong positive corelation between p-value and q-value in the selected probe sets. We reported TD2, CPT1, pectin synthase, EXT-3 (extensin-3), Lox C, and pyruvate kinase (PK), which exhibited upregulated expression, and Glb1 and nitrate reductase (nii), which demonstrated downregulated expression during Trichoderma-tomato interaction. In addition, microbial priming with Trichoderma resulted into differential expression of transcription factors related to systemic defense and flowering including MYB13, MYB78, ERF2, ERF3, ERF5, ERF-1B, NAC, MADS box, ZF3, ZAT10, A20/AN1, polyol sugar transporter like zinc finger proteins, and a novel plant defensin protein. The potential bottleneck and hub genes involved in this dynamic response were also identified. The protein-protein interaction (PPI) network analysis based on 25 topmost DEGS (pcal-value < 0.05) and the Weighted Correlation Gene Network Analysis (WGCNA) of the 1786 significant DEGs (pcal-value < 0.05) we reported the hits associated with carbohydrate metabolism, secondary metabolite biosynthesis, and the nitrogen metabolism. We conclude that the Trichoderma-induced microbial priming re-programmed the host genome for transcriptional response during the late colonization event and were characterized by metabolic shifting and biochemical changes specific to plant growth and development. The work also highlights the relevance of statistical parameters in understanding the gene regulatory dynamics and complex regulatory networks based on differential expression, co-expression, and protein interaction networks orchestrating the host responses to beneficial microbial interactions.
Collapse
Affiliation(s)
- Mohd Aamir
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, Pusa, New Delhi-110012, Delhi, India.
| | - V Shanmugam
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, Pusa, New Delhi-110012, Delhi, India
| | - Manish Kumar Dubey
- Department of Biotechnology, University Centre for Research & Development (UCRD), Chandigarh University, Punjab, 140413, India
| | - Fohad Mabood Husain
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh-11451, Saudi Arabia
| | - Mohd Adil
- Plant, Food and Environmental Sciences, Dalhousie University, Truro, NS, B2N2R9, Canada
| | - Waquar Akhter Ansari
- Department of Botany, Centre for Advanced Study, Institute of Science, Banaras Hindu University, Varanasi, 221002, India
| | - Ashutosh Rai
- Department of Basic and Social Sciences, College of Horticulture, Banda University of Agriculture and Technology, Uttar Pradesh, Banda, 210001, India
| | - Pankaj Sah
- Applied Sciences Department, College of Applied Sciences and Pharmacy, University of Technology and Applied Sciences-Muscat, Al Janubyyah Street, PO Box 74, Muscat, 133, Sultanate of Oman
| |
Collapse
|
19
|
Khan RAA, Najeeb S, Chen J, Wang R, Zhang J, Hou J, Liu T. Insights into the molecular mechanism of Trichoderma stimulating plant growth and immunity against phytopathogens. PHYSIOLOGIA PLANTARUM 2023; 175:e14133. [PMID: 38148197 DOI: 10.1111/ppl.14133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/30/2023] [Accepted: 12/04/2023] [Indexed: 12/28/2023]
Abstract
Trichoderma species have received significant interest as beneficial fungi for boosting plant growth and immunity against phytopathogens. By establishing a mutualistic relationship with plants, Trichoderma causes a series of intricate signaling events that eventually promote plant growth and improve disease resistance. The mechanisms contain the indirect or direct involvement of Trichoderma in enhancing plant growth by modulating phytohormones signaling pathways, improving uptake and accumulation of nutrients, and increasing soil bioavailability of nutrients. They contribute to plant resistance by stimulating systemic acquired resistance through salicylic acid, jasmonic acid, and ethylene signaling. A cascade of signal transduction processes initiated by the interaction of Trichoderma and plants regulate the expression of defense-related genes, resulting in the synthesis of defense hormones and pathogenesis-related proteins (PRPs), which collectively improve plant resistance. Additionally, advancements in omics technologies has led to the identification of key pathways, their regulating genes, and molecular interactions in the plant defense and growth promotion responses induced by Trichoderma. Deciphering the molecular mechanism behind Trichoderma's induction of plant defense and immunity is essential for harnessing the full plant beneficial potential of Trichoderma. This review article sheds light on the molecular mechanisms that underlie the positive effects of Trichoderma-induced plant immunity and growth and opens new opportunities for developing environmentally friendly and innovative approaches to improve plant immunity and growth.
Collapse
Affiliation(s)
- Raja Asad Ali Khan
- Sanya Nanfan Research Institute, Hainan University, Sanya, PR China
- School of Tropical Agriculture and Forestry, Engineering Center of Agricultural Microbial Preparation Research and Development of Hainan, Hainan University, Haikou, PR China
| | - Saba Najeeb
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jie Chen
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR, China
| | - Rui Wang
- Sanya Nanfan Research Institute, Hainan University, Sanya, PR China
- School of Tropical Agriculture and Forestry, Engineering Center of Agricultural Microbial Preparation Research and Development of Hainan, Hainan University, Haikou, PR China
| | - Jing Zhang
- Sanya Nanfan Research Institute, Hainan University, Sanya, PR China
- School of Tropical Agriculture and Forestry, Engineering Center of Agricultural Microbial Preparation Research and Development of Hainan, Hainan University, Haikou, PR China
| | - Jumei Hou
- Sanya Nanfan Research Institute, Hainan University, Sanya, PR China
- School of Tropical Agriculture and Forestry, Engineering Center of Agricultural Microbial Preparation Research and Development of Hainan, Hainan University, Haikou, PR China
| | - Tong Liu
- Sanya Nanfan Research Institute, Hainan University, Sanya, PR China
- School of Tropical Agriculture and Forestry, Engineering Center of Agricultural Microbial Preparation Research and Development of Hainan, Hainan University, Haikou, PR China
| |
Collapse
|
20
|
Imran M, Abo-Elyousr KAM, Mousa MAA, Saad MM. Use of Trichoderma culture filtrates as a sustainable approach to mitigate early blight disease of tomato and their influence on plant biomarkers and antioxidants production. FRONTIERS IN PLANT SCIENCE 2023; 14:1192818. [PMID: 37528983 PMCID: PMC10388550 DOI: 10.3389/fpls.2023.1192818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/19/2023] [Indexed: 08/03/2023]
Abstract
Introduction Alternaria solani is a challenging pathogen in the tomato crop globally. Chemical control is a rapid approach, but emerging fungicide resistance has become a severe threat. The present study investigates the use of culture filtrates (CFs) of three species of Trichoderma spp. to control this disease. Methods Highly virulent A. solani strain and three Trichoderma fungal strains viz., T. harzianum (Accession No: MW590687), T. atroviride (Accession No: MW590689) and T. longibrachiatum (Accession No: MW590688) previously isolated by authors were used in this study. The efficacy of culture filtrates (CFs) to mitigate early blight disease were tested under greenhouse and field conditions, experiments were conducted in different seasons of 2020 using a tomato variety "doucen". Results and discussion The CFs of T. harzianum, T. longibrachiatum, and T. atroviride significantly inhibited the in vitro mycelial growth of A. solani (62.5%, 48.73%, and 57.82%, respectively, followed by control 100%). In the GC-MS analysis of Trichoderma CF volatile compounds viz., harzianic acid (61.86%) in T. harzianum, linoleic acid (70.02%) in T. atroviride, and hydroxymethylfurfural (68.08%) in the CFs of T. longibrachiatum, were abundantly present. Foliar application of CFs in the greenhouse considerably reduced the disease severity (%) in all treatments, viz., T. harzianum (18.03%), T. longibrachiatum (31.91%), and T. atroviride (23.33%), followed by infected control (86.91%), and positively affected the plant biomarkers. In the greenhouse, the plants treated with CFs demonstrated higher flavonoids after 6 days of inoculation, whereas phenolic compounds increased after 2 days. The CF-treated plants demonstrated higher antioxidant enzymes, i.e., phenylalanine ammonia-lyase (PAL) and peroxidase (POD), after 4 days, whereas polyphenol oxidase (PPO) was higher after 6 days of inoculation, followed by healthy and infected controls. In open field conditions, disease severity in CF-treated plants was reduced in both seasons as compared to naturally infected plants, whereas CF-treated plants exhibited a higher fruit yield than controls. The present results conclude that CFs can be a potential biocontrol candidate and a promising alternative to the early blight pathogen for sustainable production.
Collapse
Affiliation(s)
- Muhammad Imran
- Department of Agriculture, Faculty of Environmental Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Kamal A. M. Abo-Elyousr
- Department of Agriculture, Faculty of Environmental Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Plant Pathology, Faculty of Agriculture, University of Assiut, Assiut, Egypt
| | - Magdi A. A. Mousa
- Department of Agriculture, Faculty of Environmental Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Vegetable Crops, Faculty of Agriculture, Assiut University, Assiut, Egypt
| | - Maged M. Saad
- DARWIN21, Center for Desert Agriculture, Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| |
Collapse
|
21
|
Rubio MB, Monti MM, Gualtieri L, Ruocco M, Hermosa R, Monte E. Trichoderma harzianum Volatile Organic Compounds Regulated by the THCTF1 Transcription Factor Are Involved in Antifungal Activity and Beneficial Plant Responses. J Fungi (Basel) 2023; 9:654. [PMID: 37367590 DOI: 10.3390/jof9060654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 05/30/2023] [Accepted: 06/10/2023] [Indexed: 06/28/2023] Open
Abstract
The transcription factor THCTF1 from Trichoderma harzianum, previously linked to the production of 6-pentyl-2H-pyran-2-one (6-PP) derivatives and antifungal activity against Fusarium oxysporum, has been related in this study to conidiation, production of an array of volatile organic compounds (VOCs) and expression of methyltransferase genes. VOCs emitted by three T. harzianum strains (wild type T34, transformant ΔD1-38 that is disrupted in the Thctf1 gene encoding the transcription factor THCTF1, and ectopic integration transformant ΔJ3-16) were characterized by Proton Transfer Reaction-Quadrupole interface-Time-Of-Flight-Mass Spectrometry (PTR-Qi-TOF-MS). Thctf1 disruption affected the production of numerous VOCs such as the antifungal volatiles 2-pentyl furan and benzaldehyde which were under-emitted, and acetoine, a plant systemic defense inductor, which was over-emitted. Biological assays show that VOCs regulated by THCTF1 are involved in the T. harzianum antifungal activity against Botrytis cinerea and in the beneficial effects leading to Arabidopsis plant development. The VOC blend from the disruptant ΔD1-38: (i) inhibited Arabidopsis seed germination for at least 26 days and (ii) when applied to Arabidopsis seedlings resulted in increased jasmonic acid- and salicylic acid-dependent defenses.
Collapse
Affiliation(s)
- María Belén Rubio
- Department of Microbiology and Genetics, Institute for Agribiotechnology Research (CIALE), University of Salamanca, Campus de Villamayor, C/Duero, 12, 37185 Salamanca, Spain
| | - Maurilia Maria Monti
- Institute for Sustainable Plant Protection (CNR-IPSP), Piazzale Enrico Fermi 1, 80055 Naples, Italy
| | - Liberata Gualtieri
- Institute for Sustainable Plant Protection (CNR-IPSP), Piazzale Enrico Fermi 1, 80055 Naples, Italy
| | - Michelina Ruocco
- Institute for Sustainable Plant Protection (CNR-IPSP), Piazzale Enrico Fermi 1, 80055 Naples, Italy
| | - Rosa Hermosa
- Department of Microbiology and Genetics, Institute for Agribiotechnology Research (CIALE), University of Salamanca, Campus de Villamayor, C/Duero, 12, 37185 Salamanca, Spain
| | - Enrique Monte
- Department of Microbiology and Genetics, Institute for Agribiotechnology Research (CIALE), University of Salamanca, Campus de Villamayor, C/Duero, 12, 37185 Salamanca, Spain
| |
Collapse
|
22
|
Saadaoui M, Faize M, Bonhomme L, Benyoussef NO, Kharrat M, Chaar H, Label P, Venisse JS. Assessment of Tunisian Trichoderma Isolates on Wheat Seed Germination, Seedling Growth and Fusarium Seedling Blight Suppression. Microorganisms 2023; 11:1512. [PMID: 37375014 DOI: 10.3390/microorganisms11061512] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/25/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
Beneficial microorganisms, including members of the Trichoderma genus, are known for their ability to promote plant growth and disease resistance, as well as being alternatives to synthetic inputs in agriculture. In this study, 111 Trichoderma strains were isolated from the rhizospheric soil of Florence Aurore, an ancient wheat variety that was cultivated in an organic farming system in Tunisia. A preliminary ITS analysis allowed us to cluster these 111 isolates into three main groups, T. harzianum (74 isolates), T. lixii (16 isolates) and T. sp. (21 isolates), represented by six different species. Their multi-locus analysis (tef1, translation elongation factor 1; rpb2, RNA polymerase B) identified three T. afroharzianum, one T. lixii, one T. atrobrunneum and one T. lentinulae species. These six new strains were selected to determine their suitability as plant growth promoters (PGP) and biocontrol agents (BCA) against Fusarium seedling blight disease (FSB) in wheat caused by Fusarium culmorum. All of the strains exhibited PGP abilities correlated to ammonia and indole-like compound production. In terms of biocontrol activity, all of the strains inhibited the development of F. culmorum in vitro, which is linked to the production of lytic enzymes, as well as diffusible and volatile organic compounds. An in planta assay was carried out on the seeds of a Tunisian modern wheat variety (Khiar) by coating them with Trichoderma. A significant increase in biomass was observed, which is associated with increased chlorophyll and nitrogen. An FSB bioprotective effect was confirmed for all strains (with Th01 being the most effective) by suppressing morbid symptoms in germinated seeds and seedlings, as well as by limiting F. culmorum aggressiveness on overall plant growth. Plant transcriptome analysis revealed that the isolates triggered several SA- and JA-dependent defense-encoding genes involved in F. culmorum resistance in the roots and leaves of three-week-old seedlings. This finding makes these strains very promising in promoting growth and controlling FSB disease in modern wheat varieties.
Collapse
Affiliation(s)
- Mouadh Saadaoui
- Université Clermont Auvergne, INRAE, PIAF, 63000 Clermont-Ferrand, France
- Université de Tunis El Manar, Campus Universitaire Farhat Hached, B.P. n° 94-ROMMANA, Tunis 1068, Tunisia
- Field Crops Laboratory, National Institute for Agricultural Research of Tunisia (INRAT), Hedi Karray Street, El Menzah, Ariana 1004, Tunisia
| | - Mohamed Faize
- Laboratory of Plant Biotechnology, Ecology and Ecosystem Valorization URL-CNRST 10, Faculty of Sciences, University Chouaib Doukkali, El Jadida 24000, Morocco
| | - Ludovic Bonhomme
- UMR 1095 Génétique Diversité Ecophysiologie des Céréales, INRAE, Université Clermont Auvergne, 63000 Clermont-Ferrand, France
| | - Noura Omri Benyoussef
- Field Crops Laboratory, National Institute for Agricultural Research of Tunisia (INRAT), Hedi Karray Street, El Menzah, Ariana 1004, Tunisia
- National Institute of Agronomy of Tunisia (INAT), Tunis 1082, Tunisia
| | - Mohamed Kharrat
- Field Crops Laboratory, National Institute for Agricultural Research of Tunisia (INRAT), Hedi Karray Street, El Menzah, Ariana 1004, Tunisia
| | - Hatem Chaar
- Field Crops Laboratory, National Institute for Agricultural Research of Tunisia (INRAT), Hedi Karray Street, El Menzah, Ariana 1004, Tunisia
- National Institute of Agronomy of Tunisia (INAT), Tunis 1082, Tunisia
| | - Philippe Label
- Université Clermont Auvergne, INRAE, PIAF, 63000 Clermont-Ferrand, France
| | | |
Collapse
|
23
|
Dutta P, Mahanta M, Singh SB, Thakuria D, Deb L, Kumari A, Upamanya GK, Boruah S, Dey U, Mishra AK, Vanlaltani L, VijayReddy D, Heisnam P, Pandey AK. Molecular interaction between plants and Trichoderma species against soil-borne plant pathogens. FRONTIERS IN PLANT SCIENCE 2023; 14:1145715. [PMID: 37255560 PMCID: PMC10225716 DOI: 10.3389/fpls.2023.1145715] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/05/2023] [Indexed: 06/01/2023]
Abstract
Trichoderma spp. (Hypocreales) are used worldwide as a lucrative biocontrol agent. The interactions of Trichoderma spp. with host plants and pathogens at a molecular level are important in understanding the various mechanisms adopted by the fungus to attain a close relationship with their plant host through superior antifungal/antimicrobial activity. When working in synchrony, mycoparasitism, antibiosis, competition, and the induction of a systemic acquired resistance (SAR)-like response are considered key factors in deciding the biocontrol potential of Trichoderma. Sucrose-rich root exudates of the host plant attract Trichoderma. The soluble secretome of Trichoderma plays a significant role in attachment to and penetration and colonization of plant roots, as well as modulating the mycoparasitic and antibiosis activity of Trichoderma. This review aims to gather information on how Trichoderma interacts with host plants and its role as a biocontrol agent of soil-borne phytopathogens, and to give a comprehensive account of the diverse molecular aspects of this interaction.
Collapse
Affiliation(s)
- Pranab Dutta
- School of Crop Protection, College of Post Graduate Studies in Agricultural Sciences, Central Agricultural University (Imphal), Meghalaya, Imphal, India
| | - Madhusmita Mahanta
- School of Crop Protection, College of Post Graduate Studies in Agricultural Sciences, Central Agricultural University (Imphal), Meghalaya, Imphal, India
| | | | - Dwipendra Thakuria
- School of Natural Resource Management, College of Post Graduate Studies in Agricultural Sciences, Central Agricultural University (Imphal), Imphal, India
| | - Lipa Deb
- School of Crop Protection, College of Post Graduate Studies in Agricultural Sciences, Central Agricultural University (Imphal), Meghalaya, Imphal, India
| | - Arti Kumari
- School of Crop Protection, College of Post Graduate Studies in Agricultural Sciences, Central Agricultural University (Imphal), Meghalaya, Imphal, India
| | - Gunadhya K. Upamanya
- Sarat Chandra Singha (SCS) College of Agriculture, Assam Agricultural University (Jorhat), Dhubri, Assam, India
| | - Sarodee Boruah
- Krishi Vigyan Kendra (KVK)-Tinsukia, Assam Agricultural University (Jorhat), Tinsukia, Assam, India
| | - Utpal Dey
- Krishi Vigyan Kendra (KVK)-Sepahijala, Central Agricultural University (Imphal), Tripura, Sepahijala, India
| | - A. K. Mishra
- Department of Plant Pathology, Dr Rajendra Prasad Central Agricultural University, Bihar, Samastipur, India
| | - Lydia Vanlaltani
- School of Crop Protection, College of Post Graduate Studies in Agricultural Sciences, Central Agricultural University (Imphal), Meghalaya, Imphal, India
| | - Dumpapenchala VijayReddy
- School of Crop Protection, College of Post Graduate Studies in Agricultural Sciences, Central Agricultural University (Imphal), Meghalaya, Imphal, India
| | - Punabati Heisnam
- Department of Agronomy, Central Agricultural University (Imphal), Pasighat, India
| | - Abhay K. Pandey
- Department of Mycology and Microbiology, Tea Research Association, North Bengal Regional, R & D Center, Jalpaiguri, West Bengal, India
| |
Collapse
|
24
|
Woo SL, Hermosa R, Lorito M, Monte E. Trichoderma: a multipurpose, plant-beneficial microorganism for eco-sustainable agriculture. Nat Rev Microbiol 2023; 21:312-326. [PMID: 36414835 DOI: 10.1038/s41579-022-00819-5] [Citation(s) in RCA: 113] [Impact Index Per Article: 56.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2022] [Indexed: 11/24/2022]
Abstract
Trichoderma is a cosmopolitan and opportunistic ascomycete fungal genus including species that are of interest to agriculture as direct biological control agents of phytopathogens. Trichoderma utilizes direct antagonism and competition, particularly in the rhizosphere, where it modulates the composition of and interactions with other microorganisms. In its colonization of plants, on the roots or as an endophyte, Trichoderma has evolved the capacity to communicate with the plant and produce numerous multifaceted benefits to its host. The intricacy of this plant-microorganism association has stimulated a marked interest in research on Trichoderma, ranging from its capacity as a plant growth promoter to its ability to prime local and systemic defence responses against biotic and abiotic stresses and to activate transcriptional memory affecting plant responses to future stresses. This Review discusses the ecophysiology and diversity of Trichoderma and the complexity of its relationships in the agroecosystem, highlighting its potential as a direct and indirect biological control agent, biostimulant and biofertilizer, which are useful multipurpose properties for agricultural applications. We also highlight how the present legislative framework might accommodate the demonstrated evidence of Trichoderma proficiency as a plant-beneficial microorganism contributing towards eco-sustainable agriculture.
Collapse
Affiliation(s)
- Sheridan L Woo
- Department of Pharmacy, University of Naples Federico II, Naples, Italy.
| | - Rosa Hermosa
- Department of Microbiology and Genetics, Institute for Agribiotechnology Research (CIALE), University of Salamanca, Salamanca, Spain
| | - Matteo Lorito
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Enrique Monte
- Department of Microbiology and Genetics, Institute for Agribiotechnology Research (CIALE), University of Salamanca, Salamanca, Spain
| |
Collapse
|
25
|
Sarrocco S. Biological Disease Control by Beneficial (Micro)Organisms: Selected Breakthroughs in the Past 50 Years. PHYTOPATHOLOGY 2023; 113:732-740. [PMID: 36706001 DOI: 10.1094/phyto-11-22-0405-kd] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Biological control of plant disease by beneficial (micro)organisms is one of the main tools available to preserve plant health within the wider context of One Health and in line with the goals of the Agenda 2030 for Sustainable Development. The commercial development of biocontrol agents, together with a new perspective on the resident microbial community, all supported by innovative "omics" technologies, continues to gain in prominence in plant pathology, addressing the need to feed the increasing world population and to assure safe and secure access to food. The present review considers selected advances within the last 50 years, highlighting those that can be considered as breakthroughs for the biological control research field. Selected examples of successful biocontrol agents and strategies are reported, including the history of the progress in researching Trichoderma isolates as commercial biocontrol agents, the exploitation of mycoviruses to confer hypovirulence to plant pathogenic fungi, the role of microbial communities in the suppressiveness of soils, and evolving approaches including the establishment of synthetic microbial communities.
Collapse
Affiliation(s)
- Sabrina Sarrocco
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80-56124, Pisa, Italy
| |
Collapse
|
26
|
Bhunjun CS, Phukhamsakda C, Hyde KD, McKenzie EHC, Saxena RK, Li Q. Do all fungi have ancestors with endophytic lifestyles? FUNGAL DIVERS 2023. [DOI: 10.1007/s13225-023-00516-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
27
|
Belair M, Restrepo-Leal JD, Praz C, Fontaine F, Rémond C, Fernandez O, Besaury L. Botryosphaeriaceae gene machinery: Correlation between diversity and virulence. Fungal Biol 2023; 127:1010-1031. [PMID: 37142361 DOI: 10.1016/j.funbio.2023.03.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 03/09/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023]
Abstract
The Botryosphaeriaceae family comprises numerous fungal pathogens capable of causing economically meaningful diseases in a wide range of crops. Many of its members can live as endophytes and turn into aggressive pathogens following the onset of environmental stress events. Their ability to cause disease may rely on the production of a broad set of effectors, such as cell wall-degrading enzymes, secondary metabolites, and peptidases. Here, we conducted comparative analyses of 41 genomes representing six Botryosphaeriaceae genera to provide insights into the genetic features linked to pathogenicity and virulence. We show that these Botryosphaeriaceae genomes possess a large diversity of carbohydrate-active enzymes (CAZymes; 128 families) and peptidases (45 families). Botryosphaeria, Neofusicoccum, and Lasiodiplodia presented the highest number of genes encoding CAZymes involved in the degradation of the plant cell wall components. The genus Botryosphaeria also exhibited the highest abundance of secreted CAZymes and peptidases. Generally, the secondary metabolites gene cluster profile was consistent in the Botryosphaeriaceae family, except for Diplodia and Neoscytalidium. At the strain level, Neofusicoccum parvum NpBt67 stood out among all the Botryosphaeriaceae genomes, presenting a higher number of secretome constituents. In contrast, the Diplodia strains showed the lowest richness of the pathogenicity- and virulence-related genes, which may correlate with their low virulence reported in previous studies. Overall, these results contribute to a better understanding of the mechanisms underlying pathogenicity and virulence in remarkable Botryosphaeriaceae species. Our results also support that Botryosphaeriaceae species could be used as an interesting biotechnological tool for lignocellulose fractionation and bioeconomy.
Collapse
|
28
|
A Salt-Tolerant Strain of Trichoderma longibrachiatum HL167 Is Effective in Alleviating Salt Stress, Promoting Plant Growth, and Managing Fusarium Wilt Disease in Cowpea. J Fungi (Basel) 2023; 9:jof9030304. [PMID: 36983472 PMCID: PMC10052927 DOI: 10.3390/jof9030304] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023] Open
Abstract
Salt stress is a constraint factor in agricultural production and restricts crops yield and quality. In this study, a salt-tolerant strain of Trichoderma longibrachiatum HL167 was obtained from 64 isolates showing significant salt tolerance and antagonistic activity to Fusarium oxysporum. T. longibrachiatum HL167 inhibited F. oxysporum at a rate of 68.08% in 200 mM NaCl, penetrated F. oxysporum under 200 mM NaCl, and eventually induced F. oxysporum hyphae breaking, according to electron microscope observations. In the pot experiment, pretreatment of cowpea seedlings with T. longibrachiatum HL167 reduced the accumulation level of ROS in tissues and the damage caused by salt stress. Furthermore, in the field experiment, it was discovered that treating cowpea with T. longibrachiatum HL167 before root inoculation with F. oxysporum can successfully prevent and control the development of cowpea Fusarium wilt, with the best control effect reaching 61.54%. Moreover, the application of HL 167 also improved the K+/Na+ ratio of cowpea, alleviated the ion toxicity of salt stress on cowpea, and HL167 was found to effectively colonize the cowpea roots. T. longibrachiatum HL167, which normally survives in saline–alkali environments and has the functions of disease prevention and plant growth promotion capabilities, has important research implications for improving the saline–alkali soil environment and for the sustainable development of green agriculture.
Collapse
|
29
|
Ganugi P, Fiorini A, Tabaglio V, Capra F, Zengin G, Bonini P, Caffi T, Puglisi E, Trevisan M, Lucini L. The Functional Profile and Antioxidant Capacity of Tomato Fruits Are Modulated by the Interaction between Microbial Biostimulants, Soil Properties, and Soil Nitrogen Status. Antioxidants (Basel) 2023; 12:antiox12020520. [PMID: 36830078 PMCID: PMC9951999 DOI: 10.3390/antiox12020520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/12/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
The application of microbial biostimulants to plants has revealed positive effects related to nutrients uptake, stress tolerance, root development and phenological growth. However, little information is available exploiting the potential synergistic biostimulant action of microbes on the functional quality of the yields. The current research elucidated the effect of single or coupled action of biostimulants, associated with either optimal or reduced nitrogen application, on the functional quality of tomato fruits. Chemical assays and untargeted metabolomics were applied to investigate Rhizoglomus irregulare and Funneliformis mosseae administration (both being arbuscular mycorrhiza, AMF), under optimal or low N input conditions, alone or coupled to Trichoderma atroviride application. The coupling of AMF and Trichoderma fungal inoculations resulted in a synergistic biostimulant effect on tomato fruits under sub-optimal fertility, revealing improved concentrations of carotenoid compounds-B-carotene (0.647 ± 0.243 mg/100 g), Z-carotene (0.021 ± 0.021 mg/100 g), 13-z-lycopene (0.145 ± 0.052 mg/100 g) and all-trans-lycopene (12.586 ± 1.511 mg/100 g), and increased values for total phenolic content (12.9 ± 2.9 mgGAE/g), total antioxidant activity (phosphomolybdenum, 0.9 ± 0.2 mmolTE/g), radical scavenging activity (DPPH, 3.4 ± 3.7 mgTE/g), reducing power (FRAP, 23.6 ± 6.3 mgTE/g and CUPRAC, 37.4 ± 7.6 mg TE/g), and enzyme inhibitory activity (AChE, 2.4 ± 0.1 mg GALAE/g), when compared to control. However, evidence of carotenoid and bioactive compounds were exclusively observed under the sub-optimal fertility and no significant differences could be observed between the biostimulant treatment and control under optimal fertility.
Collapse
Affiliation(s)
- Paola Ganugi
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Andrea Fiorini
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Vincenzo Tabaglio
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Federico Capra
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Gokhan Zengin
- Department of Biology, Faculty of Science, Selcuk University, Konya Campus, 8300 Konya, Turkey
| | | | - Tito Caffi
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Edoardo Puglisi
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Marco Trevisan
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
- Correspondence:
| |
Collapse
|
30
|
van Zijll de Jong E, Kandula J, Rostás M, Kandula D, Hampton J, Mendoza-Mendoza A. Fungistatic Activity Mediated by Volatile Organic Compounds Is Isolate-Dependent in Trichoderma sp. " atroviride B". J Fungi (Basel) 2023; 9:jof9020238. [PMID: 36836354 PMCID: PMC9965825 DOI: 10.3390/jof9020238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/15/2023] Open
Abstract
Trichoderma spp. produce multiple bioactive volatile organic compounds (VOCs). While the bioactivity of VOCs from different Trichoderma species is well documented, information on intraspecific variation is limited. The fungistatic activity of VOCs emitted by 59 Trichoderma sp. "atroviride B" isolates against the pathogen Rhizoctonia solani was investigated. Eight isolates representing the two extremes of bioactivity against R. solani were also assessed against Alternaria radicina, Fusarium oxysporum f. sp. lycopersici and Sclerotinia sclerotiorum. VOCs profiles of these eight isolates were analyzed using gas chromatography-mass spectrometry (GC-MS) to identify a correlation between specific VOCs and bioactivity, and 11 VOCs were evaluated for bioactivity against the pathogens. Bioactivity against R. solani varied among the fifty-nine isolates, with five being strongly antagonistic. All eight selected isolates inhibited the growth of all four pathogens, with bioactivity being lowest against F. oxysporum f. sp. lycopersici. In total, 32 VOCs were detected, with individual isolates producing between 19 and 28 VOCs. There was a significant direct correlation between VOC number/quantity and bioactivity against R. solani. 6-pentyl-α-pyrone was the most abundant VOC produced, but 15 other VOCs were also correlated with bioactivity. All 11 VOCs tested inhibited R. solani growth, some by >50%. Some of the VOCs also inhibited the growth of the other pathogens by >50%. This study demonstrates significant intraspecific differences in VOC profiles and fungistatic activity supporting the existence of biological diversity within Trichoderma isolates from the same species, a factor in many cases ignored during the development of biological control agents.
Collapse
Affiliation(s)
- Eline van Zijll de Jong
- Bio-Protection Research Centre, Lincoln University, Lincoln 7647, New Zealand
- Linnaeus Laboratory Ltd., Gisborne 4010, New Zealand
| | - Janaki Kandula
- Bio-Protection Research Centre, Lincoln University, Lincoln 7647, New Zealand
| | - Michael Rostás
- Bio-Protection Research Centre, Lincoln University, Lincoln 7647, New Zealand
- Agricultural Entomology, Department of Crop Sciences, University of Göttingen, 37077 Göttingen, Germany
| | - Diwakar Kandula
- Bio-Protection Research Centre, Lincoln University, Lincoln 7647, New Zealand
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand
| | - John Hampton
- Bio-Protection Research Centre, Lincoln University, Lincoln 7647, New Zealand
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand
- Correspondence: (J.H.); (A.M.-M.)
| | - Artemio Mendoza-Mendoza
- Bio-Protection Research Centre, Lincoln University, Lincoln 7647, New Zealand
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand
- Correspondence: (J.H.); (A.M.-M.)
| |
Collapse
|
31
|
Samal I, Bhoi TK, Majhi PK, Murmu S, Pradhan AK, Kumar D, Saini V, Paschapur AU, Raj MN, Ankur, Manik S, Behera PP, Mahanta DK, Komal J, Alam P, Balawi TA. Combatting insects mediated biotic stress through plant associated endophytic entomopathogenic fungi in horticultural crops. FRONTIERS IN PLANT SCIENCE 2023; 13:1098673. [PMID: 36743574 PMCID: PMC9894630 DOI: 10.3389/fpls.2022.1098673] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/16/2022] [Indexed: 09/12/2023]
Abstract
Horticultural production is a vital catalyst for economic growth, yet insect infestations reduce horticultural crop yield and quality. Pesticides and other pest control methods are used during planting to eliminate pests that cause direct and indirect losses. In such situations, endophytic entomo-pathogenic fungi (EEPF) can act as a potential tools for biological control. They protect plants by boosting growth, nutrition, morpho-physiology and salt or iron tolerance. Antixenosis, antibiosis and plant tolerance change insect performance and preferences. EEPF- plant colonisation slows herbivore development, food consumption, oviposition and larval survival. EEPF changes plant physio-chemical properties like volatile emission profile and secondary metabolite production to regulate insect pest defences. EEPF produces chitinases, laccases, amylases, and cellulases for plant defence. Recent studies focused on EEPF species' significance, isolation, identification and field application. Realizing their full potential is difficult due to insufficient mass production, storage stability and formulation. Genetic-molecular and bioinformatics can help to build EEPF-based biological control systems. Metagenomics helps study microbial EEPF taxonomy and function. Multi-omics and system biology can decode EEPF interactions with host plants and microorganisms. NGS (Next Generation Sequencing), comparative genomics, proteomics, transcriptomics, metabolomics, metatranscriptomics and microarrays are used to evaluate plant-EEPF relationships. IPM requires understanding the abiotic and biotic elements that influence plant-EEPF interaction and the physiological mechanisms of EEPF colonisation. Due to restricted research, there are hundreds of unexplored EEPFs, providing an urgent need to uncover and analyse them.
Collapse
Affiliation(s)
- Ipsita Samal
- Department of Entomology, Sri Sri University, Cuttack, Odisha, India
| | - Tanmaya Kumar Bhoi
- Forest Protection Division, Indian Council of Forestry Research and Education (ICFRE) - Arid Forest Research Institute (AFRI), Jodhpur, Rajasthan, India
| | - Prasanta Kumar Majhi
- Department of Plant Breeding and Genetics, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha, India
| | - Sneha Murmu
- Division of Agricultural Bio-informatics, Indian Council of Agricultural Research (ICAR)- Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Asit Kumar Pradhan
- Division, Social Science Division, Indian Council of Agricultural Research (ICAR)- National Rice Research Institute (NRRI), Cuttack, Odisha, India
| | - Dilip Kumar
- Division of Computer Application and IT, National Institute for Agricultural Economics and Policy Research (NIAP), New Delhi, National Capital Territory of Delhi, India
| | - Varun Saini
- Department of Entomology, Navsari Agricultural University, Navsari, Gujarat, India
| | - Amit Umesh Paschapur
- Crop Protection Division, Indian Council of Agricultural Research (ICAR) - Vivekananda Parvatiya Krishi Anusandhan Sansthan, Almora, Uttarakhand, India
| | - M Nikhil Raj
- Department of Entomology, Dr. Rajendra Prasad Central Agricultural University, Samastipur, Bihar, India
| | - Ankur
- Division of Entomology, Indian Council of Agricultural Research (ICAR-IARI)- Indian Agricultural Research Institute, New Delhi, India
| | - Suryakant Manik
- Department of Seed Science and Technology, Chaudhary Charan Singh Haryana Agricultural University, Hisar, Haryana, India
| | - Partha Pratim Behera
- Department of Plant Breeding and Genetics, Assam Agricultural University, Jorhat, Assam, India
| | - Deepak Kumar Mahanta
- Department of Entomology, Dr. Rajendra Prasad Central Agricultural University, Samastipur, Bihar, India
| | - J. Komal
- Department of Entomology, Navsari Agricultural University, Navsari, Gujarat, India
| | - Pravej Alam
- Department of Biology, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia
| | - Thamer Al Balawi
- Department of Biology, College of Science and Humanities, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia
| |
Collapse
|
32
|
Shen Q, Zhang K, Voroney P, Meng L, Xu J, Brookes P. Biodiesel Co-Product enhances microbial stability and beneficial microbial communities along a gradient of soil water content. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159204. [PMID: 36198351 DOI: 10.1016/j.scitotenv.2022.159204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 09/26/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Biodiesel Co-Product (BCP) is a complex carbonaceous liquid formed during the commercial production of biodiesel. Previously, BCP was shown to decrease nitrogen (N) leaching from the soil, but the effects of BCP on the diversity, composition, and structure of soil microbial communities are not well understood. Here, we applied 1.5 mg BCP-C to acidic soil (pH 3.5) at a range of different water contents (from 40 % to 100 % water holding capacity) to investigate the interactions between BCP and increasing water holding capacity on the diversity, composition, and interactions of soil microbial communities. Distance-based multivariate linear model (DistLM) and non-metric multidimensional scaling (NMDS) analyses showed that BCP caused larger changes in fungal than bacterial communities, while soil water content had a greater effect on bacterial communities relative to fungal communities. Co-occurrence network analyses indicated that BCP amendment produced more robust and complex bacterial networks and more stable fungal ones. BCP significantly increased the OTU numbers of beneficial microbes (e.g., Trichoderma spp.) in all water contents, with fewer OTU numbers of putative pathogenetic species (Fusarium spp. and Aspergillus spp.). These findings indicate that BCP addition may be conducive to the health and stability of soil ecosystems.
Collapse
Affiliation(s)
- Qunli Shen
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China; Faculty of Environmental Sciences, University of Guelph, Guelph, ON, Canada
| | - Kaile Zhang
- North Florida Research and Education Center, University of Florida, Quincy, FL 32351, USA; Soil and Water Sciences Department, University of Florida, Gainesville, FL 32611, USA.
| | - Paul Voroney
- Faculty of Environmental Sciences, University of Guelph, Guelph, ON, Canada
| | - Lei Meng
- School of Tropical Crops, Hainan University, Haikou 570228, China
| | - Jianming Xu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Philip Brookes
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
33
|
Piombo E, Guaschino M, Jensen DF, Karlsson M, Dubey M. Insights into the ecological generalist lifestyle of Clonostachys fungi through analysis of their predicted secretomes. Front Microbiol 2023; 14:1112673. [PMID: 36876087 PMCID: PMC9978495 DOI: 10.3389/fmicb.2023.1112673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/30/2023] [Indexed: 02/18/2023] Open
Abstract
Introduction The fungal secretome comprise diverse proteins that are involved in various aspects of fungal lifestyles, including adaptation to ecological niches and environmental interactions. The aim of this study was to investigate the composition and activity of fungal secretomes in mycoparasitic and beneficial fungal-plant interactions. Methods We used six Clonostachys spp. that exhibit saprotrophic, mycotrophic and plant endophytic lifestyles. Genome-wide analyses was performed to investigate the composition, diversity, evolution and gene expression of Clonostachys secretomes in relation to their potential role in mycoparasitic and endophytic lifestyles. Results and discussion Our analyses showed that the predicted secretomes of the analyzed species comprised between 7 and 8% of the respective proteomes. Mining of transcriptome data collected during previous studies showed that 18% of the genes encoding predicted secreted proteins were upregulated during the interactions with the mycohosts Fusarium graminearum and Helminthosporium solani. Functional annotation of the predicted secretomes revealed that the most represented protease family was subclass S8A (11-14% of the total), which include members that are shown to be involved in the response to nematodes and mycohosts. Conversely, the most numerous lipases and carbohydrate-active enzyme (CAZyme) groups appeared to be potentially involved in eliciting defense responses in the plants. For example, analysis of gene family evolution identified nine CAZyme orthogroups evolving for gene gains (p ≤ 0.05), predicted to be involved in hemicellulose degradation, potentially producing plant defense-inducing oligomers. Moreover, 8-10% of the secretomes was composed of cysteine-enriched proteins, including hydrophobins, important for root colonization. Effectors were more numerous, comprising 35-37% of the secretomes, where certain members belonged to seven orthogroups evolving for gene gains and were induced during the C. rosea response to F. graminearum or H. solani. Furthermore, the considered Clonostachys spp. possessed high numbers of proteins containing Common in Fungal Extracellular Membranes (CFEM) modules, known for their role in fungal virulence. Overall, this study improves our understanding of Clonostachys spp. adaptation to diverse ecological niches and establishes a basis for future investigation aiming at sustainable biocontrol of plant diseases.
Collapse
Affiliation(s)
- Edoardo Piombo
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Micol Guaschino
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden.,Department of Agricultural, Forest and Food Sciences (DISAFA), University of Torino, Grugliasco, Italy
| | - Dan Funck Jensen
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Magnus Karlsson
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Mukesh Dubey
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
34
|
Scafati V, Troilo F, Ponziani S, Giovannoni M, Scortica A, Pontiggia D, Angelucci F, Di Matteo A, Mattei B, Benedetti M. Characterization of two 1,3-β-glucan-modifying enzymes from Penicillium sumatraense reveals new insights into 1,3-β-glucan metabolism of fungal saprotrophs. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:138. [PMID: 36510318 PMCID: PMC9745967 DOI: 10.1186/s13068-022-02233-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 11/23/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND 1,3-β-glucan is a polysaccharide widely distributed in the cell wall of several phylogenetically distant organisms, such as bacteria, fungi, plants and microalgae. The presence of highly active 1,3-β-glucanases in fungi evokes the biological question on how these organisms can efficiently metabolize exogenous sources of 1,3-β-glucan without incurring in autolysis. RESULTS To elucidate the molecular mechanisms at the basis of 1,3-β-glucan metabolism in fungal saprotrophs, the putative exo-1,3-β-glucanase G9376 and a truncated form of the putative glucan endo-1,3-β-glucosidase (ΔG7048) from Penicillium sumatraense AQ67100 were heterologously expressed in Pichia pastoris and characterized both in terms of activity and structure. G9376 efficiently converted laminarin and 1,3-β-glucan oligomers into glucose by acting as an exo-glycosidase, whereas G7048 displayed a 1,3-β-transglucanase/branching activity toward 1,3-β-glucan oligomers with a degree of polymerization higher than 5, making these oligomers more recalcitrant to the hydrolysis acted by exo-1,3-β-glucanase G9376. The X-ray crystallographic structure of the catalytic domain of G7048, solved at 1.9 Å of resolution, consists of a (β/α)8 TIM-barrel fold characteristic of all the GH17 family members. The catalytic site is in a V-shaped cleft containing the two conserved catalytic glutamic residues. Molecular features compatible with the activity of G7048 as 1,3-β-transglucanase are discussed. CONCLUSIONS The antagonizing activity between ΔG7048 and G9376 indicates how opportunistic fungi belonging to Penicillium genus can feed on substrates similar for composition and structure to their own cell wall without incurring in a self-deleterious autohydrolysis.
Collapse
Affiliation(s)
- Valentina Scafati
- grid.158820.60000 0004 1757 2611Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Francesca Troilo
- grid.5326.20000 0001 1940 4177Institute of Molecular Biology and Pathology, CNR, P.Le Aldo Moro 5, 00185 Rome, Italy
| | - Sara Ponziani
- grid.158820.60000 0004 1757 2611Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Moira Giovannoni
- grid.158820.60000 0004 1757 2611Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Anna Scortica
- grid.158820.60000 0004 1757 2611Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Daniela Pontiggia
- grid.7841.aDepartment of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy
| | - Francesco Angelucci
- grid.158820.60000 0004 1757 2611Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Adele Di Matteo
- grid.5326.20000 0001 1940 4177Institute of Molecular Biology and Pathology, CNR, P.Le Aldo Moro 5, 00185 Rome, Italy
| | - Benedetta Mattei
- grid.158820.60000 0004 1757 2611Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Manuel Benedetti
- grid.158820.60000 0004 1757 2611Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| |
Collapse
|
35
|
Saleem S, Sekara A, Pokluda R. Serendipita indica-A Review from Agricultural Point of View. PLANTS (BASEL, SWITZERLAND) 2022; 11:3417. [PMID: 36559533 PMCID: PMC9787873 DOI: 10.3390/plants11243417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Fulfilling the food demand of a fast-growing population is a global concern, resulting in increased dependence of the agricultural sector on various chemical formulations for enhancing crop production. This leads to an overuse of chemicals, which is not only harmful to human and animal health, but also to the environment and the global economy. Environmental safety and sustainable production are major responsibilities of the agricultural sector, which is inherently linked to the conservation of the biodiversity, the economy, and human and animal health. Scientists, therefore, across the globe are seeking to develop eco-friendly and cost-effective strategies to mitigate these issues by putting more emphasis on the use of beneficial microorganisms. Here, we review the literature on Serendipita indica, a beneficial endophytic fungus, to bring to the fore its properties of cultivation, the ability to enhance plant growth, improve the quality of produced crops, mitigate various plant stresses, as well as protect the environment. The major points in this review are as follows: (1) Although various plant growth promoting microorganisms are available, the distinguishing character of S. indica being axenically cultivable with a wide range of hosts makes it more interesting for research. (2) S. indica has numerous functions, ranging from promoting plant growth and quality to alleviating abiotic and biotic stresses, suggesting the use of this fungus as a biofertiliser. It also improves the soil quality by limiting the movement of heavy metals in the soil, thus, protecting the environment. (3) S. indica's modes of action are due to interactions with phytohormones, metabolites, photosynthates, and gene regulation, in addition to enhancing nutrient and water absorption. (4) Combined application of S. indica and nanoparticles showed synergistic promotion in crop growth, but the beneficial effects of these interactions require further investigation. This review concluded that S. indica has a great potential to be used as a plant growth promoter or biofertiliser, ensuring sustainable crop production and a healthy environment.
Collapse
Affiliation(s)
- Sana Saleem
- Department of Vegetable Sciences and Floriculture, Faculty of Horticulture, Mendel University in Brno, Valticka 337, 691 44 Lednice, Czech Republic
| | - Agnieszka Sekara
- Department of Horticulture, Faculty of Biotechnology and Horticulture, University of Agriculture, 31-120 Krakow, Poland
| | - Robert Pokluda
- Department of Vegetable Sciences and Floriculture, Faculty of Horticulture, Mendel University in Brno, Valticka 337, 691 44 Lednice, Czech Republic
| |
Collapse
|
36
|
Poveda J, Abril-Urías P, Muñoz-Acero J, Nicolás C. A potential role of salicylic acid in the evolutionary behavior of Trichoderma as a plant pathogen: from Marchantia polymorpha to Arabidopsis thaliana. PLANTA 2022; 257:6. [PMID: 36437384 PMCID: PMC9701658 DOI: 10.1007/s00425-022-04036-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Recognition of the interaction of Trichoderma during the evolution of land plants plays a potential key role in the development of the salicylic acid defense pathway and the establishment of a mutualistic relationship. Marchantia polymorpha is a common liverwort considered in recent years as a model plant for evolutionary studies on plant-microorganism interactions. Despite the lack of research, remarkable results have been reported regarding the understanding of metabolic and evolutionary processes of beneficial and/or harmful interactions, owing to a better understanding of the origin and evolution of different plant defense pathways. In this study, we have carried out work on the direct and indirect interactions (exudates and volatiles) of M. polymorpha with different species of the fungal genus Trichoderma. These interactions showed different outcomes, including resistance or even growth promotion and disease. We have analyzed the level of tissue colonization and defense-related gene expression. Furthermore, we have used the pteridophyte Dryopteris affinis and the angiosperm Arabidopsis thaliana, as subsequent steps in plant evolution, together with the plant pathogen Rhizoctonia solani as a control of plant pathogenicity. Trichoderma virens, T. brevicompactum and T. hamatum are pathogens of M. polymorpha, while exudates of T. asperellum are harmful to the plant. The analysis of the expression of several defense genes in M. polymorpha and A. thaliana showed that there is a correlation of the transcriptional activation of SA-related genes with resistance or susceptibility of M. polymorpha to Trichoderma. Moreover, exogenous SA provides resistance to the virulent Trichoderma species. This beneficial fungus may have had an evolutionary period of interaction with plants in which it behaved as a plant pathogen until plants developed a defense system to limit its colonization through a defense response mediated by SA.
Collapse
Affiliation(s)
- Jorge Poveda
- Department of Plant Production and Forest Resources, University Institute for Research in Sustainable Forest Management (iuFOR), University of Valladolid, Palencia, Spain
| | - Patricia Abril-Urías
- Institute of Environmental Sciences, Plant Physiology Area, Universidad de Castilla-La Mancha, Toledo, Spain
| | - Julia Muñoz-Acero
- Department of Botany and Plant Physiology, Institute for Agrobiotechnology Research (CIALE), Universidad de Salamanca, Salamanca, Spain
| | - Carlos Nicolás
- Department of Botany and Plant Physiology, Institute for Agrobiotechnology Research (CIALE), Universidad de Salamanca, Salamanca, Spain.
| |
Collapse
|
37
|
Antoszewski M, Mierek-Adamska A, Dąbrowska GB. The Importance of Microorganisms for Sustainable Agriculture-A Review. Metabolites 2022; 12:1100. [PMID: 36422239 PMCID: PMC9694901 DOI: 10.3390/metabo12111100] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 08/27/2023] Open
Abstract
In the face of climate change, progressive degradation of the environment, including agricultural land negatively affecting plant growth and development, endangers plant productivity. Seeking efficient and sustainable agricultural techniques to replace agricultural chemicals is one of the most important challenges nowadays. The use of plant growth-promoting microorganisms is among the most promising approaches; however, molecular mechanisms underneath plant-microbe interactions are still poorly understood. In this review, we summarized the knowledge on plant-microbe interactions, highlighting the role of microbial and plant proteins and metabolites in the formation of symbiotic relationships. This review covers rhizosphere and phyllosphere microbiomes, the role of root exudates in plant-microorganism interactions, the functioning of the plant's immune system during the plant-microorganism interactions. We also emphasized the possible role of the stringent response and the evolutionarily conserved mechanism during the established interaction between plants and microorganisms. As a case study, we discussed fungi belonging to the genus Trichoderma. Our review aims to summarize the existing knowledge about plant-microorganism interactions and to highlight molecular pathways that need further investigation.
Collapse
Affiliation(s)
| | - Agnieszka Mierek-Adamska
- Department of Genetics, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100 Toruń, Poland
| | | |
Collapse
|
38
|
Schalamun M, Schmoll M. Trichoderma - genomes and genomics as treasure troves for research towards biology, biotechnology and agriculture. FRONTIERS IN FUNGAL BIOLOGY 2022; 3:1002161. [PMID: 37746224 PMCID: PMC10512326 DOI: 10.3389/ffunb.2022.1002161] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 08/25/2022] [Indexed: 09/26/2023]
Abstract
The genus Trichoderma is among the best studied groups of filamentous fungi, largely because of its high relevance in applications from agriculture to enzyme biosynthesis to biofuel production. However, the physiological competences of these fungi, that led to these beneficial applications are intriguing also from a scientific and ecological point of view. This review therefore summarizes recent developments in studies of fungal genomes, updates on previously started genome annotation efforts and novel discoveries as well as efforts towards bioprospecting for enzymes and bioactive compounds such as cellulases, enzymes degrading xenobiotics and metabolites with potential pharmaceutical value. Thereby insights are provided into genomes, mitochondrial genomes and genomes of mycoviruses of Trichoderma strains relevant for enzyme production, biocontrol and mycoremediation. In several cases, production of bioactive compounds could be associated with responsible genes or clusters and bioremediation capabilities could be supported or predicted using genome information. Insights into evolution of the genus Trichoderma revealed large scale horizontal gene transfer, predominantly of CAZyme genes, but also secondary metabolite clusters. Investigation of sexual development showed that Trichoderma species are competent of repeat induced point mutation (RIP) and in some cases, segmental aneuploidy was observed. Some random mutants finally gave away their crucial mutations like T. reesei QM9978 and QM9136 and the fertility defect of QM6a was traced back to its gene defect. The Trichoderma core genome was narrowed down to 7000 genes and gene clustering was investigated in the genomes of multiple species. Finally, recent developments in application of CRISPR/Cas9 in Trichoderma, cloning and expression strategies for the workhorse T. reesei as well as the use genome mining tools for bioprospecting Trichoderma are highlighted. The intriguing new findings on evolution, genomics and physiology highlight emerging trends and illustrate worthwhile perspectives in diverse fields of research with Trichoderma.
Collapse
Affiliation(s)
- Miriam Schalamun
- Center for Health and Bioresources, AIT Austrian Institute of Technology GmbH, Tulln, Austria
| | - Monika Schmoll
- Department of Microbiology and Ecosystem Science, Division of Terrestrial Ecosystem Research, University of Vienna, Vienna, Austria
| |
Collapse
|
39
|
Bansal R, Sethy SK, Khan Z, Shaikh N, Banerjee K, Mukherjee PK. Genetic Evidence in Favor of a Polyketide Origin of Acremeremophilanes, the Fungal "Sesquiterpene" Metabolites. Microbiol Spectr 2022; 10:e0179322. [PMID: 35938791 PMCID: PMC9430172 DOI: 10.1128/spectrum.01793-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/18/2022] [Indexed: 12/02/2022] Open
Abstract
Eremophilanes are a large group of "sesquiterpenes" produced by plants and fungi, with more than 180 compounds being known in fungi alone. Many of these compounds are phytotoxic, antimicrobial, anticancer and immunomodulators, and hence are of great economic values. Acremeremophilanes A to O have earlier been reported in a marine isolate of Acremonium sp. We report here the presence of Acremeremophilane I, G, K, N, and O, in a plant beneficial fungus Trichoderma virens, in a strain-specific manner. We also describe a novel, P strain-specific polyketide synthase (PKS) gene cluster in T. virens. This gene cluster, designated amm cluster, is absent in the genome of a Q strain of T. virens, and in other Trichoderma spp.; instead, a near identical cluster is present in the genome of the toxic mold Stachybotrys chartarum. Using gene knockout, we provide evidence that acremeremophilanes are biosynthesized via a polyketide route, and not via the mevalonate/terpene synthesis route as believed. We propose here that the 10-carbon skeleton is a product of polyketide synthase, to which a five-carbon isoprene unit is added by a prenyl transferase (PT), a gene for which is present next to the PKS gene in the genome. Based on this evidence, we propose that at least some of the eremophilanes classified in literature as sesquiterpenes (catalyzed by terpene cyclase) are actually meroterpenes (catalyzed by PKSs and PTs), and that the core moiety is not a sesquiterpene, but a hybrid polyketide/isoprene unit. IMPORTANCE The article contradicts the established fact that acremeremophilane metabolites produced by fungi are sesquiterpenes; instead, our findings suggest that at least some of these well-studied metabolites are of polyketide origin. Acremeremophilane metabolites are of medicinal significance, and the present findings have implications for the metabolic engineering of these metabolites and also their overproduction in microbial cell factories.
Collapse
Affiliation(s)
- Ravindra Bansal
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India
| | - Sunil Kumar Sethy
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India
| | - Zareen Khan
- National Referral Laboratory, ICAR–National Research Centre for Grapes, Pune, Maharashtra, India
| | - Nasiruddin Shaikh
- National Referral Laboratory, ICAR–National Research Centre for Grapes, Pune, Maharashtra, India
| | - Kaushik Banerjee
- National Referral Laboratory, ICAR–National Research Centre for Grapes, Pune, Maharashtra, India
| | - Prasun K. Mukherjee
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India
| |
Collapse
|
40
|
Lopes da Silva F, Aquino EN, Costa da Cunha D, Vieira Hamann PR, Magalhães TB, Steindorff AS, Ulhoa CJ, Noronha EF. Analysis of Trichoderma harzianum TR 274 secretome to assign candidate proteins involved in symbiotic interactions with Phaseolus vulgaris. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
41
|
Rauf M, Ur-Rahman A, Arif M, Gul H, Ud-Din A, Hamayun M, Lee IJ. Immunomodulatory Molecular Mechanisms of Luffa cylindrica for Downy Mildews Resistance Induced by Growth-Promoting Endophytic Fungi. J Fungi (Basel) 2022; 8:689. [PMID: 35887445 PMCID: PMC9324744 DOI: 10.3390/jof8070689] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 01/27/2023] Open
Abstract
Downy mildew (DM), caused by P. cubensis, is harmful to cucurbits including luffa, with increased shortcomings associated with its control through cultural practices, chemical fungicides, and resistant cultivars; there is a prompt need for an effective, eco-friendly, economical, and safe biocontrol approach. Current research is therefore dealt with the biocontrol of luffa DM1 through the endophytic fungi (EF) consortium. Results revealed that T. harzianum (ThM9) and T. virens (TvA1) showed pathogen-dependent inducible metabolic production of squalene and gliotoxins by higher gene expression induction of SQS1/ERG9 (squalene synthase) and GliP (non-ribosomal peptide synthetase). Gene expression of lytic enzymes of EF was also induced with subsequently higher enzyme activities upon confrontation with P. cubensis. EF-inoculated luffa seeds showed efficient germination with enhanced growth potential and vigor of seedlings. EF-inoculated plants showed an increased level of growth-promoting hormone GA with higher gene expression of GA2OX8. EF-pre-inoculated seedlings were resistant to DM and showed an increased GSH content and antioxidant enzyme activities (SOD, CAT, POD). The level of MDA, H2O2, REL, and disease severity was reduced by EF. ACC, JA, ABA, and SA were overproduced along with higher gene expression of LOX, ERF, NCED2, and PAL. Expression of defense-marker genes (PPO, CAT2, SOD, APX, PER5, LOX, NBS-LRR, PSY, CAS, Ubi, MLP43) was also modulated in EF-inoculated infected plants. Current research supported the use of EF inoculation to effectively escalate the systemic immunity against DM corresponding to the significant promotion of induced systemic resistance (ISR) and systemic acquired resistance (SAR) responses through initiating the defense mechanism by SA, ABA, ET, and JA biosynthesis and signaling pathways in luffa.
Collapse
Affiliation(s)
- Mamoona Rauf
- Department of Botany, Garden Campus, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Mardan 23200, Pakistan; (M.R.); (A.U.-R.); (H.G.)
| | - Asim Ur-Rahman
- Department of Botany, Garden Campus, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Mardan 23200, Pakistan; (M.R.); (A.U.-R.); (H.G.)
| | - Muhammad Arif
- Department of Biotechnology, Garden Campus, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Mardan 23200, Pakistan
| | - Humaira Gul
- Department of Botany, Garden Campus, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Mardan 23200, Pakistan; (M.R.); (A.U.-R.); (H.G.)
| | - Aziz Ud-Din
- Department of Biotechnology and Genetic Engineering, Hazara University, Mansehra 21120, Pakistan;
| | - Muhammad Hamayun
- Department of Botany, Garden Campus, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Mardan 23200, Pakistan; (M.R.); (A.U.-R.); (H.G.)
| | - In-Jung Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea
| |
Collapse
|
42
|
JIMÉNEZ MARÍAFERNANDA, BLÉ GAMALIEL, FALCONI MANUEL. DYNAMICS OF A MATHEMATICAL MODEL FOR INTERACTION PLANT–PARASITE– TRICHODERMA. J BIOL SYST 2022. [DOI: 10.1142/s0218339022500206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In this work, the impact of a biological agent (Trichoderma spp.) on the dynamic of a plant–parasite model is analyzed. It is assumed that the plant–Trichoderma spp. relationship is mutualistic, the Trichoderma spp.–parasite relationship is that of predator–prey, and the parasite is specialist. Conditions for pest eradication and for species coexistence are shown.
Collapse
Affiliation(s)
- MARÍA FERNANDA JIMÉNEZ
- División Académica de Ciencias Básicas, UJAT, Km 1 Carretera Cunduacán–Jalpa de Méndez, Cunduacán, Tabasco c.p. 86690, México
| | - GAMALIEL BLÉ
- División Académica de Ciencias Básicas, UJAT, Km 1 Carretera Cunduacán–Jalpa de Méndez, Cunduacán, Tabasco c.p. 86690, México
| | - MANUEL FALCONI
- Departamento de Matemáticas, Facultad de Ciencias, UNAM, C. Universitaria, C. de México c.p. 04510, México
| |
Collapse
|
43
|
Taylor JT, Harting R, Shalaby S, Kenerley CM, Braus GH, Horwitz BA. Adhesion as a Focus in Trichoderma-Root Interactions. J Fungi (Basel) 2022; 8:372. [PMID: 35448603 PMCID: PMC9026816 DOI: 10.3390/jof8040372] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/31/2022] [Accepted: 04/03/2022] [Indexed: 02/06/2023] Open
Abstract
Fungal spores, germlings, and mycelia adhere to substrates, including host tissues. The adhesive forces depend on the substrate and on the adhesins, the fungal cell surface proteins. Attachment is often a prerequisite for the invasion of the host, hence its importance. Adhesion visibly precedes colonization of root surfaces and outer cortex layers, but little is known about the molecular details. We propose that by starting from what is already known from other fungi, including yeast and other filamentous pathogens and symbionts, the mechanism and function of Trichoderma adhesion will become accessible. There is a sequence, and perhaps functional, homology to other rhizosphere-competent Sordariomycetes. Specifically, Verticillium dahliae is a soil-borne pathogen that establishes itself in the xylem and causes destructive wilt disease. Metarhizium species are best-known as insect pathogens with biocontrol potential, but they also colonize roots. Verticillium orthologs of the yeast Flo8 transcription factor, Som1, and several other relevant genes are already under study for their roles in adhesion. Metarhizium encodes relevant adhesins. Trichoderma virens encodes homologs of Som1, as well as adhesin candidates. These genes should provide exciting leads toward the first step in the establishment of beneficial interactions with roots in the rhizosphere.
Collapse
Affiliation(s)
- James T. Taylor
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843, USA; (J.T.T.); (C.M.K.)
| | - Rebekka Harting
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, University of Göttingen, 37077 Göttingen, Germany; (R.H.); (G.H.B.)
| | - Samer Shalaby
- Faculty of Biology, Technion—Israel Institute of Technology, Haifa 3200000, Israel;
| | - Charles M. Kenerley
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843, USA; (J.T.T.); (C.M.K.)
| | - Gerhard H. Braus
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, University of Göttingen, 37077 Göttingen, Germany; (R.H.); (G.H.B.)
| | - Benjamin A. Horwitz
- Faculty of Biology, Technion—Israel Institute of Technology, Haifa 3200000, Israel;
| |
Collapse
|
44
|
|
45
|
Vicente I, Baroncelli R, Hermosa R, Monte E, Vannacci G, Sarrocco S. Role and genetic basis of specialised secondary metabolites in Trichoderma ecophysiology. FUNGAL BIOL REV 2022. [DOI: 10.1016/j.fbr.2021.12.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
46
|
Li J, Luan Q, Han J, Chen C, Ren Z. CsMYB60 Confers Enhanced Resistance to Fusarium solani by Increasing Proanthocyanidin Biosynthesis in Cucumber. PHYTOPATHOLOGY 2022; 112:588-594. [PMID: 34282950 DOI: 10.1094/phyto-05-21-0223-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Root rot caused by Fusarium solani is one of the most common fungal diseases in cucumber (Cucumis sativus). Proanthocyanidins (PAs) are known to play important roles in inhibiting the growth of phytopathogens. In addition, CsMYB60 is a known positive regulator of flavonol and PA biosynthesis in cucumber. However, it remains unclear that whether PAs can inhibit the growth of F. solani and whether CsMYB60 serves as a target gene for increasing resistance to phytopathogens in cucumber. In this study, we demonstrated that PAs (or their building block, catechin) could increase the resistance of cucumber seedlings to F. solani both in vitro and in vivo. The addition of catechins, or crude leaf extracts treated with different concentrations of catechins in culture medium, could significantly inhibit the hyphal growth of F. solani. On the other hand, cucumber seedlings treated with catechins showed higher resistance to F. solani than the seedlings of control group. Moreover, transgenic cucumber seedlings overexpressing CsMYB60, with the observed accumulation of PAs, were more resistant to F. solani than the nontransgenic siblings. Therefore, our results suggest that PAs (or catechin) can serve as a biological control agent to protect cucumber plants from the infection of F. solani. More importantly, CsMYB60 holds great promise as a target gene to confer disease resistance during the molecular breeding in cucumber.
Collapse
Affiliation(s)
- Jialin Li
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huang-Huai Region, Ministry of Agriculture, College of Horticultural Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Qianqian Luan
- Gansu Institute of Agricultural Engineering Technology, Wuwei, Gansu 7330066, China
| | - Jing Han
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huang-Huai Region, Ministry of Agriculture, College of Horticultural Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Chunhua Chen
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huang-Huai Region, Ministry of Agriculture, College of Horticultural Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Zhonghai Ren
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huang-Huai Region, Ministry of Agriculture, College of Horticultural Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China
| |
Collapse
|
47
|
Rouina H, Tseng YH, Nataraja KN, Uma Shaanker R, Krüger T, Kniemeyer O, Brakhage A, Oelmüller R. Comparative Secretome Analyses of Trichoderma/Arabidopsis Co-cultures Identify Proteins for Salt Stress, Plant Growth Promotion, and Root Colonization. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2021.808430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Numerous Trichoderma strains are beneficial for plants, promote their growth, and confer stress tolerance. A recently described novel Trichoderma strain strongly promotes the growth of Arabidopsis thaliana seedlings on media with 50 mM NaCl, while 150 mM NaCl strongly stimulated root colonization and induced salt-stress tolerance in the host without growth promotion. To understand the dynamics of plant-fungus interaction, we examined the secretome from both sides and revealed a substantial change under different salt regimes, and during co-cultivation. Stress-related proteins, such as a fungal cysteine-rich Kp4 domain-containing protein which inhibits plant cell growth, fungal WSC- and CFEM-domain-containing proteins, the plant calreticulin, and cell-wall modifying enzymes, disappear when the two symbionts are co-cultured under high salt concentrations. In contrast, the number of lytic polysaccharide monooxygenases increases, which indicates that the fungus degrades more plant lignocellulose under salt stress and its lifestyle becomes more saprophytic. Several plant proteins involved in plant and fungal cell wall modifications and root colonization are only found in the co-cultures under salt stress, while the number of plant antioxidant proteins decreased. We identified symbiosis- and salt concentration-specific proteins for both partners. The Arabidopsis PYK10 and a fungal prenylcysteine lyase are only found in the co-culture which promoted plant growth. The comparative analysis of the secretomes supports antioxidant enzyme assays and suggests that both partners profit from the interaction under salt stress but have to invest more in balancing the symbiosis. We discuss the role of the identified stage- and symbiosis-specific fungal and plant proteins for salt stress, and conditions promoting root colonization and plant growth.
Collapse
|
48
|
Dautt-Castro M, Jijón-Moreno S, Gómez-Hernández N, del Carmen González-López M, Hernández-Hernández EJ, Rosendo-Vargas MM, Rebolledo-Prudencio OG, Casas-Flores S. New Insights on the Duality of Trichoderma as a Phytopathogen Killer and a Plant Protector Based on an Integrated Multi-omics Perspective. Fungal Biol 2022. [DOI: 10.1007/978-3-030-91650-3_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
49
|
Contreras-Cornejo HA, Macías-Rodríguez L, Larsen J. The Role of Secondary Metabolites in Rhizosphere Competence of Trichoderma. Fungal Biol 2022. [DOI: 10.1007/978-3-030-91650-3_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
50
|
dos Santos LBPR, Oliveira-Santos N, Fernandes JV, Jaimes-Martinez JC, De Souza JT, Cruz-Magalhães V, Loguercio LL. Tolerance to and Alleviation of Abiotic Stresses in Plants Mediated by Trichoderma spp. Fungal Biol 2022. [DOI: 10.1007/978-3-030-91650-3_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|