1
|
van Dijk A, Wilson AM, Marx B, Hough B, Swalarsk-Parry B, De Vos L, Wingfield MJ, Wingfield BD, Steenkamp ET. CRISPR-Cas9 genome editing reveals that the Pgs gene of Fusarium circinatum is involved in pathogenicity, growth and sporulation. Fungal Genet Biol 2025; 177:103970. [PMID: 39952463 DOI: 10.1016/j.fgb.2025.103970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 12/16/2024] [Accepted: 02/11/2025] [Indexed: 02/17/2025]
Abstract
Fusarium circinatum, the causal agent of pine pitch canker, is one of the most destructive pathogens of Pinus species worldwide. Infections by this pathogen result in serious mortality of seedlings due to root and root collar disease, and growth reduction in trees due to canker formation and dieback. Although much is known about the population biology, genetics, and genomics of F. circinatum, relatively little is known regarding the molecular basis of pathogenicity in F. circinatum. In this study, a protoplast-based transformation using CRISPR-Cas9-mediated genome editing was utilized to functionally characterize a putative pathogenicity gene in three different strains of the fungus. In silico analyses suggested the gene likely encodes a small secreted protein, and all isolates in which it was deleted displayed significantly reduced vegetative growth and asexual spore production compared to the wild-type isolates. In pathogenicity tests, lesions induced by the deletion mutants on detached Pinus patula branches were significantly shorter than those produced by the wild-types. The putative pathogenicity gene was named Pgs reflecting its role in pathogenicity, growth, and sporulation. Future research will seek to explore the molecular mechanisms underlying the mutant phenotypes observed. Overall, this study represents a significant advance in F. circinatum research as the development and application of a Cas9-mediated gene deletion process opens new avenues for functional gene characterization underlying many of the pathogen's biological traits.
Collapse
Affiliation(s)
- Alida van Dijk
- Department of Biochemistry, Genetics and Microbiology (BGM), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa.
| | - Andi M Wilson
- Department of Biochemistry, Genetics and Microbiology (BGM), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa; Section for Organismal Biology, Department of Plant and Environmental Sciences, University of Copenhagen, Denmark
| | - Bianke Marx
- Department of Biochemistry, Genetics and Microbiology (BGM), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Bianca Hough
- Department of Biochemistry, Genetics and Microbiology (BGM), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Benedicta Swalarsk-Parry
- Department of Biochemistry, Genetics and Microbiology (BGM), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Lieschen De Vos
- Department of Biochemistry, Genetics and Microbiology (BGM), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Michael J Wingfield
- Department of Biochemistry, Genetics and Microbiology (BGM), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Brenda D Wingfield
- Department of Biochemistry, Genetics and Microbiology (BGM), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Emma T Steenkamp
- Department of Biochemistry, Genetics and Microbiology (BGM), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| |
Collapse
|
2
|
Saez JM, Raimondo EE, Costa-Gutierrez SB, Aparicio JD, Mosca Angelucci D, Donati E, Polti MA, Tomei MC, Benimeli CS. Enhancing environmental decontamination and sustainable production through synergistic and complementary interactions of actinobacteria and fungi. Heliyon 2025; 11:e42135. [PMID: 39991206 PMCID: PMC11847236 DOI: 10.1016/j.heliyon.2025.e42135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 01/19/2025] [Accepted: 01/20/2025] [Indexed: 02/25/2025] Open
Abstract
Actinobacteria and fungi are renowned for their metabolic diversity and adaptability to various environments, thus exhibiting significant potential for environmental decontamination and sustainable production. Both actinobacteria and fungi excel in producing diverse secondary metabolites and enzymes, offering valuable tools for industrial and environmental applications. Their ability to detoxify metals and degrade a wide range of organic pollutants, such as pesticides, hydrocarbons, and dyes, positions them as promising candidates for bioremediation. Recent shifts in microbiological sciences emphasize research on mixed microbial populations. Microbial interactions in mixed communities emulate natural processes and yield emergent properties such as stability, robustness, and enhanced metabolism. Co-cultures of actinobacteria and fungi harness a broader range of genes and metabolic capabilities through their distinctive interactions, opening new avenues for developing novel products and/or technologies. This review provides a critical analysis of the present status of knowledge regarding the potential of actinobacteria-fungi co-cultures with a particular focus on novel functionalities and heightened production efficiency. These consortia are promising in several fields, from environmental applications to the biosynthesis of industrially relevant metabolites and enzymes, and enhancements in agricultural production. Although challenges still exist, their potential to address complex problems has been demonstrated and deserves further investigation.
Collapse
Affiliation(s)
- Juliana M. Saez
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Avenida Belgrano y Pasaje Caseros, 4000, Tucumán, Argentina
- Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán, Miguel Lillo 205, 4000, Tucumán, Argentina
| | - Enzo E. Raimondo
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Avenida Belgrano y Pasaje Caseros, 4000, Tucumán, Argentina
- Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Ayacucho 491, 4000, Tucumán, Argentina
| | - Stefanie B. Costa-Gutierrez
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Avenida Belgrano y Pasaje Caseros, 4000, Tucumán, Argentina
| | - Juan D. Aparicio
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Avenida Belgrano y Pasaje Caseros, 4000, Tucumán, Argentina
- Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán, Miguel Lillo 205, 4000, Tucumán, Argentina
| | - Domenica Mosca Angelucci
- Water Research Institute, National Research Council (CNR-IRSA), Via Salaria km 29.300, CP 10, Monterotondo Stazione, 00015, Rome, Italy
| | - Enrica Donati
- Institute for Biological Systems, National Research Council (CNR-ISB), Via Salaria km 29.300, CP 10, Monterotondo Stazione, 00015, Rome, Italy
| | - Marta A. Polti
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Avenida Belgrano y Pasaje Caseros, 4000, Tucumán, Argentina
- Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán, Miguel Lillo 205, 4000, Tucumán, Argentina
| | - Maria C. Tomei
- Water Research Institute, National Research Council (CNR-IRSA), Via Salaria km 29.300, CP 10, Monterotondo Stazione, 00015, Rome, Italy
| | - Claudia S. Benimeli
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Avenida Belgrano y Pasaje Caseros, 4000, Tucumán, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Catamarca, Belgrano 300, 4700, Catamarca, Argentina
| |
Collapse
|
3
|
Wang Z, Wang Y, Kasuga T, Hassler H, Lopez‐Giraldez F, Dong C, Yarden O, Townsend JP. Origins of lineage-specific elements via gene duplication, relocation, and regional rearrangement in Neurospora crassa. Mol Ecol 2024; 33:e17168. [PMID: 37843462 PMCID: PMC11628664 DOI: 10.1111/mec.17168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 09/20/2023] [Accepted: 09/27/2023] [Indexed: 10/17/2023]
Abstract
The origin of new genes has long been a central interest of evolutionary biologists. However, their novelty means that they evade reconstruction by the classical tools of evolutionary modelling. This evasion of deep ancestral investigation necessitates intensive study of model species within well-sampled, recently diversified, clades. One such clade is the model genus Neurospora, members of which lack recent gene duplications. Several Neurospora species are comprehensively characterized organisms apt for studying the evolution of lineage-specific genes (LSGs). Using gene synteny, we documented that 78% of Neurospora LSG clusters are located adjacent to the telomeres featuring extensive tracts of non-coding DNA and duplicated genes. Here, we report several instances of LSGs that are likely from regional rearrangements and potentially from gene rebirth. To broadly investigate the functions of LSGs, we assembled transcriptomics data from 68 experimental data points and identified co-regulatory modules using Weighted Gene Correlation Network Analysis, revealing that LSGs are widely but peripherally involved in known regulatory machinery for diverse functions. The ancestral status of the LSG mas-1, a gene with roles in cell-wall integrity and cellular sensitivity to antifungal toxins, was investigated in detail alongside its genomic neighbours, indicating that it arose from an ancient lysophospholipase precursor that is ubiquitous in lineages of the Sordariomycetes. Our discoveries illuminate a "rummage region" in the N. crassa genome that enables the formation of new genes and functions to arise via gene duplication and relocation, followed by fast mutation and recombination facilitated by sequence repeats and unconstrained non-coding sequences.
Collapse
Affiliation(s)
- Zheng Wang
- Department of BiostatisticsYale School of Public HealthNew HavenConnecticutUSA
| | - Yen‐Wen Wang
- Department of BiostatisticsYale School of Public HealthNew HavenConnecticutUSA
| | - Takao Kasuga
- College of Biological SciencesUniversity of California, DavisDavisCaliforniaUSA
| | - Hayley Hassler
- Department of BiostatisticsYale School of Public HealthNew HavenConnecticutUSA
| | | | - Caihong Dong
- Institute of MicrobiologyChinese Academy of SciencesBeijingChina
| | - Oded Yarden
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and EnvironmentThe Hebrew University of JerusalemRehovotIsrael
| | - Jeffrey P. Townsend
- Department of BiostatisticsYale School of Public HealthNew HavenConnecticutUSA
- Department of Ecology and Evolutionary Biology, Program in Microbiology, and Program in Computational Biology and BioinformaticsYale UniversityNew HavenConnecticutUSA
| |
Collapse
|
4
|
Ayon NJ, Earp CE, Gupta R, Butun FA, Clements AE, Lee AG, Dainko D, Robey MT, Khin M, Mardiana L, Longcake A, Rangel-Grimaldo M, Hall MJ, Probert MR, Burdette JE, Keller NP, Raja HA, Oberlies NH, Kelleher NL, Caesar LK. Bioactivity-driven fungal metabologenomics identifies antiproliferative stemphone analogs and their biosynthetic gene cluster. Metabolomics 2024; 20:90. [PMID: 39095664 PMCID: PMC11296971 DOI: 10.1007/s11306-024-02153-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/16/2024] [Indexed: 08/04/2024]
Abstract
INTRODUCTION Fungi biosynthesize chemically diverse secondary metabolites with a wide range of biological activities. Natural product scientists have increasingly turned towards bioinformatics approaches, combining metabolomics and genomics to target secondary metabolites and their biosynthetic machinery. We recently applied an integrated metabologenomics workflow to 110 fungi and identified more than 230 high-confidence linkages between metabolites and their biosynthetic pathways. OBJECTIVES To prioritize the discovery of bioactive natural products and their biosynthetic pathways from these hundreds of high-confidence linkages, we developed a bioactivity-driven metabologenomics workflow combining quantitative chemical information, antiproliferative bioactivity data, and genome sequences. METHODS The 110 fungi from our metabologenomics study were tested against multiple cancer cell lines to identify which strains produced antiproliferative natural products. Three strains were selected for further study, fractionated using flash chromatography, and subjected to an additional round of bioactivity testing and mass spectral analysis. Data were overlaid using biochemometrics analysis to predict active constituents early in the fractionation process following which their biosynthetic pathways were identified using metabologenomics. RESULTS We isolated three new-to-nature stemphone analogs, 19-acetylstemphones G (1), B (2) and E (3), that demonstrated antiproliferative activity ranging from 3 to 5 µM against human melanoma (MDA-MB-435) and ovarian cancer (OVACR3) cells. We proposed a rational biosynthetic pathway for these compounds, highlighting the potential of using bioactivity as a filter for the analysis of integrated-Omics datasets. CONCLUSIONS This work demonstrates how the incorporation of biochemometrics as a third dimension into the metabologenomics workflow can identify bioactive metabolites and link them to their biosynthetic machinery.
Collapse
Affiliation(s)
- Navid J Ayon
- Department of Chemistry, Northwestern University, Evanston, IL, USA
- Proteomics Center of Excellence, Northwestern University, Evanston, IL, USA
| | - Cody E Earp
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Raveena Gupta
- Department of Chemistry, Northwestern University, Evanston, IL, USA
| | - Fatma A Butun
- Department of Chemistry, Northwestern University, Evanston, IL, USA
- Proteomics Center of Excellence, Northwestern University, Evanston, IL, USA
| | - Ashley E Clements
- Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, VA, USA
| | - Alexa G Lee
- Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, VA, USA
| | - David Dainko
- Department of Chemistry, Northwestern University, Evanston, IL, USA
| | - Matthew T Robey
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Manead Khin
- College of Pharmacy-Pharmaceutical Science, University of Illinois Chicago, Chicago, IL, USA
| | - Lina Mardiana
- Chemistry, School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK
- Department of Chemistry, Universitas Indonesia, Depok, Jawa Barat, Indonesia
- Indicatrix Crystallography, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK
| | - Alexandra Longcake
- Chemistry, School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK
| | - Manuel Rangel-Grimaldo
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Michael J Hall
- Chemistry, School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK
| | - Michael R Probert
- Chemistry, School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK
| | - Joanna E Burdette
- College of Pharmacy-Pharmaceutical Science, University of Illinois Chicago, Chicago, IL, USA
| | - Nancy P Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Huzefa A Raja
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Nicholas H Oberlies
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Neil L Kelleher
- Department of Chemistry, Northwestern University, Evanston, IL, USA
- Proteomics Center of Excellence, Northwestern University, Evanston, IL, USA
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Lindsay K Caesar
- Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, VA, USA.
| |
Collapse
|
5
|
Wang Z, Wang YW, Kasuga T, Lopez-Giraldez F, Zhang Y, Zhang Z, Wang Y, Dong C, Sil A, Trail F, Yarden O, Townsend JP. Lineage-specific genes are clustered with HET-domain genes and respond to environmental and genetic manipulations regulating reproduction in Neurospora. PLoS Genet 2023; 19:e1011019. [PMID: 37934795 PMCID: PMC10684091 DOI: 10.1371/journal.pgen.1011019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 11/28/2023] [Accepted: 10/16/2023] [Indexed: 11/09/2023] Open
Abstract
Lineage-specific genes (LSGs) have long been postulated to play roles in the establishment of genetic barriers to intercrossing and speciation. In the genome of Neurospora crassa, most of the 670 Neurospora LSGs that are aggregated adjacent to the telomeres are clustered with 61% of the HET-domain genes, some of which regulate self-recognition and define vegetative incompatibility groups. In contrast, the LSG-encoding proteins possess few to no domains that would help to identify potential functional roles. Possible functional roles of LSGs were further assessed by performing transcriptomic profiling in genetic mutants and in response to environmental alterations, as well as examining gene knockouts for phenotypes. Among the 342 LSGs that are dynamically expressed during both asexual and sexual phases, 64% were detectable on unusual carbon sources such as furfural, a wildfire-produced chemical that is a strong inducer of sexual development, and the structurally-related furan 5-hydroxymethyl furfural (HMF). Expression of a significant portion of the LSGs was sensitive to light and temperature, factors that also regulate the switch from asexual to sexual reproduction. Furthermore, expression of the LSGs was significantly affected in the knockouts of adv-1 and pp-1 that regulate hyphal communication, and expression of more than one quarter of the LSGs was affected by perturbation of the mating locus. These observations encouraged further investigation of the roles of clustered lineage-specific and HET-domain genes in ecology and reproduction regulation in Neurospora, especially the regulation of the switch from the asexual growth to sexual reproduction, in response to dramatic environmental conditions changes.
Collapse
Affiliation(s)
- Zheng Wang
- Department of Biostatistics, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Yen-Wen Wang
- Department of Biostatistics, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Takao Kasuga
- College of Biological Sciences, University of California, Davis, California, United States of America
| | | | - Yang Zhang
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Zhang Zhang
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Yaning Wang
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Caihong Dong
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Anita Sil
- Department of Microbiology and Immunology, University of California, San Francisco, California, United States of America
| | - Frances Trail
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan, United States of America
| | - Oded Yarden
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Jeffrey P. Townsend
- Department of Biostatistics, Yale School of Public Health, New Haven, Connecticut, United States of America
- Department of Ecology and Evolutionary Biology, Program in Microbiology, and Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut, United States of America
| |
Collapse
|
6
|
Wang Z, Kim W, Wang YW, Yakubovich E, Dong C, Trail F, Townsend JP, Yarden O. The Sordariomycetes: an expanding resource with Big Data for mining in evolutionary genomics and transcriptomics. FRONTIERS IN FUNGAL BIOLOGY 2023; 4:1214537. [PMID: 37746130 PMCID: PMC10512317 DOI: 10.3389/ffunb.2023.1214537] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 06/06/2023] [Indexed: 09/26/2023]
Abstract
Advances in genomics and transcriptomics accompanying the rapid accumulation of omics data have provided new tools that have transformed and expanded the traditional concepts of model fungi. Evolutionary genomics and transcriptomics have flourished with the use of classical and newer fungal models that facilitate the study of diverse topics encompassing fungal biology and development. Technological advances have also created the opportunity to obtain and mine large datasets. One such continuously growing dataset is that of the Sordariomycetes, which exhibit a richness of species, ecological diversity, economic importance, and a profound research history on amenable models. Currently, 3,574 species of this class have been sequenced, comprising nearly one-third of the available ascomycete genomes. Among these genomes, multiple representatives of the model genera Fusarium, Neurospora, and Trichoderma are present. In this review, we examine recently published studies and data on the Sordariomycetes that have contributed novel insights to the field of fungal evolution via integrative analyses of the genetic, pathogenic, and other biological characteristics of the fungi. Some of these studies applied ancestral state analysis of gene expression among divergent lineages to infer regulatory network models, identify key genetic elements in fungal sexual development, and investigate the regulation of conidial germination and secondary metabolism. Such multispecies investigations address challenges in the study of fungal evolutionary genomics derived from studies that are often based on limited model genomes and that primarily focus on the aspects of biology driven by knowledge drawn from a few model species. Rapidly accumulating information and expanding capabilities for systems biological analysis of Big Data are setting the stage for the expansion of the concept of model systems from unitary taxonomic species/genera to inclusive clusters of well-studied models that can facilitate both the in-depth study of specific lineages and also investigation of trait diversity across lineages. The Sordariomycetes class, in particular, offers abundant omics data and a large and active global research community. As such, the Sordariomycetes can form a core omics clade, providing a blueprint for the expansion of our knowledge of evolution at the genomic scale in the exciting era of Big Data and artificial intelligence, and serving as a reference for the future analysis of different taxonomic levels within the fungal kingdom.
Collapse
Affiliation(s)
- Zheng Wang
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, United States
| | - Wonyong Kim
- Korean Lichen Research Institute, Sunchon National University, Suncheon, Republic of Korea
| | - Yen-Wen Wang
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, United States
| | - Elizabeta Yakubovich
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Caihong Dong
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Frances Trail
- Department of Plant Biology, Michigan State University, East Lansing, MI, United States
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, United States
| | - Jeffrey P. Townsend
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, United States
- Department of Ecology and Evolutionary Biology, Program in Microbiology, and Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, United States
| | - Oded Yarden
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
7
|
Comparative Transcriptomics of Fusarium graminearum and Magnaporthe oryzae Spore Germination Leading up To Infection. mBio 2023; 14:e0244222. [PMID: 36598191 PMCID: PMC9973345 DOI: 10.1128/mbio.02442-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
For fungal plant pathogens, the germinating spore provides the first interaction with the host. Spore germlings move across the plant surface and use diverse penetration strategies for ingress into plant surfaces. Penetration strategies include pressurized melanized appressoria, which facilitate physically punching through the plant cuticle, and nonmelanized appressoria, which penetrate with the help of enzymes or cuticular damage to breach the plant surface. Two well-studied plant pathogens, Fusarium graminearum and Magnaporthe oryzae, are typical of these two modes of penetration. We applied comparative transcriptomics to Fusarium graminearum and Magnaporthe oryzae to characterize the genetic programming of the early host-pathogen interface. Four sequential stages of development following spore localization on the plant surface, from spore swelling to appressorium formation, were sampled for each species on culture medium and on barley sheaths, and transcriptomic analyses were performed. Gene expression in the prepenetration stages in both species and under both conditions was similar. In contrast, gene expression in the final stage was strongly influenced by the environment. Appressorium formation involved the greatest number of differentially expressed genes. Laser-dissection microscopy was used to perform detailed transcriptomics of initial infection points by F. graminearum. These analyses revealed new and important aspects of early fungal ingress in this species. Expression of the trichothecene genes involved in biosynthesis of deoxynivalenol by F. graminearum implies that toxisomes are not fully functional until after penetration and indicates that deoxynivalenol is not essential for penetration under our conditions. The use of comparative gene expression of divergent fungi promises to advance highly effective targets for antifungal strategies. IMPORTANCE Fusarium graminearum and Magnaporthe oryzae are two of the most important pathogens of cereal grains worldwide. Despite years of research, strong host resistance has not been identified for F. graminearum, so other methods of control are essential. The pathogen takes advantage of multiple entry points to infect the host, including breaches in the florets due to senescence of flower parts and penetration of the weakened trichome bases to breach the epidermis. In contrast, M. oryzae directly punctures leaves that it infects, and resistant cultivars have been characterized. The threat of either pathogen causing a major disease outbreak is ever present. Comparative transcriptomics demonstrated its potential to reveal novel and effective disease prevention strategies that affect the initial stages of disease. Shedding light on the basis of this diversity of infection strategies will result in development of increasingly specific control strategies.
Collapse
|
8
|
Nowrousian M. The Role of Chromatin and Transcriptional Control in the Formation of Sexual Fruiting Bodies in Fungi. Microbiol Mol Biol Rev 2022; 86:e0010422. [PMID: 36409109 PMCID: PMC9769939 DOI: 10.1128/mmbr.00104-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Fungal fruiting bodies are complex, three-dimensional structures that arise from a less complex vegetative mycelium. Their formation requires the coordinated action of many genes and their gene products, and fruiting body formation is accompanied by major changes in the transcriptome. In recent years, numerous transcription factor genes as well as chromatin modifier genes that play a role in fruiting body morphogenesis were identified, and through research on several model organisms, the underlying regulatory networks that integrate chromatin structure, gene expression, and cell differentiation are becoming clearer. This review gives a summary of the current state of research on the role of transcriptional control and chromatin structure in fruiting body development. In the first part, insights from transcriptomics analyses are described, with a focus on comparative transcriptomics. In the second part, examples of more detailed functional characterizations of the role of chromatin modifiers and/or transcription factors in several model organisms (Neurospora crassa, Aspergillus nidulans, Sordaria macrospora, Coprinopsis cinerea, and Schizophyllum commune) that have led to a better understanding of regulatory networks at the level of chromatin structure and transcription are discussed.
Collapse
Affiliation(s)
- Minou Nowrousian
- Department of Molecular and Cellular Botany, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
9
|
Dornburg A, Mallik R, Wang Z, Bernal MA, Thompson B, Bruford EA, Nebert DW, Vasiliou V, Yohe LR, Yoder JA, Townsend JP. Placing human gene families into their evolutionary context. Hum Genomics 2022; 16:56. [PMID: 36369063 PMCID: PMC9652883 DOI: 10.1186/s40246-022-00429-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/12/2022] [Indexed: 11/13/2022] Open
Abstract
Following the draft sequence of the first human genome over 20 years ago, we have achieved unprecedented insights into the rules governing its evolution, often with direct translational relevance to specific diseases. However, staggering sequence complexity has also challenged the development of a more comprehensive understanding of human genome biology. In this context, interspecific genomic studies between humans and other animals have played a critical role in our efforts to decode human gene families. In this review, we focus on how the rapid surge of genome sequencing of both model and non-model organisms now provides a broader comparative framework poised to empower novel discoveries. We begin with a general overview of how comparative approaches are essential for understanding gene family evolution in the human genome, followed by a discussion of analyses of gene expression. We show how homology can provide insights into the genes and gene families associated with immune response, cancer biology, vision, chemosensation, and metabolism, by revealing similarity in processes among distant species. We then explain methodological tools that provide critical advances and show the limitations of common approaches. We conclude with a discussion of how these investigations position us to gain fundamental insights into the evolution of gene families among living organisms in general. We hope that our review catalyzes additional excitement and research on the emerging field of comparative genomics, while aiding the placement of the human genome into its existentially evolutionary context.
Collapse
Affiliation(s)
- Alex Dornburg
- Department of Bioinformatics and Genomics, UNC-Charlotte, Charlotte, NC, USA.
| | - Rittika Mallik
- Department of Bioinformatics and Genomics, UNC-Charlotte, Charlotte, NC, USA
| | - Zheng Wang
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
| | - Moisés A Bernal
- Department of Biological Sciences, College of Science and Mathematics, Auburn University, Auburn, AL, USA
| | - Brian Thompson
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Elspeth A Bruford
- Department of Haematology, University of Cambridge School of Clinical Medicine, Cambridge, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, UK
| | - Daniel W Nebert
- Department of Environmental Health, Center for Environmental Genetics, University of Cincinnati Medical Center, P.O. Box 670056, Cincinnati, OH, 45267, USA
- Department of Pediatrics and Molecular Developmental Biology, Division of Human Genetics, Cincinnati Children's Hospital, Cincinnati, OH, 45229, USA
| | - Vasilis Vasiliou
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Laurel R Yohe
- Department of Bioinformatics and Genomics, UNC-Charlotte, Charlotte, NC, USA
| | - Jeffrey A Yoder
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Jeffrey P Townsend
- Department of Bioinformatics and Genomics, UNC-Charlotte, Charlotte, NC, USA
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
| |
Collapse
|
10
|
Conti A, Casagrande Pierantoni D, Robert V, Cardinali G, Corte L. Homoplasy as an Auxiliary Criterion for Species Delimitation. Microorganisms 2021; 9:273. [PMID: 33525600 PMCID: PMC7911335 DOI: 10.3390/microorganisms9020273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 01/09/2023] Open
Abstract
Homoplasy is a sort of noise in phylogenetic reconstructions, due to the accumulation of backmutations, convergent evolution and horizontal gene transfer (HGT), which is considered the major trigger of homoplasy in microorganism for its massive presence. It is also known that homoplasy increases with the complexity of the tree with both real and simulated data. In this paper, we analyzed the variation of homoplasy with the two widely used taxonomic markers ITS and LSU in four taxonomic models characterized by differences in the intra-specific distances. An algorithm (HomoDist) was developed to analyze the homoplasy index (HI) variation upon addition of a single element (strain or species) in increasing distance from a starting element. This algorithm allows to follow changes of the consistency index (CI), complementary to the HI, with the increase of the number of taxa and with the increase of the distance among elements. Results show that homoplasy increases-as expected-with the number of taxa, but also as a function of the overall distance among species, often with an almost linear relationship between distance and HI. No HI change was observed in trees with few taxa spanning through short distances, indicating that this noise is not prohibitive in this context, although the analysis of the ratio between HI and distance can be recommended as a criterion for tree acceptance. The absence of large changes of the HI within the species, and its increase when new species are added by HomoDist, suggest that homoplasy variation can be used as an auxiliary test in distance-based species delimitation with any type of marker.
Collapse
Affiliation(s)
- Angela Conti
- Department of Pharmaceutical Sciences, University of Perugia, 06121 Perugia, Italy; (A.C.); (D.C.P.); (L.C.)
| | | | - Vincent Robert
- Westerdjik Institute for Biodiversity, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands;
| | - Gianluigi Cardinali
- Department of Pharmaceutical Sciences, University of Perugia, 06121 Perugia, Italy; (A.C.); (D.C.P.); (L.C.)
- CEMIN Excellence Research Centre, via Elce di Sotto 8, 06123 Perugia, Italy
| | - Laura Corte
- Department of Pharmaceutical Sciences, University of Perugia, 06121 Perugia, Italy; (A.C.); (D.C.P.); (L.C.)
| |
Collapse
|
11
|
Nagy LG, Varga T, Csernetics Á, Virágh M. Fungi took a unique evolutionary route to multicellularity: Seven key challenges for fungal multicellular life. FUNGAL BIOL REV 2020. [DOI: 10.1016/j.fbr.2020.07.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
12
|
Integrative Activity of Mating Loci, Environmentally Responsive Genes, and Secondary Metabolism Pathways during Sexual Development of Chaetomium globosum. mBio 2019; 10:mBio.02119-19. [PMID: 31822585 PMCID: PMC6904875 DOI: 10.1128/mbio.02119-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Fungal diversity has amazed evolutionary biologists for decades. One societally important aspect of this diversity manifests in traits that enable pathogenicity. The opportunistic pathogen Chaetomium globosum is well adapted to a high-humidity environment and produces numerous secondary metabolites that defend it from predation. Many of these chemicals can threaten human health. Understanding the phases of the C. globosum life cycle in which these products are made enables better control and even utilization of this fungus. Among its intriguing traits is that it both is self-fertile and lacks any means of propagule-based asexual reproduction. By profiling genome-wide gene expression across the process of sexual reproduction in C. globosum and comparing it to genome-wide gene expression in the model filamentous fungus N. crassa and other closely related fungi, we revealed associations among mating-type genes, sexual developmental genes, sexual incompatibility regulators, environmentally responsive genes, and secondary metabolic pathways. The origins and maintenance of the rich fungal diversity have been longstanding issues in evolutionary biology. To investigate how differences in expression regulation contribute to divergences in development and ecology among closely related species, transcriptomes were compared between Chaetomium globosum, a homothallic pathogenic fungus thriving in highly humid ecologies, and Neurospora crassa, a heterothallic postfire saprotroph. Gene expression was quantified in perithecia at nine distinct morphological stages during nearly synchronous sexual development. Unlike N. crassa, expression of all mating loci in C. globosum was highly correlated. Key regulators of the initiation of sexual development in response to light stimuli—including orthologs of N. crassasub-1, sub-1-dependent gene NCU00309, and asl-1—showed regulatory dynamics matching between C. globosum and N. crassa. Among 24 secondary metabolism gene clusters in C. globosum, 11—including the cochliodones biosynthesis cluster—exhibited highly coordinated expression across perithecial development. C. globosum exhibited coordinately upregulated expression of histidine kinases in hyperosmotic response pathways—consistent with gene expression responses to high humidity we identified in fellow pathogen Fusarium graminearum. Bayesian networks indicated that gene interactions during sexual development have diverged in concert with the capacities both to reproduce asexually and to live a self-compatible versus self-incompatible life cycle, shifting the hierarchical roles of genes associated with conidiation and heterokaryon incompatibility in N. crassa and C. globosum. This divergence supports an evolutionary history of loss of conidiation due to unfavorable combinations of heterokaryon incompatibility in homothallic species.
Collapse
|
13
|
Kim W, Cavinder B, Proctor RH, O'Donnell K, Townsend JP, Trail F. Comparative Genomics and Transcriptomics During Sexual Development Gives Insight Into the Life History of the Cosmopolitan Fungus Fusarium neocosmosporiellum. Front Microbiol 2019; 10:1247. [PMID: 31231336 PMCID: PMC6568001 DOI: 10.3389/fmicb.2019.01247] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 05/20/2019] [Indexed: 12/17/2022] Open
Abstract
Fusarium neocosmosporiellum (formerly Neocosmospora vasinfecta) is a cosmopolitan fungus that has been reported from soil, herbivore dung, and as a fruit- and root-rot pathogen of numerous field crops, although it is not known to cause significant losses on any crop. Taking advantage of the fact that this species produces prolific numbers of perithecia in culture, the genome of F. neocosmosporiellum was sequenced and transcriptomic analysis across five stages of perithecium development was performed to better understand the metabolic potential for sexual development and gain insight into its life history. Perithecium morphology together with the genome and transcriptome were compared with those of the plant pathogen F. graminearum, a model for studying perithecium development. Larger ascospores of F. neocosmosporiellum and their tendency to discharge as a cluster demonstrated a duality of dispersal: the majority are passively dispersed through the formation of cirrhi, while a minority of spores are shot longer distances than those of F. graminearum. The predicted gene number in the F. neocosmosporiellum genome was similar to that in F. graminearum, but F. neocosmosporiellum had more carbohydrate metabolism-related and transmembrane transport genes. Many transporter genes were differentially expressed during perithecium development in F. neocosmosporiellum, which may account for its larger perithecia. Comparative analysis of the secondary metabolite gene clusters identified several polyketide synthase genes that were induced during later stages of perithecium development. Deletion of a polyketide synthase gene in F. neocosmosporiellum resulted in a defective perithecium phenotype, suggesting an important role of the corresponding metabolite, which has yet to be identified, in perithecium development. Results of this study have provided novel insights into the genomic underpinning of development in F. neocosmosporiellum, which may help elucidate its ability to occupy diverse ecological niches.
Collapse
Affiliation(s)
- Wonyong Kim
- Department of Plant Biology, Michigan State University, East Lansing, MI, United States
| | - Brad Cavinder
- Department of Plant Biology, Michigan State University, East Lansing, MI, United States
| | - Robert H Proctor
- Mycotoxin Prevention and Applied Microbiology Research Unit, United States Department of Agriculture, Peoria, IL, United States
| | - Kerry O'Donnell
- Mycotoxin Prevention and Applied Microbiology Research Unit, United States Department of Agriculture, Peoria, IL, United States
| | - Jeffrey P Townsend
- Department of Biostatistics, Yale University, New Haven, CT, United States.,Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, United States
| | - Frances Trail
- Department of Plant Biology, Michigan State University, East Lansing, MI, United States.,Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
14
|
|