1
|
Zhu WH, Shen Y, Xiao Y, Shi Q, Fan ZX, Feng YQ, Wan HB, Qu B, Zhao J, Zhang WQ, Xu GH, Wu XQ, Tang DZ. Efficacy and safety of Wuhu oral liquid in treating acute soft tissue injuries: a multicenter, randomized, double-blind, double-dummy, parallel-controlled trial. Front Pharmacol 2024; 15:1335182. [PMID: 38464733 PMCID: PMC10921885 DOI: 10.3389/fphar.2024.1335182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/09/2024] [Indexed: 03/12/2024] Open
Abstract
Background: Wuhu Oral Liquid (WHOL) is a modified preparation derived from the famous Wuhu Powder, which has a long history of use in treating traumatic injuries. This preparation has anti-inflammatory and analgesic properties and accelerates recovery following acute soft tissue injuries. Aims: To evaluate the efficacy and safety of WHOL in treating acute soft tissue injury associated with qi stagnation and blood stasis syndrome and to provide a basis for applying for the protection of varieties of Chinese medicine for WHOL. Methods: This study was a randomized, controlled, double-blind, multicenter clinical trial in which Fufang Shang Tong Capsule (FFSTC) was selected as the control drug. A total of 480 subjects with acute soft tissue injury associated with qi stagnation and blood stasis syndrome were randomly divided into a test and control group in a 3:1 ratio. The duration of drug treatment was 10 days. The primary outcome was Visual Analogue Scale (VAS) score for pain (including pain at rest and pain on activity). Secondary outcomes included the disappearance time of the pain at rest and on activity; the curative effect of TCM syndrome and improvement in the individual symptoms of TCM (swelling, ecchymosis, and dysfunction); and changes in C-reactive protein (CRP) and interleukin-6 (IL-6) levels. Safety was assessed using vital signs, laboratory examinations, electrocardiograms, and physical examinations. Results: Patient compliance was satisfactory in both groups (all between 80% and 120%). After 4 days of treatment, the WHOL group was superior to the FFSTC group in decreasing the VAS scores for pain at rest (-1.88 ± 1.13 vs. -1.60 ± 0.93, p < 0.05) and on activity (-2.16 ± 1.18 vs. -1.80 ± 1.07, p < 0.05). After 7 days of treatment, the WHOL group was superior to the FFSTC group in decreasing the VAS scores for pain on activity (-3.87 ± 1.60 vs. -3.35 ± 1.30, p < 0.01) and improving swelling (cure rate: 60.4% vs. 46.2%, p < 0.05; obvious effective rate: 60.7% vs. 47.0%, p < 0.05). After 10 days of treatment, the WHOL group was superior to the FFSTC group in decreasing the levels of CRP (-0.13 ± 2.85 vs. 0.25 ± 2.09, p < 0.05) and improving the TCM syndrome (cure rate: 44.1% vs. 30.8%, p < 0.05) and swelling (cure rate: 75.6% vs. 67.5%, p < 0.01; obvious effective rate: 75.6% vs. 68.4%, p < 0.05; effective rate: 77.0% vs. 71.8%, p < 0.05). The disappearance time of pain at rest was 8 days in both groups and 9 days on activity in both groups. In addition, there was no statistical difference between the incidence of adverse events (4.5% vs. 2.6%, p > 0.05) and adverse reactions (0.3% vs. 0%, p > 0.05) between the WHOL group and the FFSTC group. No serious adverse events occurred in either group, and no subjects were withdrawn because of adverse events. Conclusion: WHOL relieves the symptoms caused by acute soft tissue injury associated with qi stagnation and blood stasis syndrome more rapidly than FFSTC, and it is effective and safe in the treatment of acute soft tissue injury. Future studies still need a larger sample size to verify its efficacy and safety. Clinical Trial Registration: https:// www.chictr.org.cn/showproj.html?proj=149531, Identifier ChiCTR2200056411.
Collapse
Affiliation(s)
- Wen-Hao Zhu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Spine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yi Shen
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Spine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yu Xiao
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qi Shi
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Spine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China
| | - Zhao-Xiang Fan
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yan-Qi Feng
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hong-Bo Wan
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Bo Qu
- The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Jun Zhao
- Xi’an Hospital of Traditional Chinese Medicine, Xi’an, China
| | - Wei-Qiang Zhang
- Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Guo-Hui Xu
- Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Xue-Qun Wu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - De-Zhi Tang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Spine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China
| |
Collapse
|
2
|
Wang Q, Yang Z, Guo L, Li Z, Liu Y, Feng S, Wang Y. Chemical composition, pharmacology and pharmacokinetic studies of GuHong injection in the treatment of ischemic stroke. Front Pharmacol 2023; 14:1261326. [PMID: 37745083 PMCID: PMC10512552 DOI: 10.3389/fphar.2023.1261326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 08/28/2023] [Indexed: 09/26/2023] Open
Abstract
GuHong injection is composed of safflower and N-acetyl-L-glutamine. It is widely used in clinical for cerebrovascular diseases, such as ischemic stroke and related diseases. The objective of this review is to comprehensively summarize the most recent information related to GuHong in the treatment of stroke, including chemical composition, clinical studies, potential pharmacological mechanisms and pharmacokinetics. Additionally, it examines possible scientific gaps in current study and aims to provide a reliable reference for future GuHong studies. The systematic review reveals that the chemical composition of safflower in GuHong is more than 300 chemical components in five categories. GuHong injection is primarily used in clinical applications for acute ischemic stroke and related diseases. Pharmacological investigations have indicated that GuHong acts in the early and recovery stages of ischemic stroke by anti-inflammatory, anti-oxidative stress, anti-coagulation, neuroprotective and anti-apoptotic mechanisms simultaneously. Pharmacokinetic studies found that the main exposed substances in rat plasma after GuHong administration are hydroxysafflor yellow A and N-acetyl-L-glutamine, and N-acetyl-L-glutamine could exert its pharmacological effect across the blood-brain barrier. As a combination of Chinese herb and chemical drug, GuHong injection has great value in drug research and clinical treatment, especially for ischemic stroke disease. This article represents a comprehensive and systematic review of existing studies on GuHong injection, including chemical composition, pharmacological mechanism, and pharmacokinetics, which provides reference significance for the clinical treatment of ischemic stroke with GuHong, as well as provides guidance for further study.
Collapse
Affiliation(s)
- Qiuyue Wang
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhihua Yang
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Liuli Guo
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhenzhen Li
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yangxi Liu
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shaoling Feng
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yanxia Wang
- Tianjin Beichen Traditional Chinese Medicine Hospital, Tianjin, China
| |
Collapse
|
3
|
Li X, Miao F, Xin R, Tai Z, Pan H, Huang H, Yu J, Chen Z, Zhu Q. Combining network pharmacology, molecular docking, molecular dynamics simulation, and experimental verification to examine the efficacy and immunoregulation mechanism of FHB granules on vitiligo. Front Immunol 2023; 14:1194823. [PMID: 37575231 PMCID: PMC10414113 DOI: 10.3389/fimmu.2023.1194823] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/11/2023] [Indexed: 08/15/2023] Open
Abstract
Background Fufang Honghua Buji (FHB) granules, have proven efficacy against vitiligo in long-term clinical practice. However, its major active chemical components and molecular mechanisms of action remain unknown. The purpose of this study was to confirm the molecular mechanism of FHB's therapeutic effect on vitiligo utilizing network pharmacology, molecular docking, and molecular dynamics simulation prediction, as well as experimental verification. Methods Traditional Chinese Medicine Systems Pharmacology (TCMSP) and HERB databases were used to obtain the chemical composition and action targets of FHB. Online Mendelian Inheritance in Man (OMIM), DrugBank, DisGeNET, GeneCards, and Therapeutic Target Database (TTD) databases were applied to screen for vitiligo-related targets. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed through the Matascape database. Molecular docking and dynamics simulation methods were for the analysis of the binding sites and binding energies between the FHB's active components and the targets. Finally, a vitiligo mouse model was created, and the therapeutic effect and molecular mechanism of action of FHB were validated using enzyme linked immunosorbent assay (ELISA), western blot (WB), and quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Additionally, hematoxylin-eosin staining (HE) and blood biochemical assays were conducted to assess the biosafety of FHB. Result The screening of chemical composition and targets suggested that 94 genetic targets of FHB were associated with vitiligo. The bioinformatics analysis suggested that luteolin, quercetin, and wogonin may be major active components, and nuclear factor-kappa B p65 subunit (RELA), signal transducer, and activator of transcription (STAT) 3 and RAC-alpha serine/threonine-protein kinase (AKT) 1 may be potential targets of FHB-vitiligo therapy. Molecular docking and dynamics simulation further demonstrated that luteolin, quercetin, and wogonin all bound best to STAT3. Through experimental verification, FHB has been demonstrated to alleviate the pathogenic characteristics of vitiligo mice, suppress the JAK-STAT signaling pathway, reduce inflammation, and increase melanogenesis. The in vivo safety evaluation experiments also demonstrated the non-toxicity of FHB. Conclusions FHB exerts anti-inflammatory and melanogenesis-promoting effects via the effect of multi-component on multi-target, among which the JAK-STAT pathway is a validated FHB-vitiligo target, providing new ideas and clues for the development of vitiligo therapy.
Collapse
Affiliation(s)
- Xiaolong Li
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai, China
| | - Fengze Miao
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai, China
| | - Rujuan Xin
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai, China
| | - Zongguang Tai
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai, China
| | - Huijun Pan
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai, China
| | - Hao Huang
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai, China
| | - Junxia Yu
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai, China
| | - Zhongjian Chen
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai, China
| | - Quangang Zhu
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai, China
| |
Collapse
|
4
|
Zhou Y, Jiang H, Huang X, Rao K, Wang D, Wu Q, Zhang P, Pei J. Indistinct assessment of the quality of traditional Chinese medicine in precision medicine exampling as safflower. J Pharm Biomed Anal 2023; 227:115277. [PMID: 36736110 DOI: 10.1016/j.jpba.2023.115277] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/24/2023] [Accepted: 01/29/2023] [Indexed: 02/01/2023]
Abstract
The quality of traditional Chinese medicine (TCM) guarantees its clinical efficacy. Although advanced analytical techniques and methods can accurately determine the content of chemical components in TCM, it is difficult to accurately determine its clinical efficacy. In addition, the current analytical methods and technologies are complex and have difficulty meeting the requirements of a rapid, accurate and convenient determination of TCM quality. In this study, we first propose the concept of "indistinct" evaluation of the quality of TCM, that is, combining biological potency with character evaluation, quantifying the character evaluation, and preparing the safflower quality grade evaluation card based on the character analysis, which provides research ideas and methods for the rapid and accurate evaluation of the quality of TCM. We determined the biological potency of different batches of safflower based on the in vitro antiplatelet aggregation model and divided the safflower samples into two grades based on the biological potency. We further collected the color information of different grades of safflower samples, quantified the color information of different grades of safflower, drew a quality grade evaluation card for the rapid judgment of safflower quality grade and verified its accuracy by pharmacodynamic evaluation. To further analyze the differences in the material basis of different grades of safflower, the LC-MS method was used to simultaneously determine the contents of 19 chemical components, such as myricetin, in different grades of safflower samples to analyze the differences in the material basis of different grades of safflower. The result shows that the different grades of safflower exhibited significant differences in color. The pharmacodynamic results show that the quality evaluation card prepared based on color information can accurately evaluate quality, and the effect of first-class safflower is significantly better than that of second-class safflower. The chemical analysis results of different grades of safflower show that there are also significant differences between them, among which hypericin, 6-hydroxyapin-6-O-glucose-7-O-glucuronide, 6-hydroxykaempferol-3,6-O-diglucoside-7-O-glucuronic acid glycoside, 6-hydroxykaempferol-3,6,7-tri-O-glucoside and hydroxysafflower yellow A exhibit significant differences, which may be the main differentiating components of different grades of safflower. This study preliminarily confirmed that the "indistinct" evaluation of the quality of TCM based on character analysis is accurate and scientific, and the quality evaluation card prepared can accurately judge the quality of TCM, providing a reference for the rapid application of TCM character evaluation.
Collapse
Affiliation(s)
- Yongfeng Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy,Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu 611137, Sichuan, China
| | - Huajuan Jiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy,Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu 611137, Sichuan, China
| | - Xulong Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy,Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu 611137, Sichuan, China
| | - Ke Rao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy,Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu 611137, Sichuan, China
| | - Di Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy,Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu 611137, Sichuan, China
| | - Qinghua Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy,Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu 611137, Sichuan, China.
| | - Ping Zhang
- Medical Supplies Center, Chinese PLA General Hospital, 100#, West 4th Ring Middle Rd., Fengtai, Beijing 100039, China.
| | - Jin Pei
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy,Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu 611137, Sichuan, China.
| |
Collapse
|
5
|
Lee DH, Kwak HJ, Shin Y, Kim SJ, Lee GH, Park IH, Kim SH, Kang KS. Elucidation of Phytochemicals Affecting Platelet Responsiveness in Dangguisu-san: Active Ingredient Prediction and Experimental Research Using Network Pharmacology. PLANTS (BASEL, SWITZERLAND) 2023; 12:1120. [PMID: 36903980 PMCID: PMC10005453 DOI: 10.3390/plants12051120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/13/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
Plant-derived phytochemicals are emerging as novel agents for protection against chronic disorders. Dangguisu-san is a herbal prescription to invigorate the blood and relieve pain. Among the numerous active constituents of Dangguisu-san, those expected to be effective at inhibiting platelet aggregation were predicted using a network pharmacological method, and their efficacy was experimentally demonstrated. All four identified chemical components, namely chrysoeriol, apigenin, luteolin, and sappanchalcone, suppressed the aggregation of platelets to a certain extent. However, we report, for the first time, that chrysoeriol acts as a strong inhibitor of platelet aggregation. Although additional in vivo studies are needed, among the complex constituents of herbal medicines, the components that exert an inhibitory effect on platelet aggregation were predicted using a network pharmacological method and experimentally confirmed with human platelets.
Collapse
Affiliation(s)
- Dong-Ha Lee
- Department of Biomedical Laboratory Science, Namseoul University, Cheonan 31020, Republic of Korea
| | - Hee Jae Kwak
- College of Pharmacy, Yonsei Institute of Pharmaceutical Science, Yonsei University, Incheon 21983, Republic of Korea
| | - Yonghee Shin
- College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea
| | - Sung Jin Kim
- College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea
| | - Ga Hee Lee
- Department of Biomedical Laboratory Science, Namseoul University, Cheonan 31020, Republic of Korea
| | - Il-Ho Park
- College of Pharmacy, Sahmyook University, Seoul 01795, Republic of Korea
| | - Seung Hyun Kim
- College of Pharmacy, Yonsei Institute of Pharmaceutical Science, Yonsei University, Incheon 21983, Republic of Korea
| | - Ki Sung Kang
- College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea
| |
Collapse
|
6
|
Gao X, Gao J. Investigation of the efficacy and pharmacological mechanism of Danhong injections for treating chronic obstructive pulmonary disease: A PRISMA-compliant meta-analysis and network pharmacology analysis. Medicine (Baltimore) 2023; 102:e32846. [PMID: 36749263 PMCID: PMC9901954 DOI: 10.1097/md.0000000000032846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Accumulating evidence supported the clinical efficacy of Danhong injection (DHI) on chronic obstructive pulmonary disease (COPD). It is urgent to summarize the effects of DHI on various outcomes in COPD patients and to elucidate the molecular mechanisms of DHI in treating COPD. METHODS Eligible studies were retrieved from 6 databases including China national knowledge infrastructure, Wangfang, VIP, web of science, PubMed, and Embase. The heterogeneity across studies was tested using the I2 statistic and the quality of studies was assessed. The pooled evaluation of outcomes was calculated using a fix- or random-effect model according to the heterogeneity. The underlying mechanism of DHI in treating COPD was analyzed using network pharmacology. RESULTS A total of 34 eligible studies with a general medium quality were included in the meta-analysis. The pooled data showed that DHI intervention significantly increased clinical efficacy as compared to routine treatment. Meanwhile, our data also revealed that the addition of DHI markedly improved hemorheological indicators, lung function index, arterial blood gas index, and as well as blood coagulation functions. However, the current meta-analysis lacked sufficient data to support the significant effect of DHI on prothrombin time and activated partial thromboplastin time. Network pharmacology found 59 candidate targets of DHI in treating COPD, and enrichment analysis found these targets were associated with lymphocyte proliferation and activation, glucocorticoid receptor signaling, TREM1 signaling, IL-12 signaling and production in macrophages, and aryl hydrocarbon receptor signaling. Multiple core targets including AKT1, TNF, and IL1B, etc. Were identified and might play an important role in the action of DHI against COPD. CONCLUSION Taken together, this study suggested that DHI could ameliorate hemorheological indicators, lung function, arterial blood gas, and as well as coagulation functions of COPD patients and elucidate the underlying mechanism of DHI against COPD.
Collapse
Affiliation(s)
- Xiaoyu Gao
- Department of Pharmacy, Jiangnan Hospital Affiliated to Zhejiang University of Traditional Chinese Medicine Xiaoshan Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| | - Jinsong Gao
- Intensive Care Unit, Jiangnan Hospital Affiliated to Zhejiang University of Traditional Chinese Medicine Xiaoshan Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
- * Correspondence: Jinsong Gao, Intensive Care Unit, Jiangnan Hospital Affiliated to Zhejiang University of Traditional Chinese Medicine Xiaoshan Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang 310016, China (e-mail: )
| |
Collapse
|
7
|
Wang H, Ouyang Z, Cheng Y, Zhu J, Yang Y, Ma L, Zhang Y. Structure maintainability of safflomin/betanin incorporated gelatin-chitooligosaccharide complexes based high internal phase emulsions and its combinational 3D printing. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
8
|
Al Kiey SA, Hasanin MS, Heakal FET. Green and sustainable chitosan-gum Arabic nanocomposites as efficient anticorrosive coatings for mild steel in saline media. Sci Rep 2022; 12:13209. [PMID: 35915138 PMCID: PMC9343376 DOI: 10.1038/s41598-022-17386-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/25/2022] [Indexed: 12/01/2022] Open
Abstract
The application of green and sustainable anticorrosive coatings is becoming of upsurge interest for the protection of metallic materials in aggressive environments. Herein, a stable crystalline chitosan/gum Arabic composite (CGAC) nanopowder was successfully synthesized and characterized by various methods. The CGAC nanopowder with different doses (25, 50, 100, and 200 ppm) was used to coat mild steel samples and examined its anticorrosion ability in 3.5 wt.% NaCl solution using gravimetric, electrochemical measurements, and surface characterization techniques. All methods yielded consistent results revealing that nanocomposite coatings can impart good anticorrosive properties to the steel substrate. The obtained protection efficiency was enhanced with increasing CGAC dose in the applied surface layer achieving 96.6% for the 200 ppm-coating. SEM and AFM surface morphologies of uncoated and coated samples after the inundation in the saline solution showed that CGAC coating can block the active corrosive sites on the steel surface, and prevent the aggressive Cl- ions from attacking the metallic substrate. The water droplet contact angle gave further support as it increased from 50.7° for the pristine uncoated surface to 101.2° for the coated one. The current research demonstrates a promising natural and reliable nanocomposite coating for protecting mild steel structures in the marine environment.
Collapse
Affiliation(s)
- Sherief A Al Kiey
- Electrochemistry and Corrosion Department, National Research Centre (NRC), Dokki, 12622, Cairo, Egypt
| | - Mohamed S Hasanin
- Cellulose and Paper Department, National Research Centre (NRC), Dokki, 12622, Cairo, Egypt
| | | |
Collapse
|
9
|
Sun F, Wu X, Qi Y, Zhong Y, Zeng L, Wang K, Liang S. Combining ultra-high-performance liquid chromatography quadruple exactive orbitrap mass spectrometry with chemometrics to identify and verify the blood-activating components of hawthorn. J Sep Sci 2022; 45:2924-2934. [PMID: 35699087 DOI: 10.1002/jssc.202200230] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/31/2022] [Accepted: 06/10/2022] [Indexed: 11/08/2022]
Abstract
Hawthorn, one of the widely-used Chinese herbal medicines, has been used to treat blood stasis syndrome in the clinic, but its blood-activating components are unclear. This study combined the ultra-high-performance liquid chromatography-quadruple exactive-orbitrap mass spectrometry with chemometrics to identify the blood-activating components of hawthorn. Different polar fractions of hawthorn aqueous extracts were extracted and mixed to prepare 14 samples. The contents of 25 chemical components for 14 samples were determined by the proposed quantitative method which was validated in terms of linearity, precision, stability, repeatability, and recovery, while the blood-activating effect was evaluated by measuring the whole blood viscosity, plasma viscosity, and plasma fibrinogen levels. Then the partial least squares model was established on the spectrum-effect relationship. The result showed that vitexin-2″-O-rhamnoside, rutin, citric acid, malic acid, gallic acid, and fumaric acid could reduce the whole blood viscosity, plasma viscosity, and plasma fibrinogen levels in blood stasis model rats, and these components were the blood-activating components of hawthorn. This study provided a scientific basis for clarifying the blood-activating components of hawthorn, and the spectrum-effect approach proved to be an effective approach to discovering the bioactive components of Chinese herbal medicines.
Collapse
Affiliation(s)
- Fei Sun
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, P. R. China.,Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, P. R. China.,Engineering and Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, P. R. China.,Innovation Team of Chinese Materia Medica Analysis of Department of Education, Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, P. R. China
| | - Xiangqin Wu
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, P. R. China
| | - Yue Qi
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, P. R. China
| | - Yongqi Zhong
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, P. R. China
| | - Lu Zeng
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, P. R. China
| | - Kaiyang Wang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, P. R. China
| | - Shengwang Liang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, P. R. China.,Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, P. R. China.,Engineering and Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, P. R. China.,Innovation Team of Chinese Materia Medica Analysis of Department of Education, Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, P. R. China
| |
Collapse
|
10
|
Shao CL, Cui GH, Guo HD. Effects and Mechanisms of Taohong Siwu Decoction on the Prevention and Treatment of Myocardial Injury. Front Pharmacol 2022; 13:816347. [PMID: 35153789 PMCID: PMC8826566 DOI: 10.3389/fphar.2022.816347] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/10/2022] [Indexed: 11/17/2022] Open
Abstract
Taohong Siwu decoction (THSWD) is one of the classic prescriptions for promoting blood circulation and removing blood stasis. With the continuous in-depth excavation in basic and clinical research, it has been found that THSWD has made greater progress in the prevention and treatment of cardiovascular diseases. Mechanisms of the current studies have shown that it could prevent and treat the myocardial injury by inhibiting inflammatory reaction, antioxidant stress, inhibiting platelet aggregation, prolonging clotting time, anti-fibrosis, reducing blood lipids, anti-atherosclerosis, improving hemorheology and vascular pathological changes, regulating related signal pathways and other mechanisms to prevent and treat the myocardial injury, so as to protect cardiomyocytes and improve cardiac function. Many clinical studies have shown that THSWD is effective in the prevention and treatment of cardiovascular diseases related to myocardial injuries, such as coronary heart disease angina pectoris (CHD-AP), and myocardial infarction. In clinical practice, it is often used by adding and subtracting prescriptions, the combination of compound prescriptions and combinations of chemicals and so on. However, there are some limitations and uncertainties in both basic and clinical research of prescriptions. According to the current research, although the molecular biological mechanism of various active ingredients needs to be further clarified, and the composition and dose of the drug have not been standardized and quantified, this study still has exploration for scientific research and clinical practice. Therefore, this review mainly discusses the basic mechanisms and clinical applications of THSWD in the prevention and treatment of the myocardial injury caused by CHD-AP and myocardial infarction. The authors hope to provide valuable ideas and references for researchers and clinicians.
Collapse
Affiliation(s)
- Chang-Le Shao
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guo-Hong Cui
- Department of Neurology, Shanghai No. 9 People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hai-Dong Guo
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
11
|
Tang JF, Li XL, Li WX, Zhang SQ, Li MM, Zhang H, Wang XY, Niu L. Pharmacokinetic comparison of four major bio-active components of naoxintong capsule in normal and acute blood stasis rats using ultra-performance liquid chromatography coupled with triple-quadrupole mass spectrometry. WORLD JOURNAL OF TRADITIONAL CHINESE MEDICINE 2022. [DOI: 10.4103/2311-8571.336835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
12
|
Tang JF, Li XL, Li WX, Zhang SQ, Li MM, Zhang H, Wang XY, Niu L. Pharmacokinetic comparison of four major bio-active components of naoxintong capsule in normal and acute blood stasis rats using ultra-performance liquid chromatography coupled with triple-quadrupole mass spectrometry. WORLD JOURNAL OF TRADITIONAL CHINESE MEDICINE 2022. [DOI: 10.4103/wjtcm.wjtcm_53_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
13
|
Xu T, Wang X, He Z, Yang L, Wei R, Zhong G, He J. Efficacy of Lagopsis supina to promote blood circulation, remove blood stasis, and block inflammation in a rat model of traumatic blood stasis. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902021000x32e19359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Tingting Xu
- Jiangxi University of Chinese Medicine, China
| | - Xiumei Wang
- Jiangxi University of Chinese Medicine, China; Inner Mongolia University for Nationalities, China
| | - Zhongwei He
- Jiangxi University of Finance and Economics, China
| | - Li Yang
- Jiangxi University of Chinese Medicine, China
| | - Rongrui Wei
- Jiangxi University of Chinese Medicine, China
| | | | - Junwei He
- Jiangxi University of Chinese Medicine, China
| |
Collapse
|
14
|
Tang H, Qin N, Rao C, Zhu J, Wang H, Hu G. Screening of Potential Anti-Thrombotic Ingredients from Salvia miltiorrhiza in Zebrafish and by Molecular Docking. Molecules 2021; 26:molecules26226807. [PMID: 34833900 PMCID: PMC8621365 DOI: 10.3390/molecules26226807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 10/31/2021] [Accepted: 11/05/2021] [Indexed: 11/22/2022] Open
Abstract
Background: Danshen (DS), the dry root of Salvia miltiorrhiza Bge., has been used in traditional Chinese medicine (TCM) for many years to promote blood circulation and to inhibit thrombosis. However, the active ingredients responsible for the anti-thrombotic effect and the underlying mechanisms are yet to be fully elucidated. Methods: Molecular docking was used to predict the active ingredients in DS and their potential targets by calculating the scores of docking between DS ingredients and thrombosis-related proteins. Then, a chemical-induced zebrafish thrombosis model was applied to confirm their anti-thrombotic effects. Result: The molecular docking results indicated that compared to the control ligand, higher docking scores were observed for several compounds in DS, among which salvianolic acid B (SAB), lithospermic acid (LA), rosmarinic acid (MA), and luteolin-7-O-β-d-glucoside (LG) could attenuate zebrafish caudal vein thrombosis and recover the decrease in heart red blood cells (RBCs) in a dose-dependent manner. Conclusions: Our study showed that it is possible to screen the potential active components in natural products by combining the molecular docking method and zebrafish in vivo model.
Collapse
Affiliation(s)
- Huilan Tang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China; (H.T.); (C.R.); (J.Z.); (H.W.)
| | - Ningyi Qin
- Chongqing Pharmaceutical Group Huamosheng Pharmaceutical Science & Technology Co., Ltd., Chongqing 400050, China;
| | - Chang Rao
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China; (H.T.); (C.R.); (J.Z.); (H.W.)
| | - Jiahui Zhu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China; (H.T.); (C.R.); (J.Z.); (H.W.)
| | - Haiqiang Wang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China; (H.T.); (C.R.); (J.Z.); (H.W.)
| | - Guang Hu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China; (H.T.); (C.R.); (J.Z.); (H.W.)
- Chongqing Key Laboratory of Medicinal Chemistry & Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, China
- Correspondence: ; Tel.: +86-150-2308-8936
| |
Collapse
|
15
|
Huang P, Zhou W, Chen H, Zhou H, Duan S, Wan H, He Y. Optimized separation of anhydrosafflor yellow B from safflower by high-speed counter-current chromatography and evaluation of its cardio-protective effect. Food Funct 2021; 12:9360-9371. [PMID: 34606545 DOI: 10.1039/d1fo01767e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Anhydrosafflor yellow B (AHSYB) is a major active water-soluble pigment in Safflower, but it has not received enough attention yet. In this study, high-speed counter-current chromatography (HSCCC) was used to prepare AHSYB from safflower. The parameters of the separation process were optimized by response surface methodology for the first time. The entropy weight method (EWM) was applied to calculate the information entropy and the weight of five indexes, and then figure out a comprehensive index of the HSCCC separation effect. Under the optimized separation conditions, a HSCCC apparatus speed of 850 rpm, a flow rate of 2 mL min-1 for the mobile phase and a separation temperature of 40 °C for AHSYB were achieved with a purity of 98%. Furthermore, AHSYB was found to have cardio-protective effects by inhibiting apoptosis via the mitochondrial-mediated pathway in oxygen-glucose deprivation/reoxygenation-induced H9c2 cells. This research provides good method guides for the rapid and efficient separation of active compounds from food-grade Chinese herb medicines.
Collapse
Affiliation(s)
- Ping Huang
- Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China.
| | - Wenjun Zhou
- Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China.
| | - Haiyang Chen
- Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China.
| | - Huifen Zhou
- Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China.
| | - Shaobo Duan
- Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China.
| | - Haitong Wan
- Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China.
| | - Yu He
- Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China.
| |
Collapse
|
16
|
Pu ZJ, Zhang S, Tang YP, Shi XQ, Tao HJ, Yan H, Chen JQ, Yue SJ, Chen YY, Zhu ZH, Zhou GS, Su SL, Duan JA. Study on changes in pigment composition during the blooming period of safflower based on plant metabolomics and semi-quantitative analysis. J Sep Sci 2021; 44:4082-4091. [PMID: 34514725 DOI: 10.1002/jssc.202100439] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/23/2021] [Accepted: 09/07/2021] [Indexed: 11/11/2022]
Abstract
Red and yellow pigments are the major ingredients of safflower, often used to color food and cosmetics. Carthamin was the main component of red pigment and hydroxysafflor yellow A and anhydrosafflower yellow B were representative components of yellow pigment. Plant metabolomics and semi-quantitative analysis were used to analyze the changes of pigment composition during the blooming period, especially these characteristic components. Carthamin, hydroxysafflor yellow A, anhydrosafflower yellow B, and other components were screened out as differential metabolites based on plant metabolomics. Then semi-quantitative analysis was used to quantify these three representative components of pigments. Experimental results showed that the content of pigments has dynamic changes along with flowering, in the early blooming period, yellow pigment accumulated much and red pigment was low in content. In the middle period, the accumulation rate of the yellow pigment slowed down and content was stabilized. In the next step, the content of yellow pigments gradually decreased, and the content of red pigments gradually increased. Later, the level of yellow pigment decreased significantly, and the accumulation rate of red pigment increased significantly. Last, the appearance color of safflower was red, with yellow parts barely visible, and accumulation of red pigment was the highest and of the yellow pigment was the lowest in content.
Collapse
Affiliation(s)
- Zong-Jin Pu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, P. R. China.,Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Shuo Zhang
- School of Clinical Medicine, Beijing University of Chinese Medicine, Beijing, P. R. China
| | - Yu-Ping Tang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, P. R. China
| | - Xu-Qin Shi
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Hui-Juan Tao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Hui Yan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Jia-Qian Chen
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Shi-Jun Yue
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, P. R. China
| | - Yan-Yan Chen
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, P. R. China
| | - Zhen-Hua Zhu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Gui-Sheng Zhou
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Shu-Lan Su
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Jin-Ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| |
Collapse
|
17
|
Li Y, Liu SS, Guo ZY, Yi H, Li C, Chen LM, Gao HM, Yan LH, Zhang WW, Feng XX, Zhao JY, Liu XQ, Wang ZM. Discovery of potential pharmacodynamic ingredients of Dang-Gui-Si-Ni decoction based on absorbed ingredients and molecular docking. JOURNAL OF ETHNOPHARMACOLOGY 2021; 275:114045. [PMID: 33831463 DOI: 10.1016/j.jep.2021.114045] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 03/11/2021] [Accepted: 03/13/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Dang-Gui-Si-Ni (DGSN) decoction as a classic prescription has been widely used for thousands of years in the clinical practice of traditional Chinese medicine (TCM). Especially in recent years, the potential efficacy of TCM for the treatment of Raynaud's syndrome has attracted great attention as there are still no specific remedies for this disease. However, the active constituents and underlying mechanisms responsible for the therapeutic benefits are not well understood, which makes it difficult to ensure quality control or to design research and drug development strategies. To identify the potential pharmacodynamic ingredients (PPIs) of TCM will help to achieve suitable process control procedures for industrial production and large-scale manufacturing. AIM OF THE STUDY In the present study, we propose a multi-dimensional qualitative analysis method combining water-decoction spectra, in-vitro intestinal absorption spectra, in-vivo plasma spectra, and molecular docking of components to quickly identify the PPIs for the DGSN decoction of TCM. MATERIALS AND METHODS Water-based decoctions of DGSN were prepared in accordance with the clinical use registered in ancient books. Ultra-high-performance liquid chromatography-quadrupole-time of flight mass spectrometry (UHPLC-Q/TOF-MS) coupled with computerized modelling activity screening was used to quickly identify the PPIs of the DGSN decoction. Bioactive compounds absorbed in vitro were identified using the everted intestinal sac model from rats and compounds absorbed in vivo were confirmed in portal vein blood samples obtained following oral administration in rats. Molecular docking validation experiments were adopted to predict the binding activity to coagulation factors I, II, VII, X, and IX. The active components were further confirmed by pharmacodynamics analysis. The anticoagulant activity of the DGSN decoction was verified using rat models. RESULTS Thirty-one compounds were identified in the DGSN decoction. According to the in vivo experiments, 22 compounds that could be absorbed in vivo were detected by the everted intestinal sac model in rats. This model greatly reduces the scope of PPIs and is easy to perform. Ten compounds were detected in the portal vein blood in rats. The compounds detected in plasma provide stronger evidence supporting the PPIs. Molecular docking in vitro experiments indicated that 7 compounds exhibited better binding activity with coagulation factors I, II, VII, X, and IX. The animal experiments confirmed that the DGSN decoction could improve the microcirculation, providing indirect proof of anticoagulant activity suggested by the molecular docking studies. Finally, based on the multi-dimensional methods, 9 potential compounds present in the DGSN decoction were identified as PPIs (i.e., ferulic acid, paeoniflorin, albiflorin, chlorogenic acid, cryptochlorogenic acid, liquiritin, liquiritin apioside, cinnamaldehyde and glycyrrhizic acid). CONCLUSION Overall, this study combined the water-decoction spectra, intestinal absorption spectra in vitro, plasma spectra in vivo, and molecular docking studies to establish a multi-dimensional qualitative analysis method of the DGSN decoction. Meanwhile, 9 compounds in DGSN decoction were identified as PPIs using this method, and are proposed for application as quality standards for complex TCM prescriptions.
Collapse
Affiliation(s)
- Yun Li
- National Engineering Laboratory for Quality Control Technology of Chinese Herbal Medicines, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China; School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Shan-Shan Liu
- Beijing Center for Physical and Chemical Analysis, Beijing, 100089, China
| | - Zhong-Yuan Guo
- National Engineering Laboratory for Quality Control Technology of Chinese Herbal Medicines, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China; College of Pharmacy, Henan University of Chinese Medicine, Henan, 450000, China
| | - Hong Yi
- National Engineering Laboratory for Quality Control Technology of Chinese Herbal Medicines, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Chun Li
- National Engineering Laboratory for Quality Control Technology of Chinese Herbal Medicines, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Liang-Mian Chen
- National Engineering Laboratory for Quality Control Technology of Chinese Herbal Medicines, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Hui-Min Gao
- National Engineering Laboratory for Quality Control Technology of Chinese Herbal Medicines, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Li-Hua Yan
- National Engineering Laboratory for Quality Control Technology of Chinese Herbal Medicines, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Wen-Wen Zhang
- National Engineering Laboratory for Quality Control Technology of Chinese Herbal Medicines, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Xia-Xia Feng
- National Engineering Laboratory for Quality Control Technology of Chinese Herbal Medicines, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jing-Yuan Zhao
- National Engineering Laboratory for Quality Control Technology of Chinese Herbal Medicines, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Xiao-Qian Liu
- National Engineering Laboratory for Quality Control Technology of Chinese Herbal Medicines, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Zhi-Min Wang
- National Engineering Laboratory for Quality Control Technology of Chinese Herbal Medicines, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
18
|
Lu PH, Kuo CY, Chan CC, Wang LK, Chen ML, Tzeng IS, Tsai FM. Safflower Extract Inhibits ADP-Induced Human Platelet Aggregation. PLANTS (BASEL, SWITZERLAND) 2021; 10:1192. [PMID: 34208125 PMCID: PMC8230796 DOI: 10.3390/plants10061192] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 02/07/2023]
Abstract
Safflower extract is commonly used as a traditional Chinese medicine to promote blood circulation and remove blood stasis. The antioxidant and anticancer properties of safflower extracts have been extensively studied, but their antiaggregative effects have been less analyzed. We found that safflower extract inhibited human platelet aggregation induced by ADP. In addition, we further analyzed several safflower extract compounds, such as hydroxysafflor yellow A, safflower yellow A, and luteolin, which have the same antiaggregative effect. In addition to analyzing the active components of the safflower extract, we also analyzed their roles in the ADP signaling pathways. Safflower extract can affect the activation of downstream conductors of ADP receptors (such as the production of calcium ions and cAMP), thereby affecting the expression of activated glycoproteins on the platelet membrane and inhibiting platelet aggregation. According to the results of this study, the effect of safflower extract on promoting blood circulation and removing blood stasis may be related to its direct inhibition of platelet activation.
Collapse
Affiliation(s)
- Ping-Hsun Lu
- Department of Chinese Medicine, Taipei Tzu Chi Hospital, The Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan;
- School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien 970, Taiwan
| | - Chan-Yen Kuo
- Department of Research, Taipei Tzu Chi Hospital, The Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan; (C.-Y.K.); (M.-L.C.); (I.-S.T.)
| | - Chuan-Chi Chan
- Department of Laboratory Medicine, Taipei Tzu Chi Hospital, The Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan;
| | - Lu-Kai Wang
- Radiation Biology Core Laboratory, Institute for Radiological Research, Chang Gung University/Chang Gung Memorial Hospital, Linkou, Taoyuan 333, Taiwan;
| | - Mao-Liang Chen
- Department of Research, Taipei Tzu Chi Hospital, The Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan; (C.-Y.K.); (M.-L.C.); (I.-S.T.)
| | - I-Shiang Tzeng
- Department of Research, Taipei Tzu Chi Hospital, The Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan; (C.-Y.K.); (M.-L.C.); (I.-S.T.)
| | - Fu-Ming Tsai
- Department of Research, Taipei Tzu Chi Hospital, The Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan; (C.-Y.K.); (M.-L.C.); (I.-S.T.)
| |
Collapse
|
19
|
Huang Y, Zhu X, Zhu Y, Wang Z. Pinus koraiensis polyphenols: structural identification, in vitro antioxidant activity, immune function and inhibition of cancer cell proliferation. Food Funct 2021; 12:4176-4198. [PMID: 33861291 DOI: 10.1039/d0fo03347b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, polyphenols were extracted from Pinus koraiensis bark and characterized. Besides, the in vitro antioxidant activity, inhibition effect on cancer cells and the activity of the immune system were investigated. The results showed that the main component of Pinus koraiensis bark was 3,5,7,3',5'-pentahydroxydihydroflavone. PKB polyphenols demonstrated a high antioxidant activity during in vitro investigation. In vivo immunological function studies on oxidatively injured mice revealed that Pinus koraiensis bark polyphenols effectively improved the survival status of irradiated mice. PKBP also increased the spleen and thymus index of mouse immunoregulatory organs. The results indicated that the phagocytic ability of mononuclear macrophages was increased. Comparing the cell distribution of the PKBP administered group and the model group, the PKBP-administered group reduced the cells arrested in the G1 phase, while the number of cells increased in the S and G2 phases. PKBP effectively protected the mouse immune system and reduced the immune suppression caused by radiation. These findings also confirmed that oxidative damaged cells induced by radiation could be repaired. PKBP had the highest inhibitory activity on colon cancer cells HT29, breast cancer cells MFC-7, gastric cancer cells BGC-823 and cervical cancer HeLa and HT29 cancer cells. PKB polyphenols could effectively induce the production of DNA-Ladder fragments and cause DNA damage in cancer cells. PKBP also blocked the cycle of cancer cells in the G2 phase, stopped cell division and induced cancer cell apoptosis. Analysis of cell apoptosis by Annexin V-FTIC/PI double staining indicated that PKBP inhibited HT29 cancer cell proliferation.
Collapse
Affiliation(s)
- Yuyang Huang
- College of Food Engineering, Harbin University of Commerce, Harbin, Heilongjiang 150028, China and National Research Center of Soybean Engineering and Technology, Harbin, Heilongjiang 150027, China
| | - Xiuqing Zhu
- College of Food Engineering, Harbin University of Commerce, Harbin, Heilongjiang 150028, China
| | - Ying Zhu
- College of Food Engineering, Harbin University of Commerce, Harbin, Heilongjiang 150028, China
| | - Zhenyu Wang
- Department of Food Science and Engineering, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150090, 92 Xidazhi Street, Harbin, Nangang District, China.
| |
Collapse
|
20
|
Bioactive Substances in Safflower Flowers and Their Applicability in Medicine and Health-Promoting Foods. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2021; 2021:6657639. [PMID: 34136564 PMCID: PMC8175185 DOI: 10.1155/2021/6657639] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 04/15/2021] [Accepted: 05/05/2021] [Indexed: 12/17/2022]
Abstract
Safflower flowers (Carthamus tinctorius) contain many natural substances with a wide range of economic uses. The most famous dye isolated from flower petals is hydroxysafflor A (HSYA), which has antibacterial, anti-inflammatory, and antioxidant properties. This review is aimed at updating the state of knowledge about their applicability in oncology, pulmonology, cardiology, gynecology, dermatology, gastrology, immunology, and suitability in the treatment of obesity and diabetes and its consequences with information published mainly in 2018-2020. They were also effective in treating obesity and diabetes and its consequences. The issues related to the possibilities of using HSYA in the production of health-promoting food were also analyzed.
Collapse
|
21
|
Sun Z, Wu H, Wu Y, Wang C, Wang Y, Hu S, Du S. Comparative Analysis of Compatibility Influence on Invigorating Blood Circulation for Combined Use of Panax Notoginseng Saponins and Aspirin Using Metabolomics Approach. Front Pharmacol 2021; 12:544002. [PMID: 33995000 PMCID: PMC8120290 DOI: 10.3389/fphar.2021.544002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 03/24/2021] [Indexed: 01/03/2023] Open
Abstract
The combined use of Panax notoginseng saponins (PNS)-based drugs and aspirin (ASA) to combat vascular diseases has achieved good clinical results. In this study, the superior efficacy was observed via the combined use of PNS and ASA on acute blood stasis rats, and untargeted metabolomics was performed to holistically investigate the therapeutic effects of coupling application and its regulatory mechanisms. The combined use of PNS and ASA exhibited better improvement effects when reducing the evaluated hemorheological indicators (whole blood viscosity, plasma viscosity, platelet aggregation, and fibrinogen content) in the blood stasis rats vs. single use of PNS or ASA at the same dose. The combined use of both drugs was the most effective application method, as shown by the relative distance in partial least-squares discriminant analysis score plots. Twelve metabolites associated with blood stasis were screened as potential biomarkers and were mainly involved in amino acid metabolism, lipid metabolism, and energy metabolism. After coherently treated with PNS and ASA, the altered metabolites could be partially adjusted to be closer to normal levels than single use. The collective results revealed that PNS could cooperate with ASA to treat blood stasis and provided a scientific explanation for the superior efficacy of their combined use.
Collapse
Affiliation(s)
- Zongxi Sun
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- Institute of Ethnic Medicine, Guangxi International Zhuang Medicine Hospital, Nanning, China
- School of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Huichao Wu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yali Wu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- Department of Pharmacy, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Chenglong Wang
- Institute of Ethnic Medicine, Guangxi International Zhuang Medicine Hospital, Nanning, China
| | - Yu Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Shaonan Hu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Shouying Du
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
22
|
Liu J, Mu W, Shi M, Zhao Q, Kong W, Xie H, Shi L. The Species Identification in Traditional Herbal Patent Medicine, Wuhu San, Based on Shotgun Metabarcoding. Front Pharmacol 2021; 12:607200. [PMID: 33664667 PMCID: PMC7921783 DOI: 10.3389/fphar.2021.607200] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 01/18/2021] [Indexed: 12/15/2022] Open
Abstract
Traditional herbal patent medicine typically consists of multiple ingredients, making it challenging to supervise contamination by impurities and the improper use of raw materials. This study employed shotgun metabarcoding for the species identification of biological ingredients in traditional herbal patent medicine, Wuhu San. The five prescribed herbal materials found in Wuhu San were collected, and their reference sequences were obtained by traditional DNA barcoding using Sanger sequencing. Two lab-made and three commercial Wuhu San samples were collected, and a total of 37.14 Gb of shotgun sequencing data was obtained for these five samples using the Illumina sequencing platform. A total of 1,421,013 paired-end reads were enriched for the Internal Transcribed Spacer 2 (ITS2), psbA and trnH intergenic spacer region (psbA-trnH), maturase k (matK), and ribulose-1, 5-bisphosphate carboxylase (rbcL) regions. Furthermore, 80, 11, 9, and 8 operational taxonomic units were obtained for the ITS2, psbA-trnH, matK, and rbcL regions, respectively, after metagenomic assembly, annotation, and chimeric detection. In the two lab-made mock samples, all labeled ingredients in the Wuhu San prescription were successfully detected, and the positive control, Panax quinquefolius L., was detected in the HSZY172 mock sample. Three species, namely Angelica sinensis (Oliv.) Diels, Saposhnikovia divaricata (Turcz. ex Ledeb.) Schischk., and Carthamus tinctorius L., belonging to three labeled ingredients, Angelicae Sinensis Radix (Danggui), Saposhnikoviae Radix (Fangfeng), and Carthami Flos (Honghua), were detected in the three commercial samples. Angelica dahurica (Hoffm.) Benth. & Hook. f. ex Franch. & Sav., the original Angelicae Dahuricae Radix (Baizhi) species, was only detected in WHS003. Arisaema erubescens (Wall.) Schott, Arisaema heterophyllum Blume, or Arisaema amurense Maxim., the original Arisaematis Rhizoma (Tiannanxing) species, were not detected in any of the commercial samples, which could be attributed to the fact that this medicinal material underwent extensive processing. In addition, the Saposhnikovia divaricata adulterant was detected in all the commercial samples, while 24 fungal genera, including Aspergillus, were identified in both the lab-made and commercial samples. This study showed that shotgun metabarcoding provided alternative strategy and technical means for identifying prescribed ingredients in traditional herbal patent medicine and displayed the potential to effectively complement traditional methods.
Collapse
Affiliation(s)
- Jinxin Liu
- Hebei Key Laboratory of Study and Exploitation of Chinese Medicine, Chengde Medical University, Chengde, China.,Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Weishan Mu
- Hebei Key Laboratory of Study and Exploitation of Chinese Medicine, Chengde Medical University, Chengde, China
| | - Mengmeng Shi
- Hebei Key Laboratory of Study and Exploitation of Chinese Medicine, Chengde Medical University, Chengde, China
| | - Qing Zhao
- Hebei Key Laboratory of Study and Exploitation of Chinese Medicine, Chengde Medical University, Chengde, China
| | - Weijun Kong
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Hongbo Xie
- Hebei Key Laboratory of Study and Exploitation of Chinese Medicine, Chengde Medical University, Chengde, China
| | - Linchun Shi
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| |
Collapse
|
23
|
Tong X, Yang J, Zhao Y, Wan H, He Y, Zhang L, Wan H, Li C. Greener extraction process and enhanced in vivo bioavailability of bioactive components from Carthamus tinctorius L. by natural deep eutectic solvents. Food Chem 2021; 348:129090. [PMID: 33524695 DOI: 10.1016/j.foodchem.2021.129090] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 12/19/2020] [Accepted: 01/10/2021] [Indexed: 01/21/2023]
Abstract
Natural deep eutectic solvents (NaDESs) are promising green alternatives to conventional solvents widely applied in the extraction of natural products due to their physical and chemical superiorities. In present study, 22 NaDESs consisted from food grade ingredients were screened in ultrasonic assisted extraction (UAE) of bioactive compounds from safflower. The oral bioavailabilities of hydroxysafflor yellow A (HSYA) and anhydrosafflor yellow B (ASYB) in the extracts were then investigated in SD rats with the help of HPLC-MS technique. The results revealed that l-proline-acetamide (l-Pro-Am) was an effective solvent with the yields of HSYA and ASYB at 32.83 and 8.80 mg/g. Pharmacokinetic studies revealed that the blood level of HSYA and ASYB were significantly higher after oral administration of l-Pro-Am extract than that of aqueous extract. Especially, the relative bioavailabilities (to aqueous extract) of HSYA and ASYB were calculated 183.5% and 429.8%.
Collapse
Affiliation(s)
- Xin Tong
- Zhejiang Chinese Medical University, Hangzhou 310057, PR China
| | - Jiehong Yang
- Zhejiang Chinese Medical University, Hangzhou 310057, PR China
| | - Yu Zhao
- Zhejiang Chinese Medical University, Hangzhou 310057, PR China
| | - Haofang Wan
- Zhejiang Chinese Medical University, Hangzhou 310057, PR China
| | - Yu He
- Zhejiang Chinese Medical University, Hangzhou 310057, PR China
| | - Ling Zhang
- Zhejiang Chinese Medical University, Hangzhou 310057, PR China
| | - Haitong Wan
- Zhejiang Chinese Medical University, Hangzhou 310057, PR China.
| | - Chang Li
- Zhejiang Chinese Medical University, Hangzhou 310057, PR China.
| |
Collapse
|
24
|
Hong H, Lim JM, Kothari D, Kwon SH, Kwon HC, Han SG, Kim SK. Antioxidant Properties and Diet-Related α-Glucosidase and Lipase Inhibitory Activities of Yogurt Supplemented with Safflower ( Carthamus tinctorius L.) Petal Extract. Food Sci Anim Resour 2021; 41:122-134. [PMID: 33506222 PMCID: PMC7810396 DOI: 10.5851/kosfa.2020.e88] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 09/11/2020] [Accepted: 11/04/2020] [Indexed: 01/23/2023] Open
Abstract
Recently, yogurt has been extensively studied to further enhance its functions using edible plant extracts. This study was conducted to investigate whether safflower petal (SP) as a natural food additive can be used to develop functional yogurt with improved health benefits. SPs were extracted with ethanol (SPE) and hot water (SPW), and then safflower yogurt was prepared by adding 0%-1.0% of those extracts to plain yogurt. With an increase in the fermentation duration, the pH of SPE and SPW yogurt samples was decreased, whereas titratable acidity and microbial counts were increased. The concentration of total polyphenols and total flavonoids, the activity of antioxidants, and the inhibitory effect on reactive oxygen species (ROS) were higher in SPW yogurt than SPE yogurt. Furthermore, α-glucosidase and lipase activity inhibitory effects of SPW yogurt were higher than those of SPE yogurt. In particular, free radical-scavenging activities, ROS inhibitory effect, and α-glucosidase activity inhibitory effects were significantly increased in SPW yogurt in a dose-dependent manner. Overall, these results suggest that SP extract possesses antioxidant activities and that it can downregulate α-glucosidase and lipase activities. The SP extract may have potential benefits as a natural food additive for the development of functional yogurt.
Collapse
Affiliation(s)
- Heeok Hong
- Department of Animal Science and Technology, Konkuk University, Seoul 05029, Korea
| | - Jeong Min Lim
- Department of Animal Science and Technology, Konkuk University, Seoul 05029, Korea
| | - Damini Kothari
- Department of Animal Science and Technology, Konkuk University, Seoul 05029, Korea
| | - So Hee Kwon
- Department of Animal Science and Technology, Konkuk University, Seoul 05029, Korea
| | - Hyuk Cheol Kwon
- Department of Food Science and Biotechnology of Animal Resource, Konkuk University, Seoul 05029, Korea
| | - Sung-Gu Han
- Department of Food Science and Biotechnology of Animal Resource, Konkuk University, Seoul 05029, Korea
| | - Soo-Ki Kim
- Department of Animal Science and Technology, Konkuk University, Seoul 05029, Korea
| |
Collapse
|
25
|
Lagopsis supina extract and its fractions exert prophylactic effects against blood stasis in rats via anti-coagulation, anti-platelet activation and anti-fibrinolysis and chemical characterization by UHPLC-qTOF-MS/MS. Biomed Pharmacother 2020; 132:110899. [DOI: 10.1016/j.biopha.2020.110899] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/09/2020] [Accepted: 10/14/2020] [Indexed: 01/08/2023] Open
|
26
|
Wang Y, Shi Y, Zou J, Zhang X, Liang Y, Tai J, Cui C, Wang M, Guo D. Network pharmacology exploration reveals a common mechanism in the treatment of cardio-cerebrovascular disease with Salvia miltiorrhiza Burge. and Carthamus tinctorius L. BMC Complement Med Ther 2020; 20:351. [PMID: 33213432 PMCID: PMC7678298 DOI: 10.1186/s12906-020-03026-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 07/13/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND This study aimed to identify the key genes and KEGG pathways in Carthamus tinctorius L. (Safflower) and Salvia miltiorrhiza Burge. (Salvia) for the treatment of cardio-cerebrovascular disease, and to explore their potential molecular mechanisms. METHODS Compounds and targets in Safflower and Salvia were retrieved from Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP). We obtained targets of myocardial infarction (MI) and cerebral infarction (CI) data from Therapeutic Target Database (TTD), Drugbank and DisGeNET datasets. The network of Safflower, Salvia, CI and MI was established and then executing, and Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analyses of the functional characteristics were performed. The Chinese herbal prescription and target for CI and MI were obtained by searching in the database. Finally, the main pathways of Salvia and Safflower in Chinese patent medicines were analyzed. The MCAO model was established in rats, and compatibility of salvia with safflower was experimentally verified. RESULTS We obtained a total of 247 genes targeted by 52 compounds from Safflower and 119 genes targeted by 48 compounds from Salvia. In total, we identified 299 known therapeutic targets for the treatment of CI and 960 targets for the treatment MI. There are 23 common targets for Salvia, Safflower, MI, and CI. A total of 85 KEGG pathways were also enriched and intersected with the pathway of proprietary Chinese medicine to yield 25 main pathways. Safflower and Salvia have the best therapeutic effect in MCAO. CONCLUSION We identified gene lists for Safflower and Salvia in CI and MI. Bioinformatics and interaction analyses may provide new insight into the treatment of cardio-cerebrovascular diseases with Safflower and Salvia.
Collapse
Affiliation(s)
- Yu Wang
- Department of Pharmaceutics, College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712000, Shaanxi, China
| | - Yajun Shi
- Department of Pharmaceutics, College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712000, Shaanxi, China.
- Key Laboratory of basic and new drug research of traditional Chinese medicine, Shaanxi University of Chinese Medicine, Xianyang, 712000, Shaanxi, China.
| | - Junbo Zou
- Department of Pharmaceutics, College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712000, Shaanxi, China
- Key Laboratory of basic and new drug research of traditional Chinese medicine, Shaanxi University of Chinese Medicine, Xianyang, 712000, Shaanxi, China
| | - Xiaofei Zhang
- Department of Pharmaceutics, College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712000, Shaanxi, China.
- Key Laboratory of basic and new drug research of traditional Chinese medicine, Shaanxi University of Chinese Medicine, Xianyang, 712000, Shaanxi, China.
| | - Yulin Liang
- Department of Pharmaceutics, College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712000, Shaanxi, China
| | - Jia Tai
- Department of Pharmaceutics, College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712000, Shaanxi, China
| | - Chunli Cui
- Department of Pharmaceutics, College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712000, Shaanxi, China
- Key Laboratory of basic and new drug research of traditional Chinese medicine, Shaanxi University of Chinese Medicine, Xianyang, 712000, Shaanxi, China
| | - Mei Wang
- Department of Pharmaceutics, College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712000, Shaanxi, China
- Key Laboratory of basic and new drug research of traditional Chinese medicine, Shaanxi University of Chinese Medicine, Xianyang, 712000, Shaanxi, China
| | - Dongyan Guo
- Department of Pharmaceutics, College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712000, Shaanxi, China
- Key Laboratory of basic and new drug research of traditional Chinese medicine, Shaanxi University of Chinese Medicine, Xianyang, 712000, Shaanxi, China
| |
Collapse
|
27
|
Sheng JY, Wang SQ, Liu KH, Zhu B, Zhang QY, Qin LP, Wu JJ. Rubus chingii Hu: an overview of botany, traditional uses, phytochemistry, and pharmacology. Chin J Nat Med 2020; 18:401-416. [PMID: 32503732 DOI: 10.1016/s1875-5364(20)30048-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Indexed: 01/10/2023]
Abstract
Rubus chingii Hu, a member of the rosaceae family, is extensively distributed in China and Japan. Its unripe fruits (Fupenzi in Chinese) have a long history of use as an herbal tonic in traditional Chinese medicine for treating various diseases commonly associated with kidney deficiency, and they are still in use today. Phytochemical investigations on the fruits and leaves of R. chingii indicate the presence of terpenoids, flavonoids, steroids, alkaloids, phenylpropanoids, phenolics, and organic acids. Extracts or active substances from this plant are reported to have various pharmacological properties, including antioxidant, anti-inflammatory, antitumor, antifungal, antithrombotic, antiosteoporotic, hypoglycemic, and central nervous system-regulating effects. This review provides up-to-date information on the botanical characterizations, traditional usages, chemical constituents, pharmacological activities, toxicity, and quality control of R. chingii. Possible directions for future research are also briefly proposed. This review aims to supply fundamental data for the further study of R. chingii and contribute to the development of its clinical use.
Collapse
Affiliation(s)
- Jia-Yun Sheng
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Si-Qi Wang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Kao-Hua Liu
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Bo Zhu
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Qiao-Yan Zhang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Lu-Ping Qin
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Jian-Jun Wu
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| |
Collapse
|
28
|
Beata Olas, Urbańska K, Bryś M. Selected food colourants with antiplatelet activity as promising compounds for the prophylaxis and treatment of thrombosis. Food Chem Toxicol 2020; 141:111437. [DOI: 10.1016/j.fct.2020.111437] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/18/2020] [Accepted: 05/12/2020] [Indexed: 12/15/2022]
|
29
|
Park CH, Kim MJ, Yang CY, Yokozawa T, Shin YS. Safflower seed extract synergizes the therapeutic effect of cisplatin and reduces cisplatin-induced nephrotoxicity in human colorectal carcinoma RKO cells and RKO-transplanted mice. Drug Discov Ther 2020; 13:328-334. [PMID: 31956231 DOI: 10.5582/ddt.2019.01086] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Safflower seed is effective against oxidative stress, mediating the activation of the apoptotic signaling pathway in the renal tissues of cisplatin-treated mice. The anticancer activity of safflower in various cancer cell lines has also been reported. The present study was conducted to evaluate the potential synergistic anticancer effects of the co-treatment of safflower seed extracts and cisplatin in RKO cells and in BALB/c mice bearing RKO cell-derived human colorectal tumors. In the cellular system, RKO cells were treated with safflower seed extract in the presence or absence of cisplatin for 48 h and the cytotoxicity was evaluated by using microscopy. In the in vivo system, mice were injected with RKO cells and subsequently orally administered 100 or 200 mg/kg body weight safflower seed extract plus cisplatin-treated or untreated mice for 3 days to examine the inhibitory effect on the tumor. Treatment with safflower seed extract or cisplain to RKO cells resulted in a greater cell death than in with untreated cells. In the RKO cells co-treated with both safflower seed extract and cisplatin, greater cell damage was observed. In addition, mice co-administered safflower seed extract and cisplatin had lower concentrations of serum creatinine, which were indicative of less damage to the kidney, and had a lower solid tumor mass and higher expression of the caspase-3 protein. The results showed that safflower seed extract was highly toxic to RKO cells and inhibited tumor growth in cisplatin-treated mice through renoprotective effects.
Collapse
Affiliation(s)
- Chan Hum Park
- Department of Medicinal Crop Research, National Institute of Horticultural and Herbal Science, Rural Development Administration, Eumseong, Republic of Korea
| | - Min Jo Kim
- Department of Medicinal Crop Research, National Institute of Horticultural and Herbal Science, Rural Development Administration, Eumseong, Republic of Korea
| | - Chang Yeol Yang
- Department of Medicinal Crop Research, National Institute of Horticultural and Herbal Science, Rural Development Administration, Eumseong, Republic of Korea
| | - Takako Yokozawa
- Graduate School of Science and Engineering for Research, University of Toyama, Toyama, Japan
| | - Yu Su Shin
- Department of Medicinal Crop Research, National Institute of Horticultural and Herbal Science, Rural Development Administration, Eumseong, Republic of Korea
| |
Collapse
|
30
|
|
31
|
Huang H, Wu J, Lu R, Liu X, Chin B, Zhu H, Yin C, Cheng B, Wu Z, Chen X, Liang Y, Song H, Zheng H, Guo H, Su Z. Dynamic urinary metabolomics analysis based on UHPLC-Q-TOF/MS to investigate the potential biomarkers of blood stasis syndrome and the effects of Danggui Sini decoction. J Pharm Biomed Anal 2020; 179:112986. [DOI: 10.1016/j.jpba.2019.112986] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 10/09/2019] [Accepted: 11/11/2019] [Indexed: 12/18/2022]
|
32
|
Zhang WJ, Su WW, Lin QW, Yan ZH, Wang YG, Zeng X, Wu H, Liu H, Yao HL. Protective effects of Naoxintong Capsule on rats with blood stasis syndrome. BIOTECHNOL BIOTEC EQ 2020. [DOI: 10.1080/13102818.2020.1820377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Affiliation(s)
- Wei-jian Zhang
- Guangdong Engineering & Technology Research Center for Quality and Efficacy Reevaluation of Post-market Traditional Chinese Medicine, Guangdong Key Laboratory of Plant Resources, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
| | - Wei-wei Su
- Guangdong Engineering & Technology Research Center for Quality and Efficacy Reevaluation of Post-market Traditional Chinese Medicine, Guangdong Key Laboratory of Plant Resources, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
| | - Qing-wei Lin
- Guangdong Engineering & Technology Research Center for Quality and Efficacy Reevaluation of Post-market Traditional Chinese Medicine, Guangdong Key Laboratory of Plant Resources, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
| | - Zeng-hao Yan
- Guangdong Engineering & Technology Research Center for Quality and Efficacy Reevaluation of Post-market Traditional Chinese Medicine, Guangdong Key Laboratory of Plant Resources, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
| | - Yong-gang Wang
- Guangdong Engineering & Technology Research Center for Quality and Efficacy Reevaluation of Post-market Traditional Chinese Medicine, Guangdong Key Laboratory of Plant Resources, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
| | - Xuan Zeng
- Guangdong Engineering & Technology Research Center for Quality and Efficacy Reevaluation of Post-market Traditional Chinese Medicine, Guangdong Key Laboratory of Plant Resources, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
| | - Hao Wu
- Guangdong Engineering & Technology Research Center for Quality and Efficacy Reevaluation of Post-market Traditional Chinese Medicine, Guangdong Key Laboratory of Plant Resources, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
| | - Hong Liu
- Guangdong Engineering & Technology Research Center for Quality and Efficacy Reevaluation of Post-market Traditional Chinese Medicine, Guangdong Key Laboratory of Plant Resources, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
| | - Hong-liang Yao
- Guangdong Engineering & Technology Research Center for Quality and Efficacy Reevaluation of Post-market Traditional Chinese Medicine, Guangdong Key Laboratory of Plant Resources, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Drug Synthesis and Evaluation Center, Guangdong Institute of Applied Biological Resources, Guangzhou, P.R. China
| |
Collapse
|
33
|
Song JY, Chen JF, Lu YY, Chang K, Zhao MB, Tu PF, Jiang Y, Guo XY. Comparative study on metabolic profiling and excretion in rat bile between combination of notoginseng total saponins and safflower total flavonoids and its individual extracts by LC-MS/MS. J Pharm Biomed Anal 2019; 178:112936. [PMID: 31672581 DOI: 10.1016/j.jpba.2019.112936] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 10/14/2019] [Accepted: 10/15/2019] [Indexed: 12/18/2022]
Abstract
The combination of notoginseng total saponins (NS) and safflower total flavonoids (SF), namely CNS, presents a synergistic protection effect on the myocardial ischemia rats. The aim of this study was to find the clues for their synergistic actions by comparing the biliary metabolism and excretion profiles after oral administration of CNS and its individual extracts. An ultra-performance liquid chromatography coupled with hybrid triple quadrupole-linear ion trap mass spectrometer (UPLC-QTRAP-MS/MS) platform was used to identify and quantify the CNS-derived components in bile. The neutral losses, precursor ions, and predictive multiple reaction monitoring (pMRM) scans were firstly used to detect the CNS-derived ingredients in vivo. A total of 43 components, including 38 flavonoids and 5 ginsenosides were tentatively identified according to the previously established chemical and metabolic profiles of NS and SF. Afterwards, the primary circulating and biological components, hydroxysafflor yellow A (HSYA), ginsenosides Rg1 (GRg1), Re (GRe), and Rd (GRd) were chosen to compare the bile excretion between CNS and its individual extract groups, by using a validated LC-MRM-MS/MS method. The approach was proved to be well satisfied the related requirements from the guidelines of FDA (specificity, calibration curve, sensitivity, precision, accuracy, matrix effect, recovery, and stability). Comparing with the SF and NS groups, the combination group did not affect the metabolic pathways of the CNS-related components, however, it decreased the cumulative excretion ratios of HSYA, GRg1, GRe, and GRd. In conclusion, the compatibility of SF and NS could reduce the bile excretion of the CNS-derived compounds, which may be one of the reasons for the enhancement of anti-myocardial ischemia after combination.
Collapse
Affiliation(s)
- Jin-Yang Song
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China
| | - Jin-Feng Chen
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China
| | - Ying-Yuan Lu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China
| | - Kun Chang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China
| | - Ming-Bo Zhao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China
| | - Peng-Fei Tu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China
| | - Yong Jiang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China.
| | - Xiao-Yu Guo
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China.
| |
Collapse
|
34
|
Zhou J, Zhai J, Zheng W, Han N, Liu Z, Lv G, Zheng X, Chang S, Yin J. The antithrombotic activity of the active fractions from the fruits of Celastrus orbiculatus Thunb through the anti-coagulation, anti-platelet activation and anti-fibrinolysis pathways. JOURNAL OF ETHNOPHARMACOLOGY 2019; 241:111974. [PMID: 31132460 DOI: 10.1016/j.jep.2019.111974] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 05/09/2019] [Accepted: 05/23/2019] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional Chinese medicine Celastrus orbiculatus Thunb (C. orbiculatus) with peel and seeds is mainly composed of flavonoids, sesquiterpenes and tripenes. According to the Traditional Chinese medicine standard of Liaoning province (2009), it has been long used to invigorate blood circulation. AIM OF THE STUDY To identify the antithrombus fraction and components of C. orbiculatus, and to investigate the underlying mechanisms. MATERIALS AND METHODS The antithrombus effects of C. orbiculatus fractions were evaluated in vitro by plasma recalcification time (PRT). The antithrombus effect of NST-50, the most effective fraction, was further investigated in acute pulmonary embolism (APE) mice and FeCl3-induced carotid arterial thrombus rats. Bleeding assessment was also carried out to assess the side effects of NST-50. In addition, the content of total flavonoids and active components of NST-50 was also quantified. RESULTS Nine flavonoids were detected in NST-50 as main components with the content of 44.70%. Next, NST-50 was found with significant anticoagulation activity by prolonging the plasma recalcification time (PRT), activated partial thromboplastin time (APTT), thrombin time (TT) and prothrombin time (PT) and decreasing the content of fibrinogen (FIB). Furthermore, NST-50 administration markedly suppressed the level of TXB2 and PAI-1, while significantly up-regulated the level of 6-keto-PGF1a and t-PA (p < 0.05). CONCLUSION The results demonstrated that NST-50 could be valuable in clinical application against acute coronary syndrome, venous thromboembolisms and cerebrovascular thrombosis. It was possible that the anticoagulation action of NST-50 could be related to the regulation of TXA2 - PGI2 and t-PA - PAI-1 pairs.
Collapse
Affiliation(s)
- Jingjing Zhou
- Department of Pharmacognosy and Utilization Key Laboratory of Northeast Plant Materials, School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - JianXiu Zhai
- Department of Pharmacognosy and Utilization Key Laboratory of Northeast Plant Materials, School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Wenlin Zheng
- Department of Pharmacognosy and Utilization Key Laboratory of Northeast Plant Materials, School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Na Han
- Department of Pharmacognosy and Utilization Key Laboratory of Northeast Plant Materials, School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Zhihui Liu
- Department of Pharmacognosy and Utilization Key Laboratory of Northeast Plant Materials, School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Guanghui Lv
- Department of Pharmacognosy and Utilization Key Laboratory of Northeast Plant Materials, School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Xiaojiao Zheng
- Department of Pharmacognosy and Utilization Key Laboratory of Northeast Plant Materials, School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Sheng Chang
- Department of Pharmacognosy and Utilization Key Laboratory of Northeast Plant Materials, School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Jun Yin
- Department of Pharmacognosy and Utilization Key Laboratory of Northeast Plant Materials, School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
35
|
Danhong Injection Attenuates High-Fat–Induced Atherosclerosis and Macrophage Lipid Accumulation by Regulating the PI3K/AKT Insulin Pathway. J Cardiovasc Pharmacol 2019; 74:152-161. [DOI: 10.1097/fjc.0000000000000691] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
36
|
UPLC-Q-TOF/MS-Based Plasma Metabolomics to Evaluate the Effects of Aspirin Eugenol Ester on Blood Stasis in Rats. Molecules 2019; 24:molecules24132380. [PMID: 31252591 PMCID: PMC6651160 DOI: 10.3390/molecules24132380] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 06/23/2019] [Accepted: 06/25/2019] [Indexed: 11/17/2022] Open
Abstract
Aspirin eugenol ester (AEE) is a novel compound that is formed from the esterification of aspirin (acetylsalicylic acid (ASA)) and eugenol. This study aimed to investigate the effects of AEE on blood stasis in rats and to characterize the underlying mechanisms using a plasma metabolomic study. The results indicate that AEE and ASA could modulate whole blood viscosity (WBV), plasma viscosity (PV), blood coagulation parameters, platelet count, platelet aggregation, lactate dehydrogenase (LDH), creatinine (CR) and the levels of thromboxane A2 (TXA2) and 6-keto prostaglandin F1α (6-keto-PGF1α). The metabolic profiles of the plasma samples from all groups were clearly separated in the score plots. Nineteen potential metabolites were selected and identified, and disordered levels of these metabolites could be regulated by AEE and ASA. Pathway analysis showed that the mechanism of action of AEE on blood stasis might be principally related to the metabolism of amino acid, fatty acid, energy and glycerophospholipid. The above results indicate that AEE protected the rats against blood stasis, and that this effect might have been caused by the anticoagulation activity of AEE and its abilities to maintain a balance between TXA2 and PGI2, reduce blood viscosity, inhibit platelet aggregation and normalize the plasma metabolic profile.
Collapse
|
37
|
Zhao H, Zhao W. Development of a high resolution mass spectrometry method for the determination of danshensu and salvianolic acid B. SN APPLIED SCIENCES 2019. [DOI: 10.1007/s42452-019-0368-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
38
|
Hahn D, Bae JS. Recent Progress in the Discovery of Bioactive Components from Edible Natural Sources with Antithrombotic Activity. J Med Food 2019; 22:109-120. [DOI: 10.1089/jmf.2018.4268] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Affiliation(s)
- Dongyup Hahn
- School of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, Korea
- Institute of Agricultural Science and Technology, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, Korea
| | - Jong-Sup Bae
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics Based Creative Drug Research Team, Kyungpook National University, Daegu, Korea
| |
Collapse
|
39
|
A Review of Antiplatelet Activity of Traditional Medicinal Herbs on Integrative Medicine Studies. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:7125162. [PMID: 30719065 PMCID: PMC6335729 DOI: 10.1155/2019/7125162] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 11/27/2018] [Indexed: 12/13/2022]
Abstract
Thrombotic events mainly occurred by platelet activation and aggregation. The vascular occlusion causes serious disease states such as unstable angina, ischemic stroke, and heart attack. Due to the pervading of thrombotic diseases, new antiplatelet drugs are necessary for preventing and treating arterial thrombosis without adverse side effects. Traditional medicinal herbs have been used for the treatment of human ailments for a long time. The clinically useful and safe products from traditional medicinal herbs were identified and developed in numerous pharmacological approaches. A complementary system of traditional medicinal herbs is a good candidate for pharmacotherapy. However, it still has a limitation in its function and efficacy. Thus, it is necessary to study the mode of action of traditional medicinal herbs as alternative therapeutic agents. In this review, we focused on our current understanding of the regulatory mechanisms of traditional medicinal herbs in antiplatelet activity and antithrombotic effect of traditional medicinal herbs on platelet function.
Collapse
|
40
|
Comparative analysis of the compatibility effects of Danggui-Sini Decoction on a blood stasis syndrome rat model using untargeted metabolomics. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1105:164-175. [DOI: 10.1016/j.jchromb.2018.12.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 12/11/2018] [Accepted: 12/14/2018] [Indexed: 12/21/2022]
|
41
|
Lim JW, Chee SX, Wong WJ, He QL, Lau TC. Traditional Chinese medicine: herb-drug interactions with aspirin. Singapore Med J 2018; 59:230-239. [PMID: 29796686 DOI: 10.11622/smedj.2018051] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Traditional Chinese medicine (TCM)-based herbal therapies have gained increasing popularity worldwide, raising concerns of its efficacy, safety profile and potential interactions with Western medications. Antithrombotic agents are among the most common prescription drugs involved in herb-drug interactions, and this article focused on aspirin, one of the most widely used antiplatelet agents worldwide. We discussed herbs that have potential interactions by exploring Western and TCM approaches to thrombotic events. Common TCM indications for these herbs were also highlighted, including possible scenarios of their concurrent usage with aspirin. With greater awareness and understanding of potential herb-drug interactions, TCM and Western physicians may collaborate more closely to identify, treat and, most importantly, prevent adverse drug events.
Collapse
Affiliation(s)
- Jia Wei Lim
- University Medicine Cluster, National University Health System, Singapore
| | | | - Wen Jun Wong
- Eu Yan Sang Integrative Health Pte Ltd, Singapore
| | - Qiu Ling He
- Eu Yan Sang Integrative Health Pte Ltd, Singapore
| | - Tang Ching Lau
- University Medicine Cluster, National University Health System, Singapore.,Division of Rheumatology, University Medicine Cluster, National University Health System, Singapore
| |
Collapse
|
42
|
Memariani Z, Moeini R, Hamedi SS, Gorji N, Mozaffarpur SA. Medicinal plants with antithrombotic property in Persian medicine: a mechanistic review. J Thromb Thrombolysis 2018; 45:158-179. [PMID: 29124622 DOI: 10.1007/s11239-017-1580-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Thrombosis is one of the major causes of morbidity and mortality in a wide range of vessels diseases. Due to the high prevalence of thromboembolic disorders investigations are being carried out on new antithrombotic agents with limited adverse side effects in which herbal medicines are considered as alternative remedies. Persian medicine (PM) as a traditional medicine has a good potential for pharmacotherapy based on its own principles and development of drugs via investigating PM literature. In PM manuscripts there are some concepts that express the management of blood clots and antithrombotic properties. This study reviewed the pharmacological effects of medicinal plants mentioned in PM literature for blood clot management in light of current knowledge. Plants mentioned in PM for management of blood clot belong to 12 families in which Apiaceae, Lamiaceae and Compositae were the most repeated ones. Among the proposed plants Allium sativum, Rosmarinus officinalis, Boswellia serrata, Sesamum indicum, Matricaria chamomilla and Carthamus tinctorius have been the most researched plants in modern antithrombotic studies while for some plants such as Helichrysum stoechas, Dracocephalum kotschi, Carum carvi, Bunium persicum and Lagoecia cuminoides no evidence could be found. One of the interesting notes in clot management in PM texts was introducing the target organ for some of the recommended herbs like Carum carvi and Bunium persicum for dissolving blood clot in stomach and Commiphora mukul for thrombosed hemorrhoid. It seems review of PM recommendations can help to design future researches for antithrombotic drugs discovering with more effectiveness and safety.
Collapse
Affiliation(s)
- Zahra Memariani
- Traditional Medicine and History of Medical Sciences Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Islamic Republic of Iran.,School of Traditional Medicine, Babol University of Medical Sciences, Babol, Islamic Republic of Iran
| | - Reihaneh Moeini
- Traditional Medicine and History of Medical Sciences Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Islamic Republic of Iran.,School of Traditional Medicine, Babol University of Medical Sciences, Babol, Islamic Republic of Iran
| | - Shokooh Sadat Hamedi
- School of Traditional Medicine, Mashhad University of Medical Sciences, Mashhad, Islamic Republic of Iran
| | - Narjes Gorji
- Traditional Medicine and History of Medical Sciences Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Islamic Republic of Iran. .,School of Traditional Medicine, Babol University of Medical Sciences, Babol, Islamic Republic of Iran.
| | - Seyyed Ali Mozaffarpur
- Traditional Medicine and History of Medical Sciences Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Islamic Republic of Iran.,School of Traditional Medicine, Babol University of Medical Sciences, Babol, Islamic Republic of Iran
| |
Collapse
|
43
|
Comprehensive Metabolomics Analysis of Xueshuan Xinmaining Tablet in Blood Stasis Model Rats Using UPLC-Q/TOF-MS. Molecules 2018; 23:molecules23071650. [PMID: 29986394 PMCID: PMC6099806 DOI: 10.3390/molecules23071650] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 07/03/2018] [Accepted: 07/03/2018] [Indexed: 01/31/2023] Open
Abstract
Blood stasis syndrome (BSS) is one of the most common Chinese medicine patterns in coronary heart disease. Our previous work proved that Xueshuan Xinmaining Tablet (XXT) could treat blood stasis through regulating the expression of F13a1, Car1 and Tbxa2r. In the current study, the effect and mechanism of XXT on BSS was comprehensively and holistically investigated based on a metabolomics approach. Urine and plasma samples of 10 BBS rats treated with XXT (XT), 9 BSS model rats (BM) and 11 normal control (NC) rats were collected and then determined by UPLC-Q/TOP-MS. Multivariate analyses were applied to distinguish differentiate urinary and plasma metabolite patterns between three groups. Results showed that a clear separation of three groups was achieved. XT group was located between BM group and NC group, and showing a tendency of recovering to NC group, which was consistent with the results of hemorheological studies. Some significantly changed metabolites like cortexolone, 3α,21-dihydroxy-5β-pregnane-11,20-dione and 19S-hete and leukotriene A4, chiefly involved in steroid hormone biosynthesis, arachidonic acid metabolism and lipid metabolism, were found and identified to explain the mechanism. These potential markers and their corresponding pathways will help explain the mechanism of BSS and XXT treatment. This work also proves that metabolomics is effective in traditional Chinese medicinal research.
Collapse
|
44
|
Chen Y, Chen PD, Bao BH, Shan MQ, Zhang KC, Cheng FF, Cao YD, Zhang L, Ding AW. Anti-thrombotic and pro-angiogenic effects of Rubia cordifolia extract in zebrafish. JOURNAL OF ETHNOPHARMACOLOGY 2018; 219:152-160. [PMID: 29126989 DOI: 10.1016/j.jep.2017.11.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Revised: 11/02/2017] [Accepted: 11/05/2017] [Indexed: 06/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Rubia cordifolia is a common traditional Chinese medicine that promotes blood circulation and eliminates blood stasis, and has been used to cure diseases related to blood stasis syndrome (BSS) clinically for many years. It has been previously demonstrated that anti-thrombosis and pro-angiogenesis can improve BSS. However, the anti-thrombotic and pro-angiogenic activities of Rubia cordifolia have not been well investigated. AIM OF STUDY To determine the potential anti-thrombotic and pro-angiogenic activities of Rubia cordifolia and to elucidate the underlying mechanisms. In addition, the major chemical constituents of Rubia cordifolia extract (QC) were qualitatively analysed by UPLC-Q-TOF/MS to explore the association between pharmacological activity and chemical constituents. MATERIAL AND METHODS The QC samples were composed of a 95% ethanol extract and an aqueous extract following extraction using 95% ethanol. UPLC-Q-TOF/MS was used to analyse the major chemical constituents of QC. For the anti-thrombotic experiment of QC, a phenylhydrazine (PHZ)-induced AB strain zebrafish thrombosis model was used. The zebrafish larvae were stained using O-dianisidine, and the heart and caudal vein of the zebrafish were observed and imaged with a fluorescence microscope. The staining intensity of erythrocytes in the heart (SI) of each group and the morphology of thrombus in the caudal vein were used to assess the anti-thrombotic effect of QC. For the pro-angiogenic assay of QC, the intersegmental blood vessel (ISV) insufficiency model of Tg(fli-1: EGFP)y1 transgenic zebrafish (Flik zebrafish), which was induced by the VEGF receptor tyrosine kinase inhibitor II (VRI), was used. The morphology of the intact ISVs and defective ISVs was observed to evaluate the pro-angiogenic activity of QC. The mechanism involved in promoting angiogenesis was studied with real-time PCR. RESULTS A total of 12 components in QC were identified based on standard compounds and references, including nine anthraquinones and three naphthoquinones. After treatment with QC, the PHZ-induced thrombosis in AB strain zebrafish larvae decreased to a certain degree, which we believe was related to its dosages, and the therapeutic effect within the 50-200 µg/mL QC treatment groups was especially prominent (P < 0.01, P < 0.001) compared to that in the PHZ model group. Similarly, QC also recovered the loss of the ISVs, which was induced by VRI in Flik zebrafish larvae, which have a certain dose-effect relationship. The pro-angiogenic activity of QC was also conspicuous (P < 0.01, P < 0.001) compared to that of the VRI model group. The following real-time PCR assay proved that QC significantly restored the VRI-induced downregulation of vWF, VEGF-A, kdrl, and flt-1 in Flik zebrafish (P < 0.05, P < 0.01, P < 0.001). CONCLUSIONS A total of 12 compounds from QC were analysed by UPLC-Q-TOF/MS. The data of the pharmacological experiments demonstrated that QC presented anti-thrombotic and pro-angiogenic activities in zebrafish, and the principal active components were likely anthraquinones and naphthoquinones. Thus, the current study provided a theoretical basis for the clinical use of Rubia cordifolia as a traditional Chinese medicine in promoting blood circulation and eliminating stasis.
Collapse
Affiliation(s)
- Yi Chen
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Xianlin Road 138#, Nanjing 210023, China
| | - Pei-Dong Chen
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Xianlin Road 138#, Nanjing 210023, China
| | - Bei-Hua Bao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Xianlin Road 138#, Nanjing 210023, China
| | - Ming-Qiu Shan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Xianlin Road 138#, Nanjing 210023, China
| | - Kai-Cheng Zhang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Xianlin Road 138#, Nanjing 210023, China
| | - Fang-Fang Cheng
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Xianlin Road 138#, Nanjing 210023, China
| | - Yu-Dan Cao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Xianlin Road 138#, Nanjing 210023, China
| | - Li Zhang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Xianlin Road 138#, Nanjing 210023, China
| | - An-Wei Ding
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Xianlin Road 138#, Nanjing 210023, China.
| |
Collapse
|
45
|
Delshad E, Yousefi M, Sasannezhad P, Rakhshandeh H, Ayati Z. Medical uses of Carthamus tinctorius L. (Safflower): a comprehensive review from Traditional Medicine to Modern Medicine. Electron Physician 2018; 10:6672-6681. [PMID: 29881530 PMCID: PMC5984022 DOI: 10.19082/6672] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 03/30/2018] [Indexed: 01/08/2023] Open
Abstract
Background Carthamus tinctorius L., known as Kafesheh (Persian) and safflower (English) is vastly utilized in Traditional Medicine for various medical conditions, namely dysmenorrhea, amenorrhea, postpartum abdominal pain and mass, trauma and pain of joints. It is largely used for flavoring and coloring purposes among the local population. Recent reviews have addressed the uses of the plant in various ethnomedical systems. Objective This review was an update to provide a summary on the botanical features, uses in Iranian folklore and modern medical applications of safflower. Methods A main database containing important early published texts written in Persian, together with electronic papers was established on ethnopharmacology and modern pharmacology of C. tinctorius. Literature review was performed on the years from 1937 to 2016 in Web of Science, PubMed, Scientific Information Database, Google Scholar, and Scopus for the terms "Kafesheh", "safflower", "Carthamus tinctorius", and so forth. Results Safflower is an indispensable element of Iranian folklore medicine, with a variety of applications due to laxative effects. Also, it was recommended as treatment for rheumatism and paralysis, vitiligo and black spots, psoriasis, mouth ulcers, phlegm humor, poisoning, numb limbs, melancholy humor, and the like. According to the modern pharmacological and clinical examinations, safflower provides promising opportunities for the amelioration of myocardial ischemia, coagulation, thrombosis, inflammation, toxicity, cancer, and so forth. However, there have been some reports on its undesirable effects on male and female fertility. Most of these beneficial therapeutic effects were correlated to hydroxysafflor yellow A. Conclusion More attention should be drawn to the lack of a thorough phytochemical investigation. The potential implications of safflower based on Persian traditional medicine, such as the treatment of rheumatism and paralysis, vitiligo and black spots, psoriasis, mouth ulcers, phlegm humor, poisoning, numb limbs, and melancholy humor warrant further consideration.
Collapse
Affiliation(s)
- Elahe Delshad
- PhD Student, Department of Persian Medicine, School of Persian and Complementary Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahdi Yousefi
- PhD of Health Economics, Assistant Professor, Department of Persian Medicine, School of Persian and Complementary Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Payam Sasannezhad
- Neurologist, Assistant Professor, Department of Neurology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hasan Rakhshandeh
- Pharm.D, Assistant Professor, Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Ayati
- PhD Student, Department of Traditional Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
46
|
Zhang Y, Kang A, Deng H, Shi L, Su S, Yu L, Xie T, Shan J, Wen H, Chi Y, Han S, Su R, Song Y, Chen X, Shaikh AB. Simultaneous determination of sulfur compounds from the sulfur pathway in rat plasma by liquid chromatography tandem mass spectrometry: application to the study of the effect of Shao Fu Zhu Yu decoction. Anal Bioanal Chem 2018; 410:3743-3755. [PMID: 29632971 DOI: 10.1007/s00216-018-1038-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 03/17/2018] [Accepted: 03/20/2018] [Indexed: 02/07/2023]
Abstract
A sensitive, accurate, and time-saving approach was developed for the simultaneous quantification of eight sulfur compounds in the sulfur pathway, which could reflect the status of an organism, including oxidative stress, signal transduction, enzyme reaction, and so on. In order to overcome the instability of highly reactive sulfhydryl compounds, N-ethylmaleimide derivatization was adopted to effectively protect sulfhydryl-containing samples. Using isotope-labeled glutathione (GSH-13C2, 15N), the validated method was demonstrated to offer satisfactory linearity, accuracy, and precision. Separation was done by UHPLC, using a BEH amide column. Accordingly, 0.1% formic acid acetonitrile was selected as the precipitant. A tandem mass spectrometer was coupled to the chromatographic system and afforded a detection limit of 0.2 ng/mL. Good linearity was maintained over a wide concentration range (r2 > 0.994), and the accuracy was in the range of 86.6-114% for all the studied compounds. The precision, expressed in RSD%, ranged from 1.1% to 9.4% as intraday variability and less than 13% as interday precision for all of the analytes. The approach was applied to study the potential therapeutic mechanism of a well-known traditional Chinese medicine, Shao Fu Zhu Yu decoction. The results suggested that Shao Fu Zhu Yu decoction might protect against oxidative damage by increasing the concentrations of sulfhydryl compounds. Graphical abstract An approach to quantitatively determining sulfur compounds in the sulfur pathway simultaneously wasestablished and applied to the study of the effect of Shao Fu Zhu Yu decoction.
Collapse
Affiliation(s)
- Yue Zhang
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, 210023, Jiangsu, China
- Section in Pharmaceutical Analysis, School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, 210023, Jiangsu, China
| | - An Kang
- Section in Pharmaceutical Analysis, School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, 210023, Jiangsu, China
| | - Haishan Deng
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, 210023, Jiangsu, China.
- Section in Pharmaceutical Analysis, School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, 210023, Jiangsu, China.
| | - Le Shi
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, 210023, Jiangsu, China
| | - Shulan Su
- Jiangsu Key Laboratory for TCM Formulae Research, School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, 210023, Jiangsu, China
| | - Li Yu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, 210023, Jiangsu, China
| | - Tong Xie
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, 210023, Jiangsu, China
| | - Jinjun Shan
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, 210023, Jiangsu, China.
| | - Hongmei Wen
- Section in Pharmaceutical Analysis, School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, 210023, Jiangsu, China
| | - Yumei Chi
- Section in Pharmaceutical Analysis, School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, 210023, Jiangsu, China
| | - Shuying Han
- Section in Pharmaceutical Analysis, School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, 210023, Jiangsu, China
| | - Ruilin Su
- Section in Pharmaceutical Analysis, School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, 210023, Jiangsu, China
| | - Yilin Song
- Section in Pharmaceutical Analysis, School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, 210023, Jiangsu, China
| | - Xi Chen
- Section in Pharmaceutical Analysis, School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, 210023, Jiangsu, China
| | - Armaan Basheer Shaikh
- Jurong Country Garden School, 2 Qiuzhi Road, Jurong Economic Development Zone, Zhenjiang, 212426, Jiangsu, China
| |
Collapse
|
47
|
Liu H, Su WW, Long CF, Zhang WJ, Li PB, Wu Z, Liao YY, Zeng X, Chen TB, Zheng YY, Yan ZH, Bi C, Yao HL. An experimental model for hypertensive crises emergencies: Long-term high-fat diet followed by acute vasoconstriction stress on spontaneously hypertensive rats. Exp Biol Med (Maywood) 2018; 243:481-495. [PMID: 29444597 PMCID: PMC5882032 DOI: 10.1177/1535370218759270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 01/15/2018] [Indexed: 11/16/2022] Open
Abstract
Currently, the prevention and treatment of hypertensive crises especially when it occurs with serious adverse outcomes have led to worldwide controversy. Despite of clinical possibilities of multiple agents, clinical failures still occur frequently. Therefore, early evaluations and observations of different therapies on appropriate animals should be emphasized. In the present study, an animal model for hypertensive crises emergencies was firstly established and experimentally testified. Five-month-male spontaneously hypertensive rat was consecutively fed with 60%-Kcal fat diet for four, six, and eight weeks with body weight and blood pressure monitored every two weeks, and then followed by an acute vasoconstriction stress of 5-min ice-bath treatment in the 4-h time interval of two adrenaline injections (0.8 mg/kg). Forty-four biochemical parameters were detected, covering hepatic and renal function, blood glucose and lipid levels, myocardial enzymes and energy metabolisms, blood coagulative and anti-coagulative system, oxidative stress and anti-inflammatory cytokine, blood viscosity, and RAAS system. Six tissues including heart, brain, liver, kidney, coronary arteries, and mesenteries were removed for pathological observations with hematoxylin-eosin staining. As a result, multi-organ dysfunctions in the heart, brain, liver, kidney, vascular endothelium, and blood system were testified in the modeling rats at weeks 6 and 8. In conclusion, severe consequences of this animal model were highly similar to those in hypertensive crises emergencies, which could be further utilized in the early intervention of hypertensive crises emergencies including the possible risk factors control and efficient therapies assessment. Impact statement In the late 90s, numerous reports predicted that 1-2% of hypertensive individuals would undergo hypertensive crises (HPC) and figures reached as high as 7% when no antihypertensive therapies were administrated. Currently, clinical failures appear frequently due to the improper or excessive medication regimen instead of the illness itself. Therefore, early evaluations and observations of HPC on appropriate animal models ahead of patients should be discussed and emphasized more widely. In the present study, an appropriate animal model for HPC emergencies was firstly established, in which the consequences of long-term high-fat diet feeding followed by an acute vasoconstriction stress on the spontaneously hypertensive rats were experimentally testified. The proposed model would have a wide application prospects in early intervention of HPC emergencies including the controls of possible risk factors and assessments of efficient therapies.
Collapse
Affiliation(s)
- Hong Liu
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-evaluation of Post-marketed TCM, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Wei-Wei Su
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-evaluation of Post-marketed TCM, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Chao-Feng Long
- Guangdong Zhongsheng Pharmaceutical Co., Ltd, Dongguan 523325, P.R. China
| | - Wei-Jian Zhang
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-evaluation of Post-marketed TCM, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Pei-Bo Li
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-evaluation of Post-marketed TCM, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Zhong Wu
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-evaluation of Post-marketed TCM, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Yin-Yin Liao
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-evaluation of Post-marketed TCM, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Xuan Zeng
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-evaluation of Post-marketed TCM, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Tao-Bin Chen
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-evaluation of Post-marketed TCM, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Yu-Ying Zheng
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-evaluation of Post-marketed TCM, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Zeng-Hao Yan
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-evaluation of Post-marketed TCM, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Cong Bi
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-evaluation of Post-marketed TCM, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Hong-Liang Yao
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-evaluation of Post-marketed TCM, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P.R. China
| |
Collapse
|
48
|
Feng WW, Zhang Y, Tang JF, Zhang CE, Dong Q, Li RY, Xiao XH, Peng C, Dong XP, Yan D. Combination of chemical fingerprinting with bioassay, a preferable approach for quality control of Safflower Injection. Anal Chim Acta 2018; 1003:56-63. [DOI: 10.1016/j.aca.2017.11.069] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 10/23/2017] [Accepted: 11/27/2017] [Indexed: 10/18/2022]
|
49
|
Park CH, Lee AY, Kim JH, Seong SH, Jang GY, Cho EJ, Choi JS, Kwon J, Kim YO, Lee SW, Yokozawa T, Shin YS. Protective Effect of Safflower Seed on Cisplatin-Induced Renal Damage in Mice via Oxidative Stress and Apoptosis-Mediated Pathways. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2018; 46:157-174. [DOI: 10.1142/s0192415x1850009x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Cisplatin, a platinum chelate with potent antitumor activity against cancers of the testis, ovary, urinary bladder, prostate, and head and neck, has adverse effects on the kidney, bone marrow, and digestive organs, and its use is particularly limited by nephropathy as a side effect. In the present study, safflower seed extract was administered to a mouse model of cisplatin-induced acute renal failure to investigate its activity. Cisplatin (20[Formula: see text]mg/kg body weight) was administered by intraperitoneal injection to mice that had received oral safflower seed extract (100 or 200[Formula: see text]mg/kg body weight per day) for the preceding 2 days. Three days after the cisplatin injection, serum and renal biochemical factors; oxidative stress, inflammation, and apoptosis-related protein expression; and histological findings were evaluated. Cisplatin-treated control mice showed body-weight, food intake and water intake loss, and increased kidney weight, whereas the administration of safflower seed extract attenuated these effects ([Formula: see text], [Formula: see text]). Moreover, safflower seed extract significantly decreased the renal functional parameters urea nitrogen and creatinine in the serum ([Formula: see text] and [Formula: see text], respectively). Safflower seed extract also significantly reduced the enhanced levels of reactive oxygen species in the kidney observed following cisplatin treatment, with significance. The expression of proteins related to the anti-oxidant defense system in the kidney was down-regulated following cisplatin treatment, but safflower seed extract significantly up-regulated the expression of the anti-oxidant enzyme catalase. Furthermore, safflower seed extract reduced the overexpression of phosphor (p)-p38, nuclear factor-kappa B p65, cyclooxygenase-2, inducible nitric oxide synthase, ATR, p-p53, Bax, and caspase 3 proteins, and mice treated with safflower seed extract exhibited less renal histological damage. These results provide important evidence that safflower seed extract exerts a pleiotropic effect on several oxidative stress- and apoptosis-related parameters and has a renoprotective effect in cisplatin-treated mice.
Collapse
Affiliation(s)
- Chan Hum Park
- Department of Medicinal Crop Research, National Institute of Horticultural and Herbal Science, Rural Development Administration, Eumseong 369-873, Republic of Korea
| | - Ah Young Lee
- Department of Food Science and Nutrition, Pusan National University, Busan 46241, Republic of Korea
| | - Ji Hyun Kim
- Department of Food Science and Nutrition, Pusan National University, Busan 46241, Republic of Korea
| | - Su Hui Seong
- Department of Food and Life Science, Pukyong National University, Busan 608-737, Republic of Korea
| | - Gwi Yeong Jang
- Department of Medicinal Crop Research, National Institute of Horticultural and Herbal Science, Rural Development Administration, Eumseong 369-873, Republic of Korea
| | - Eun Ju Cho
- Department of Food Science and Nutrition, Pusan National University, Busan 46241, Republic of Korea
| | - Jae Sue Choi
- Department of Food and Life Science, Pukyong National University, Busan 608-737, Republic of Korea
| | - Jungkee Kwon
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Chonbuk National University, Iksan 54596, Republic of Korea
| | - Young Ock Kim
- Department of Medicinal Crop Research, National Institute of Horticultural and Herbal Science, Rural Development Administration, Eumseong 369-873, Republic of Korea
| | - Sang Won Lee
- Department of Medicinal Crop Research, National Institute of Horticultural and Herbal Science, Rural Development Administration, Eumseong 369-873, Republic of Korea
| | - Takako Yokozawa
- Graduate School of Science and Engineering for Research, University of Toyama, Toyama 930-8555, Japan
| | - Yu Su Shin
- Department of Medicinal Crop Research, National Institute of Horticultural and Herbal Science, Rural Development Administration, Eumseong 369-873, Republic of Korea
| |
Collapse
|
50
|
Liao Y, Liang F, Liu H, Zheng Y, Li P, Peng W, Su W. Safflower yellow extract inhibits thrombus formation in mouse brain arteriole and exerts protective effects against hemorheology disorders in a rat model of blood stasis syndrome. BIOTECHNOL BIOTEC EQ 2018. [DOI: 10.1080/13102818.2018.1429310] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Yiqiu Liao
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-evaluation of Post-marketed TCM, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, PR China
| | - Fengyin Liang
- Department of Neurology, Guangdong Provincial Key laboratory for Diagnosis and Treatment of Major Neurological Diseases, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, PR China
| | - Hong Liu
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-evaluation of Post-marketed TCM, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, PR China
| | - Yuying Zheng
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-evaluation of Post-marketed TCM, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, PR China
| | - Peibo Li
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-evaluation of Post-marketed TCM, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, PR China
| | - Wei Peng
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-evaluation of Post-marketed TCM, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, PR China
| | - Weiwei Su
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-evaluation of Post-marketed TCM, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, PR China
| |
Collapse
|