1
|
Kgosiemang IKR, Lefojane R, Adegoke AM, Ogunyemi O, Mashele SS, Sekhoacha MP. Pharmacological Significance, Medicinal Use, and Toxicity of Extracted and Isolated Compounds from Euphorbia Species Found in Southern Africa: A Review. PLANTS (BASEL, SWITZERLAND) 2025; 14:469. [PMID: 39943031 PMCID: PMC11821031 DOI: 10.3390/plants14030469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/30/2024] [Accepted: 01/19/2025] [Indexed: 02/16/2025]
Abstract
This study documents the Euphorbiaceae family of plants in Southern Africa, with a focus on their traditional medicinal applications, pharmacological properties, toxicity, and active secondary metabolites. A review of the literature from scientific journals, books, dissertations, and conference papers spanning from 1962 to 2023 was conducted for 15 Euphorbia species. Recent findings indicate that specific compounds found in Euphorbia plants exhibit significant biological and pharmacological properties. However, the white sticky latex sap they contain is highly toxic, although it may also have medicinal applications. Phytochemical analyses have demonstrated that these plants exhibit beneficial effects, including antibacterial, antioxidant, antiproliferative, anticancer, anti-inflammatory, antiviral, antifungal, and anti-HIV activities. Key phytochemicals such as euphol, cycloartenol, tirucallol, and triterpenoids contribute to their therapeutic efficacy, along with various proteins like lectin and lysozyme. Despite some Euphorbiaceae species undergoing screening for medicinal compounds, many remain insufficiently examined, highlighting a critical gap in the research literature. Given their historical usage, further investigations are essential to evaluate the medicinal significance of Euphorbia species through detailed studies of isolated compounds and their pharmacokinetics and pharmacodynamics. This research will serve as a valuable resource for future inquiries into the benefits of lesser-studied Euphorbia species.
Collapse
Affiliation(s)
- Ipeleng Kopano Rosinah Kgosiemang
- Unit for Drug Discovery Research, Department of Health Sciences, Faculty of Health and Environmental Sciences, Central University of Technology, Bloemfontein 9301, South Africa; (I.K.R.K.); (R.L.); (S.S.M.)
| | - Relebohile Lefojane
- Unit for Drug Discovery Research, Department of Health Sciences, Faculty of Health and Environmental Sciences, Central University of Technology, Bloemfontein 9301, South Africa; (I.K.R.K.); (R.L.); (S.S.M.)
| | - Ayodeji Mathias Adegoke
- Department of Pharmacology, Faculty of Health Sciences, University of the Free State, Bloemfontein 9301, South Africa;
- Cancer Research and Molecular Biology Laboratories, College of Medicine, University of Ibadan, Ibadan 200005, Nigeria
| | - Oludare Ogunyemi
- Nutritional and Industrial Biochemistry Research Unit, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan 200005, Nigeria;
| | - Samson Sitheni Mashele
- Unit for Drug Discovery Research, Department of Health Sciences, Faculty of Health and Environmental Sciences, Central University of Technology, Bloemfontein 9301, South Africa; (I.K.R.K.); (R.L.); (S.S.M.)
| | - Mamello Patience Sekhoacha
- Department of Pharmacology, Faculty of Health Sciences, University of the Free State, Bloemfontein 9301, South Africa;
| |
Collapse
|
2
|
Liu B, Cao J, Liu L, Zeng M, Yu H, Wu H. Metabolomics-based investigation of the chemical composition changes in Mongolian medicinal plant Euphorbia pekinensis before and after processing with Chebulae Fructus. J Pharm Biomed Anal 2024; 238:115838. [PMID: 37948776 DOI: 10.1016/j.jpba.2023.115838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/30/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023]
Abstract
Euphorbia pekinensis (EP), known for its diuretic properties, is clinically utilized for treating conditions such as edema and malignant tumors. However, in its raw form, Euphorbia pekinensis is toxic, and oral administration of this crude medicine can lead to gastrointestinal stimulation, resulting in abdominal pain and diarrhea. In Mongolian medicine's ethnomedicinal system, a distinctive processing method called "Chebulae Fructus processing" is employed. Chebulae Fructus is used to mitigate the toxicity of EP and alleviate its purgative effects. Nevertheless, the detoxification mechanism associated with this processing method remains unexplored. It is hypothesized that processing with Chebulae Fructus may alter the chemical composition of EP, and the residual components of Chebulae Fructus within processed Chinese medicine might exhibit pharmacological antagonistic effects, thereby achieving the purpose of processing and reducing toxicity. To investigate this further, a combination of UPLC-QTOF-MS-based metabolomics technology and multivariate statistical analysis was employed to analyze and compare the chemical composition of raw and processed EP. Differential variables contributing to group separation were identified based on specific criteria, including VIP (Variable Importance in Projection) values of ≥ 1 in PLS-DA models, p-values < 0.05, and fold changes (FC) > 1.2 or < 0.8. The resulting differentially expressed features were then identified through database matching, literature review, or manual annotation. In total, 47 components were identified from the PEP samples in both positive and negative ionization modes, primarily belonging to flavonoids, terpenoids, organic acids, glycosides, and fatty acids. Among the raw EP group and PEP S4 group, 10 differential compounds were identified. Notably, one toxic terpene and one phenylpropanoid from EP were downregulated, while two bioactive components from Chebulae Fructus were upregulated in the processed group. The possible conversion reactions of these two processing Q-markers were also elucidated. The characteristic processing with Chebulae Fructus resulted in a change in the composition of this Mongolian medicine EP. Furthermore, this study provides a scientific foundation for optimizing the processing technology of EP and offers insights into the processing of other ethnomedicines with toxic properties.
Collapse
Affiliation(s)
- Bingbing Liu
- College of Pharmacy, Nanjing University of Chinese Medicine, Qixia District, Xianlin Road No. 138, Nanjing 210023, China; Jiangsu Key Laboratory of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Qixia District, Xianlin Road No. 138, Nanjing 210023, China; Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Qixia District, Xianlin Road No. 138, Nanjing 210023, China; National Base of State Ministry of Education for Inheritance of Chinese Medicine Processing Technology, Nanjing University of Chinese Medicine, Qixia District, Xianlin Road No. 138, Nanjing 210023, China.
| | - Jie Cao
- College of Pharmacy, Nanjing University of Chinese Medicine, Qixia District, Xianlin Road No. 138, Nanjing 210023, China
| | - Lu Liu
- College of Pharmacy, Nanjing University of Chinese Medicine, Qixia District, Xianlin Road No. 138, Nanjing 210023, China
| | - Min Zeng
- College of Pharmacy, Nanjing University of Chinese Medicine, Qixia District, Xianlin Road No. 138, Nanjing 210023, China
| | - Hongli Yu
- College of Pharmacy, Nanjing University of Chinese Medicine, Qixia District, Xianlin Road No. 138, Nanjing 210023, China; Jiangsu Key Laboratory of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Qixia District, Xianlin Road No. 138, Nanjing 210023, China; Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Qixia District, Xianlin Road No. 138, Nanjing 210023, China; National Base of State Ministry of Education for Inheritance of Chinese Medicine Processing Technology, Nanjing University of Chinese Medicine, Qixia District, Xianlin Road No. 138, Nanjing 210023, China.
| | - Hao Wu
- College of Pharmacy, Nanjing University of Chinese Medicine, Qixia District, Xianlin Road No. 138, Nanjing 210023, China; Jiangsu Key Laboratory of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Qixia District, Xianlin Road No. 138, Nanjing 210023, China; Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Qixia District, Xianlin Road No. 138, Nanjing 210023, China; National Base of State Ministry of Education for Inheritance of Chinese Medicine Processing Technology, Nanjing University of Chinese Medicine, Qixia District, Xianlin Road No. 138, Nanjing 210023, China.
| |
Collapse
|
3
|
de Souza LS, Luz Tosta C, de Oliveira Borlot JRP, Varricchio MCBN, Kitagawa RR, Filgueiras PR, Kuster RM. Chemical profile and cytotoxic evaluation of aerial parts of Euphorbia tirucalli L. on gastric adenocarcinoma (AGS cells). Nat Prod Res 2023; 37:4267-4273. [PMID: 36788415 DOI: 10.1080/14786419.2023.2179623] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 02/05/2023] [Indexed: 02/16/2023]
Abstract
Ethanol extract from the aerial parts of Euphorbia tirucalli L. as well as the latex of the plant suspended in water are used by the Brazilian population for the treatment of various diseases, including cancer. The purposes of this study were to determine if the ethanol extract is effective as cytotoxic agent against gastric adenocarcinoma cells (AGS) and its chemical composition by GC-MS, ESI-(-)-FT-ICR MS and (-)-ESI-LTQ-MS/MS. The results were compared with that of latex previously described by us. Hexane and aqueous fractions showed higher cytotoxicity on AGS cells. Nine triterpene compounds were detected by GC-MS in hexane fraction, including euphol and friedelin, while ellagic acid was identified as main phenolic compound in aqueous extract. Therefore, the greater cytotoxic activity of the ethanol extract of the aerial parts of Euphorbia tirucalli for gastric cancer, when compared to latex, seems to originate from the antiproliferative effects of ellagic acid and triterpenes.
Collapse
Affiliation(s)
| | - Cristina Luz Tosta
- Department of Chemistry, Federal University of Espírito Santo, Vitória-ES, Brazil
| | | | | | | | | | | |
Collapse
|
4
|
Zhou M, Tan W, Hasimu H, Liu J, Gu Z, Zhao J. Euphorbium total triterpenes improve Freund's complete adjuvant-induced arthritis through PI3K/AKT/Bax and NF-κB/NLRP3 signaling pathways. JOURNAL OF ETHNOPHARMACOLOGY 2023; 306:116146. [PMID: 36610673 DOI: 10.1016/j.jep.2023.116146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/23/2022] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Euphorbium is the resinous secretion of Euphorbia resinifera Berg. According to the record, Euphorbium was first used by Roman doctors to treat the emperor's joint pain. In China, it is applied in folk medicine to treat damp-cold or mucous diseases, such as arthralgia and ascites, etc. This herb is used for rheumatoid arthritis and skin tumors in the folklore of northeastern Brazil. Triterpenes are mainly characteristic constituents of Euphorbium, and possibly possess anti-rheumatoid arthritis. AIM OF THE STUDY To explore the preventive effect of Euphorbium total triterpenes (TTE) on Freund's complete adjuvant (FCA) induced arthritis in rats and its mechanism. MATERIAL AND METHODS TTE was extracted and isolated from Euphorbium, and its components were analyzed by HPLC. The safety of TTE was evaluated by an acute toxicity test in mice. Arthritis was induced in rats by injecting 0.2 mL FCA into the right hind paw toe, except for the control group, which was given the same volume of physiological saline. Tripterygium Glycosides (TG, 7.5 mg/kg) and TTE (32, 64 and 128 mg/kg) were administered by gavage for 30 days. Body weights, paw swelling, and arthritic scores were measured during the experiment process. After 30 days, blood and joints were harvested to determine various indicators of arthritis. RESULTS The contents of euphol and euphorbol in TTE were 47.03% and 18.77% respectively, and the maximal feasible dose of TTE in mice is 12 g/kg. The experimental results showed that arthritis indicators in rats deteriorated after FCA inducement compared with the control group. After treatment with TTE, the swelling degree and histopathological change of the hind paws in rats were significantly improved as well as arthritic score; the serum TNF-α, CRP, IL-1β, IL-6, IL-18 and RF levels in rats were significantly reduced; The expression of PI3K, AKT, P-AKT, Bcl-2, NF-κB, NLRP3 and Pro-caspase-1 protein in joint tissue were down-regulated, and the expression of Bax protein was up-regulated. CONCLUSION The results suggested that TTE possessed anti-arthritis effects, and its mechanism may be related to its anti-inflammatory and immunomodulatory properties, as well as regulation of PI3K/AKT/Bax and NF-κB/NLRP3 signaling pathway.
Collapse
Affiliation(s)
- Maojie Zhou
- School of Pharmacy, Xinjiang Medical University, Urumqi, 830011, China.
| | - Wei Tan
- School of Pharmacy, Xinjiang Medical University, Urumqi, 830011, China; Xinjiang Institute of Materia Medica, Key Laboratory for Uighur Medicine, Urumqi, 830004, China.
| | - Hamulati Hasimu
- Xinjiang Institute of Materia Medica, Key Laboratory for Uighur Medicine, Urumqi, 830004, China.
| | - Jing Liu
- The Eighth Affiliated Hospital of Xinjiang Medical University, Urumqi, 830013, China.
| | - Zhengyi Gu
- School of Pharmacy, Xinjiang Medical University, Urumqi, 830011, China; Xinjiang Institute of Materia Medica, Key Laboratory for Uighur Medicine, Urumqi, 830004, China.
| | - Jun Zhao
- School of Pharmacy, Xinjiang Medical University, Urumqi, 830011, China; Xinjiang Institute of Materia Medica, Key Laboratory for Uighur Medicine, Urumqi, 830004, China.
| |
Collapse
|
5
|
Zhao M, Yang Y, Nian Q, Shen C, Xiao X, Liao W, Zheng Q, Zhang G, Chen N, Gong D, Tang J, Wen Y, Zeng J. Phytochemicals and mitochondria: Therapeutic allies against gastric cancer. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 110:154608. [PMID: 36586205 DOI: 10.1016/j.phymed.2022.154608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 12/09/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Mitochondria are the energy factories of cells with the ability to modulate the cell cycle, cellular differentiation, signal transduction, growth, and apoptosis. Existing drugs targeting mitochondria in cancer treatment have disadvantages of drug resistance and side effects. Phytochemicals, which are widely found in plants, are bioactive compounds that could facilitate the development of new drugs for gastric cancer. Studies have shown that some phytochemicals can suppress the development of gastric cancer. METHODS We searched for data from PubMed, China National Knowledge Infrastructure, Web of Science, and Embase databases from initial establishment to December 2021 to review the mechanism by which phytochemicals suppress gastric cancer cell growth by modulating mitochondrial function. Phytochemicals were classified and summarized by their mechanisms of action. RESULTS Phytochemicals can interfere with mitochondria through several mechanisms to reach the goal of promoting apoptosis in gastric cancer cells. Some phytochemicals, e.g., daidzein and tetrandrine promoted cytochrome c spillover into the cytoplasm by modulating the members of the B-cell lymphoma-2 protein family and induced apoptotic body activity by activating the caspase protein family. Phytochemicals (e.g., celastrol and shikonin) could promote the accumulation of reactive oxygen species and reduce the mitochondrial membrane potential. Several phytochemicals (e.g., berberine and oleanolic acid) activated mitochondrial apoptotic submission via the phosphatidylinositol-3-kinase/Akt signaling pathway, thereby triggering apoptosis in gastric cancer cells. Several well-known phytochemicals that target mitochondria, including berberine, ginsenoside, and baicalein, showed the advantages of multiple targets, high efficacy, and fewer side effects. CONCLUSIONS Phytochemicals could target the mitochondria in the treatment of gastric cancer, providing potential directions and evidence for clinical translation. Drug discovery focused on phytochemicals has great potential to break barriers in cancer treatment.
Collapse
Affiliation(s)
- Maoyuan Zhao
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, PR China
| | - Yi Yang
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, PR China
| | - Qing Nian
- Department of Blood Transfusion, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, PR China
| | - Caifei Shen
- Department of Endoscopy center, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, PR China
| | - Xiaolin Xiao
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, PR China
| | - Wenhao Liao
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, PR China
| | - Qiao Zheng
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, PR China
| | - Gang Zhang
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, PR China
| | - Nianzhi Chen
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, PR China
| | - Daoyin Gong
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Jianyuan Tang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, PR China.
| | - Yueqiang Wen
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China.
| | - Jinhao Zeng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, PR China; Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, PR China.
| |
Collapse
|
6
|
Latansio de Oliveira T, Reder Custodio de Souza A, Dias Fontana P, Carvalho Carneiro M, Beltrame FL, de Messias Reason IJ, Bavia L. Bioactive Secondary Plant Metabolites from Euphorbia umbellata (PAX) BRUYNS (Euphorbiaceae). Chem Biodivers 2022; 19:e202200568. [PMID: 36259393 DOI: 10.1002/cbdv.202200568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 10/18/2022] [Indexed: 12/27/2022]
Abstract
The species Euphorbia umbellata has been used to treat inflammatory diseases, cancer, and ulcers. Biological activities reported in the literature, including antiproliferative, cytotoxic and anti-inflammatory, are attributed to the chemical constituents present in its composition as terpenes and polyphenolic compounds. The most recurrently verified metabolites in the Euphorbiaceae family plant species are terpenes, of which euphol is a major constituent with broadly reported cytotoxic, antinociceptive and anti-inflammatory effects; it frequently appears in various extracts obtained from the plant. Euphol has a documented inhibitory effect on neutrophil chemotaxis and can modulate the complement system. Since complement system activation is intimately intertwined with autoimmune and inflammatory diseases, tumor growth promotion and metastasis, plant metabolites from Euphorbia umbellata might influence the outcomes of inflammatory processes. We believe that this is the first review presenting the current knowledge on Euphorbia umbellata secondary metabolites and their biological activities.
Collapse
Affiliation(s)
- Thais Latansio de Oliveira
- Center for Biological and Health Sciences, UniCesumar, Desembargador Westphalen, 60, 84036-350, Paraná, Ponta Grossa, Brazil
| | - Ariádine Reder Custodio de Souza
- Department of Food Engineering, State University of Midwest, Alameda Élio Antonio Dalla Vecchia, 838, 85040-167, Paraná, Guarapuava, Brazil
| | - Pâmela Dias Fontana
- Department of Medical Pathology, Federal University of Paraná, 80060-900, Paraná, Curitiba, Brazil
| | - Milena Carvalho Carneiro
- Department of Immunology, University of São Paulo, Prof. Lineu Prestes Avenue, 05508-000, São Paulo, Brazil
| | - Flávio Luís Beltrame
- Department of Pharmaceutical Science, State University of Ponta Grossa, Avenue General Carlos Cavalcanti, 4748, 84030-900, Paraná, Ponta Grossa, Brazil
| | - Iara Jose de Messias Reason
- Department of Pharmaceutical Science, State University of Ponta Grossa, Avenue General Carlos Cavalcanti, 4748, 84030-900, Paraná, Ponta Grossa, Brazil
| | - Lorena Bavia
- Department of Cell Biology, Federal University of Paraná, Avenida Coronel Francisco H. dos Santos, 100, 19031, 81531-980, Paraná, Curitiba, Brazil
| |
Collapse
|
7
|
Gade IS, Chadeneau C, Tagne Simo R, Atchade ADT, Talla E, Seite P, Vannier B, Guillard J, Laurent S, Henoumont C, Nwabo Kamdje AH, Muller JM. A new flavonoid glycoside from Tapinanthus sp. (Loranthaceae) and evaluation of anticancer activity of extract and some isolated compounds. Nat Prod Res 2022; 36:4085-4093. [PMID: 34380347 DOI: 10.1080/14786419.2021.1963243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 07/20/2021] [Accepted: 07/24/2021] [Indexed: 01/04/2023]
Abstract
The present work describes the isolation and anticancer activity of Tapinanthus sp. which is a hemi parasitic plant harvested on Combretum glutinosum, the host plant. Phytochemical study afforded a new flavonoid glycoside, tapinantoside (1) isolated for the first time from natural source, alongside six known compounds (2-7). Structure of compounds were elucidated by extensive spectroscopic analyses including 1 D and 2 D NMR, mass spectrometry and by comparison with literature data. The anticancer activity of extract and some isolated compounds were evaluated on glioblastoma (U87MG, C6) and prostate (PC-3) cancer cells. The methanol leaves extract showed good anticancer activity against U87 (IC50 = 21.40 µg/mL) and PC-3 cells (IC50 = 10.26 µg/mL). Compound 3 powerfully inhibits the proliferation of C6 (IC50 = 38.84 µM) and PC-3 cells (IC50 = 21.33 µM), while its effect was moderated on U87MG cells. Compound 1 and 7 were not active on all tested cancer cell lines.
Collapse
Affiliation(s)
- Isaac Silvère Gade
- Department of Organic Chemistry, Faculty of Science, University of Yaounde I, Yaounde, Cameroon
- UFR Sciences Fondamentales et Appliquées, Team Récepteurs, Régulations, Cellules Tumoraales (2RCT)-EA 3842 CAPTuR, Pôle Biologie Santé-Bât. B36/B37, University of Poitiers, Poitiers, France
- Department of Chemistry, Faculty of Science, University of Ngaoundere, Ngaoundéré, Cameroon
| | - Corinne Chadeneau
- UFR Sciences Fondamentales et Appliquées, Team Récepteurs, Régulations, Cellules Tumoraales (2RCT)-EA 3842 CAPTuR, Pôle Biologie Santé-Bât. B36/B37, University of Poitiers, Poitiers, France
| | - Richard Tagne Simo
- Department of Biomedical Science, Faculty of Science, University of Ngaoundere, Ngaoundéré, Cameroon
| | | | - Emmanuel Talla
- Department of Chemistry, Faculty of Science, University of Ngaoundere, Ngaoundéré, Cameroon
| | - Paul Seite
- UFR Sciences Fondamentales et Appliquées, Team Récepteurs, Régulations, Cellules Tumoraales (2RCT)-EA 3842 CAPTuR, Pôle Biologie Santé-Bât. B36/B37, University of Poitiers, Poitiers, France
| | - Brigitte Vannier
- UFR Sciences Fondamentales et Appliquées, Team Récepteurs, Régulations, Cellules Tumoraales (2RCT)-EA 3842 CAPTuR, Pôle Biologie Santé-Bât. B36/B37, University of Poitiers, Poitiers, France
| | - Jérôme Guillard
- Institute of Chemistry IC2MP, University of Poitiers, Poitiers, France
| | - Sophie Laurent
- Laboratory of NMR and Molecular Imaging, Department of General, Organic Chemistry and Biomedical, University of Mons, Mons, Belgium
| | - Celine Henoumont
- Laboratory of NMR and Molecular Imaging, Department of General, Organic Chemistry and Biomedical, University of Mons, Mons, Belgium
| | - Armel Herve Nwabo Kamdje
- Department of Biomedical Science, Faculty of Science, University of Ngaoundere, Ngaoundéré, Cameroon
| | - Jean-Marc Muller
- UFR Sciences Fondamentales et Appliquées, Team Récepteurs, Régulations, Cellules Tumoraales (2RCT)-EA 3842 CAPTuR, Pôle Biologie Santé-Bât. B36/B37, University of Poitiers, Poitiers, France
| |
Collapse
|
8
|
Bonafé GA, Boschiero MN, Sodré AR, Ziegler JV, Rocha T, Ortega MM. Natural Plant Compounds: Does Caffeine, Dipotassium Glycyrrhizinate, Curcumin, and Euphol Play Roles as Antitumoral Compounds in Glioblastoma Cell Lines? Front Neurol 2022; 12:784330. [PMID: 35300350 PMCID: PMC8923017 DOI: 10.3389/fneur.2021.784330] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/29/2021] [Indexed: 12/21/2022] Open
Abstract
Many plant-derived compounds are shown to be promising antitumor therapeutic agents by enhancing apoptosis-related pathways and cell cycle impairment in tumor cells, including glioblastoma (GBM) cell lines. We aimed to review four natural plant compounds effective in GBM cell lines as caffeine, dipotassium glycyrrhizinate (DPG), curcumin, and euphol. Furthermore, antitumoral effect of these plant compounds on GBM cell lines through microRNAs (miRs) modulation was investigated. However, only DPG and curcumin were found as effective on miR modulation. Caffeine arrests GBM cell cycle in G0/G1 phase by cyclin-dependent kinases (CDK) complex inhibition and by decreasing BCL-2 and increasing FOXO1 expression levels causing greater apoptotic activity. Caffeine can also directly inhibit IP3R3, p38 phosphorylation, and rho-associated protein kinase (ROCK), decreasing cell invasion and migration capacity or indirectly by inhibiting the tissue inhibitor metalloproteinase-1 (TIMP-1) and integrins β1 and β3, leading to lower matrix metalloproteinases, MMP-2 and MMP-9. DPG presents antitumoral effect in GBM cells related to nuclear factor kappa B (NF-κB) pathway suppression by IRAK2 and TRAF6-mediating miR-16 and miR-146a, respectively. More recently, it was observed that DPG upregulated miR-4443 and miR-3620, responsible for post-transcriptional inhibition of the NF-κB pathway by CD209 and TNC modulation, respectively leading to lower MMP-9 and migration capacity. Curcumin is able to increase miR-223-3p, miR-133a-3p, miR-181a-5p, miR-34a-5p, miR-30c-5p, and miR-1290 expression leading to serine or threonine kinase (AKT) pathway impairment and also it decreases miR-27a-5p, miR-221-3p, miR-21-5p, miR-125b-5p, and miR-151-3p expression causing p53-BCL2 pathway inhibition and consequently, cellular apoptosis. Interestingly, lower expression of miR-27a by curcumin action enhanced the C/EBP homologous protein(CHOP) expression, leading to paraptosis. Curcumin can inhibit miR-21 expression and consequently activate apoptosis through caspase 3 and death receptor (DR) 4 and 5 activation. Autophagy is controlled by the LC-3 protein that interacts with Atg family for the LC3-II formation and autophagy activation. Euphol can enhance LC3-II levels directly in GBM cells or inhibits tumor invasion and migration through PDK1 modulation.
Collapse
Affiliation(s)
- Gabriel Alves Bonafé
- Laboratory of Cell and Molecular Tumor Biology and Bioactive Compounds, São Francisco University Medical School, São Paulo, Brazil
| | - Matheus Negri Boschiero
- Laboratory of Cell and Molecular Tumor Biology and Bioactive Compounds, São Francisco University Medical School, São Paulo, Brazil
| | - André Rodrigues Sodré
- Laboratory of Cell and Molecular Tumor Biology and Bioactive Compounds, São Francisco University Medical School, São Paulo, Brazil
| | | | - Thalita Rocha
- Postgraduate Program in Biomaterials and Regenerative Medicine, Faculty of Medical Sciences and Health, Pontifical Catholic University of São Paulo, São Paulo, Brazil
| | - Manoela Marques Ortega
- Laboratory of Cell and Molecular Tumor Biology and Bioactive Compounds, São Francisco University Medical School, São Paulo, Brazil
- *Correspondence: Manoela Marques Ortega
| |
Collapse
|
9
|
Pharmacological Activities and Characterization of Phenolic and Flavonoid Compounds in Methanolic Extract of Euphorbia cuneata Vahl Aerial Parts. Molecules 2021; 26:molecules26237345. [PMID: 34885927 PMCID: PMC8659211 DOI: 10.3390/molecules26237345] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/27/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022] Open
Abstract
Euphorbia cuneata Vahl. (Euphorbiaceae) is a plant used in folk medicine for the treatment of pain and inflammation, although the biological basis for these effects has not been thoroughly investigated. The goal of this study was to investigate the pharmacological properties and characterization of phenolic and flavonoid compounds present in the aerial parts of E. cuneata. E. cuneata aerial parts were tested for antioxidant activity (DPPH), antibacterial activity, cell viability and cytotoxic effects, and anti-inflammatory activity. Phenolic and flavonoid contents (HPLC), and volatile constituents (GC-MS) were also characterized. The methanol extract had the highest antioxidant activity, while the ether extract had the lowest. The antioxidant activity of E. cuneata extract increased from (21.11%) at a concentration of 10 µg/mL to (95.53%) at a concentration of 1280 µg/mL. S. aureus was the most sensitive organism with the highest zone of inhibition and lowest MIC, with acetone extract; whereas C. tropicalis was the most resistant, with the lowest inhibition zone. MTT assay revealed that the methanol extract of E. cuneata had significant cytotoxic effects on the A549, Caco-2, and MDA-MB-231 cell lines, respectively. Lower concentrations of methanolic extract gave anti-inflammatory activity, and those effects were compared with indomethacin as a positive control. Pyrogallol was the most abundant phenolic acid, followed by caffeic, p-coumaric, ferulic, syringic, and gallic acids, respectively. The 7-hydroxyflavone and rutin flavonoids were also found in the extract. GC-mass analysis showed that aerial parts of E. cuneata were rich in methyl 12-hydroxy-9-octadecenoate. The volatile components were also composed of considerable amounts of hexadecanoic acid, methyl ester, (9E,12E)-octadeca-9,12-dienoyl chloride, and methyl octadeca-9,12-dienoate as well as a little amount of hexanal dimethyl acetal. It can be concluded that methanolic extract of E. cuneata could be used as an available source of natural bioactive constituents with consequent health benefits.
Collapse
|
10
|
Chamkhi I, Benali T, Aanniz T, El Menyiy N, Guaouguaou FE, El Omari N, El-Shazly M, Zengin G, Bouyahya A. Plant-microbial interaction: The mechanism and the application of microbial elicitor induced secondary metabolites biosynthesis in medicinal plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 167:269-295. [PMID: 34391201 DOI: 10.1016/j.plaphy.2021.08.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/26/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
Plants and microbes interact with each other via different chemical signaling pathways. At the risophere level, the microbes can secrete molecules, called elicitors, which act on their receptors located in plant cells. The so-called elicitor molecules as well as their actions differ according to the mcirobes and induce different bilogical responses in plants such as the synthesis of secondary metabolites. Microbial compounds induced phenotype changes in plants are known as elicitors and signaling pathways which integrate elicitor's signals in plants are called elicitation. In this review, the impact of microbial elicitors on the synthesis and the secretion of secondary metabolites in plants was highlighted. Moreover, biological properties of these bioactive compounds were also highlighted and discussed. Indeed, several bacteria, fungi, and viruses release elicitors which bind to plant cell receptors and mediate signaling pathways involved in secondary metabolites synthesis. Different phytochemical classes such as terpenoids, phenolic acids and flavonoids were synthesized and/or increased in medicinal plants via the action of microbial elicitors. Moreover, these compounds compounds exhibit numerous biological activities and can therefore be explored in drugs discovery.
Collapse
Affiliation(s)
- Imane Chamkhi
- Centre GEOPAC, Laboratoire de Geobiodiversite et Patrimoine Naturel, Université Mohammed V de, Institut Scientifique Rabat, Maroc; University Mohammed VI Polytechnic, Agrobiosciences Program, Lot 660, Hay Moulay Rachid, Benguerir, Morocco.
| | - Taoufiq Benali
- Environment and Health Team, Polydisciplinary Faculty of Safi, Cadi Ayyad University, Safi, Morocco
| | - Tarik Aanniz
- Medical Biotechnology Laboratory (MedBiotech), Rabat Medical & Pharmacy School, Mohammed V University in Rabat, 6203 Rabat, Morocco
| | - Naoual El Menyiy
- Department of Biology, Faculty of Science, University Sidi Mohamed Ben Abdellah, Fez, Morocco
| | - Fatima-Ezzahrae Guaouguaou
- Mohammed V University in Rabat, LPCMIO, Materials Science Center (MSC), Ecole Normale Supérieure, Rabat, Morocco
| | - Nasreddine El Omari
- Laboratory of Histology, Embryology, and Cytogenetic, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco
| | - Mohamed El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo, 11566, Egypt; Department of Pharmaceutical Biology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, 11835, Egypt
| | - Gokhan Zengin
- Physiology and Biochemistry Research Laboratory, Department of Biology, Science Faculty, Selcuk University, Konya, Turkey.
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, and Genomic Center of Human Pathologies, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco.
| |
Collapse
|
11
|
ERK: A Double-Edged Sword in Cancer. ERK-Dependent Apoptosis as a Potential Therapeutic Strategy for Cancer. Cells 2021; 10:cells10102509. [PMID: 34685488 PMCID: PMC8533760 DOI: 10.3390/cells10102509] [Citation(s) in RCA: 184] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 12/12/2022] Open
Abstract
The RAF/MEK/ERK signaling pathway regulates diverse cellular processes as exemplified by cell proliferation, differentiation, motility, and survival. Activation of ERK1/2 generally promotes cell proliferation, and its deregulated activity is a hallmark of many cancers. Therefore, components and regulators of the ERK pathway are considered potential therapeutic targets for cancer, and inhibitors of this pathway, including some MEK and BRAF inhibitors, are already being used in the clinic. Notably, ERK1/2 kinases also have pro-apoptotic functions under certain conditions and enhanced ERK1/2 signaling can cause tumor cell death. Although the repertoire of the compounds which mediate ERK activation and apoptosis is expanding, and various anti-cancer compounds induce ERK activation while exerting their anti-proliferative effects, the mechanisms underlying ERK1/2-mediated cell death are still vague. Recent studies highlight the importance of dual-specificity phosphatases (DUSPs) in determining the pro- versus anti-apoptotic function of ERK in cancer. In this review, we will summarize the recent major findings in understanding the role of ERK in apoptosis, focusing on the major compounds mediating ERK-dependent apoptosis. Studies that further define the molecular targets of these compounds relevant to cell death will be essential to harnessing these compounds for developing effective cancer treatments.
Collapse
|
12
|
Qiao W, Feng W, Yang L, Li C, Qu X, Zhang Y. De Novo Biosynthesis of the Anticancer Compound Euphol in Saccharomyces cerevisiae. ACS Synth Biol 2021; 10:2351-2358. [PMID: 34445867 DOI: 10.1021/acssynbio.1c00257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Euphol is a euphane-type tetracyclic triterpene which is primarily found in the Euphorbia genus. Euphol has been renowned because of its great potential as a promising anticancer drug. Surprisingly, despite its diverse antitumor effects, the respective gene for euphol biosynthesis had not been identified until this study. In our experiments with Euphorbia tirucalli, euphol was detected predominantly in latex, the element that is often used for cancer treatments in Brazil. Two latex-specifically expressed oxidosqualene cyclases (OSCs) from E. tirucalli, designated as EtOSC5 and EtOSC6, were functionally characterized by expression in a lanosterol synthase knockout yeast strain GIL77. EtOSC5 produces euphol and its 20S-isomer tirucallol as two of the major products, while EtOSC6 produces taraxasterol and β-amyrin as the major products. These four compounds were also detected as the major triterpenes in the E. tirucalli latex, suggesting that EtOSC5 and EtOSC6 are the primary catalysts for the formation of E. tirucalli latex triterpene alcohols. Based on a model structure of EtOSC5 followed with site-mutagenesis experiments, the mechanism for the EtOSC5 activity was proposed. By applying state-of-the-art engineering techniques, the expression of EtOSC5 together with three other known precursor genes were chromosomally integrated into Saccharomyces cerevisiae. The resulting engineered yeast strain YS5E-1 produced 1.84 ± 0.17 mg/L of euphol in shake flasks.
Collapse
Affiliation(s)
- Weibo Qiao
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Wei Feng
- Shanghai Key Laboratory of Bio-Energy Crops, Research Center for Natural Products, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Lu Yang
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Changfu Li
- Shanghai Key Laboratory of Bio-Energy Crops, Research Center for Natural Products, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai, 200444, China
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Xudong Qu
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yansheng Zhang
- Shanghai Key Laboratory of Bio-Energy Crops, Research Center for Natural Products, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai, 200444, China
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| |
Collapse
|
13
|
de Oliveira TL, Bavia L, Fontana PD, Cruz LS, Paludo KS, Crisma AR, Messias-Reason IJ, Beltrame FL. Immunomodulatory and cytotoxic activities of euphol. Life Sci 2021; 280:119700. [PMID: 34111465 DOI: 10.1016/j.lfs.2021.119700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 05/26/2021] [Accepted: 06/03/2021] [Indexed: 12/01/2022]
Abstract
AIMS This study evaluated the effect of euphol isolated from Euphorbia umbellata (Pax) Bruyns latex on the activation of complement pathways (classical (CP), alternative (AP) and lectin (LP)), neutrophil chemotaxis, cytotoxic activity, cell morphology and death in HRT-18 and 3T3 cells lines. MAIN METHODS CP and AP were assessed using hemolytic assays and ELISA for LP; neutrophil chemotaxis was performed using Boyden's chamber; cytotoxicity was evaluated by neutral red methodology and characteristics of cell death were assessed by cell morphology with hematological staining. KEY FINDINGS Although euphol increased CP activation (38% at a concentration of 976.1 μM), an inhibitory effect on AP, LP (31% and 32% reduction in the concentration of 976.1 μM) and neutrophil chemotaxis (inhibit 84% of neutrophil migration at a concentration 292.9 μM) was observed. In addiction euphol was able to induce significant cell death in a time-dependent manner, presenting an IC50 of 70.8 μM and 39.2 μM for HRT-18 and 3T3 cell lines respectively and it was also observed apoptotic characteristics as cellular rounding, chromatin condensation and blebs formation for both cell lines. SIGNIFICANCE Euphol has a potential use for the treatment of complement-related inflammatory diseases due to its ability to downregulate inflammation. On the other hand, the controlled activation of CP can contribute to complement-dependent cytotoxicity in the context of monoclonal antibody-based cancer treatment.
Collapse
Affiliation(s)
- Thais Latansio de Oliveira
- Laboratory of Molecular Immunopathology, Clinical Hospital, Federal University of Paraná, Curitiba, Brazil.
| | - Lorena Bavia
- Laboratory of Molecular Immunopathology, Clinical Hospital, Federal University of Paraná, Curitiba, Brazil
| | - Pâmela Dias Fontana
- Laboratory of Molecular Immunopathology, Clinical Hospital, Federal University of Paraná, Curitiba, Brazil
| | - Luiza Stolz Cruz
- Laboratory of Phytotherapy, Phytotherapy Technology and Chemistry of Natural Products, State University of Ponta Grossa, Ponta Grossa, Brazil
| | - Katia Sabrina Paludo
- Multidisciplinary Laboratory of Biological Sciences and Health, State University of Ponta Grossa, Ponta Grossa, Brazil
| | | | - Iara Jose Messias-Reason
- Laboratory of Molecular Immunopathology, Clinical Hospital, Federal University of Paraná, Curitiba, Brazil
| | - Flávio Luís Beltrame
- Laboratory of Phytotherapy, Phytotherapy Technology and Chemistry of Natural Products, State University of Ponta Grossa, Ponta Grossa, Brazil
| |
Collapse
|
14
|
Xavier GM, Guimarães ALS, de Carvalho Fraga CA, Guimarães TA, de Souza MG, Jones KM, Farias LC. Pathways Related to the Anti-Cancer Effects of Metabolites Derived from Cerrado Biome Native Plants: An Update and Bioinformatics Analysis on Oral Squamous Cell Carcinoma. Protein Pept Lett 2020; 28:735-749. [PMID: 33302827 DOI: 10.2174/0929866527999201209221012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/14/2020] [Accepted: 10/20/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Oral cancer is a significant health problem worldwide. Oral squamous cell carcinoma (OSCC) is a malignant neoplasm of epithelial cells that mostly affects different anatomical sites in the head and neck and derives from the squamous epithelium or displays similar morphological characteristics. Generally, OSCC is often the end stage of several changes in the stratified squamous epithelium, which begin as epithelial dysplasia and progress by breaking the basement membrane and invading adjacent tissues. Several plant-based drugs with potent anti-cancer effects are considered inexpensive treatments with limited side effects for cancer and other diseases. OBJECTIVE The aim of this review is to explore whether some Brazilian plant extracts or constituents exhibit anti-tumorigenic activity or have a cytotoxic effect on human oral carcinoma cells. METHODS Briefly, OSCC and several metabolites derived from Brazilian plants (i.e., flavonoids, vinblastine, irinotecan, etoposide and paclitaxel) were used as keywords to search the literature on PubMed, GenBank and GeneCards. RESULTS The results showed that these five chemical compounds found in Cerrado Biome plants exhibit anti-neoplastic effects. Evaluating the compounds revealed that they play a main role in the regulation of cell proliferation. CONCLUSION Preserving and utilising the biodiversity of our planet, especially in unique ecosystems, such as the Cerrado Biome, may prove essential to preserving and promoting human health in modern contexts.
Collapse
|
15
|
Tesfaye S, Asres K, Lulekal E, Alebachew Y, Tewelde E, Kumarihamy M, Muhammad I. Ethiopian Medicinal Plants Traditionally Used for the Treatment of Cancer, Part 2: A Review on Cytotoxic, Antiproliferative, and Antitumor Phytochemicals, and Future Perspective. Molecules 2020; 25:molecules25174032. [PMID: 32899373 PMCID: PMC7504812 DOI: 10.3390/molecules25174032] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/27/2020] [Accepted: 09/02/2020] [Indexed: 12/24/2022] Open
Abstract
This review provides an overview on the active phytochemical constituents of medicinal plants that are traditionally used to manage cancer in Ethiopia. A total of 119 articles published between 1968 and 2020 have been reviewed, using scientific search engines such as ScienceDirect, PubMed, and Google Scholar. Twenty-seven medicinal plant species that belong to eighteen families are documented along with their botanical sources, potential active constituents, and in vitro and in vivo activities against various cancer cells. The review is compiled and discusses the potential anticancer, antiproliferative, and cytotoxic agents based on the types of secondary metabolites, such as terpenoids, phenolic compounds, alkaloids, steroids, and lignans. Among the anticancer secondary metabolites reported in this review, only few have been isolated from plants that are originated and collected in Ethiopia, and the majority of compounds are reported from plants belonging to different areas of the world. Thus, based on the available bioactivity reports, extensive and more elaborate ethnopharmacology-based bioassay-guided studies have to be conducted on selected traditionally claimed Ethiopian anticancer plants, which inherited from a unique and diverse landscape, with the aim of opening a way forward to conduct anticancer drug discovery program.
Collapse
Affiliation(s)
- Solomon Tesfaye
- School of Pharmacy, College of Health Sciences, Addis Ababa University, Churchill Street, 1176 Addis Ababa, Ethiopia; (K.A.); (Y.A.); (E.T.)
- Correspondence: (S.T.); (I.M.); Tel.: +251-930-518-816 (S.T.); +1-662-915-1051 (I.M.)
| | - Kaleab Asres
- School of Pharmacy, College of Health Sciences, Addis Ababa University, Churchill Street, 1176 Addis Ababa, Ethiopia; (K.A.); (Y.A.); (E.T.)
| | - Ermias Lulekal
- Department of Plant Biology and Biodiversity Management, College of Natural and Computational Sciences, The National Herbarium, Addis Ababa University, 34731 Addis Ababa, Ethiopia;
| | - Yonatan Alebachew
- School of Pharmacy, College of Health Sciences, Addis Ababa University, Churchill Street, 1176 Addis Ababa, Ethiopia; (K.A.); (Y.A.); (E.T.)
| | - Eyael Tewelde
- School of Pharmacy, College of Health Sciences, Addis Ababa University, Churchill Street, 1176 Addis Ababa, Ethiopia; (K.A.); (Y.A.); (E.T.)
| | - Mallika Kumarihamy
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, USA;
| | - Ilias Muhammad
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, USA;
- Correspondence: (S.T.); (I.M.); Tel.: +251-930-518-816 (S.T.); +1-662-915-1051 (I.M.)
| |
Collapse
|
16
|
Martins CG, Appel MH, Coutinho DSS, Soares IP, Fischer S, de Oliveira BC, Fachi MM, Pontarolo R, Bonatto SJR, Fernandes LC, Iagher F, de Souza LM. Consumption of latex from Euphorbia tirucalli L. promotes a reduction of tumor growth and cachexia, and immunomodulation in Walker 256 tumor-bearing rats. JOURNAL OF ETHNOPHARMACOLOGY 2020; 255:112722. [PMID: 32114165 DOI: 10.1016/j.jep.2020.112722] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/17/2020] [Accepted: 02/25/2020] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Euphorbia tirucalli L. is an African plant that grows well in Brazil. Individuals diagnosed with cancer frequently consume latex from E. tirucalli, dissolved in drinking water. In vitro studies confirm the antitumor potential of E. tirucalli latex, but in vivo evaluations are scarce. AIM OF THE STUDY To evaluate the effect of intake of an aqueous solution of E. tirucalli latex on tumor growth, cachexia, and immune response in Walker 256 tumor-bearing rats. MATERIALS AND METHODS Latex from E. tirucalli was collected and analyzed by LC-MS. Sixty male Wistar rats (age, 90 days) were randomly divided into four groups: C, control group (without tumor); W, Walker 256 tumor-bearing group; SW1, W animals but treated with 25 μL latex/mL water; and SW2, W animals but treated with 50 μL latex/mL water. Animals received 1 mL of latex solution once a day by gavage. After 15 d, animals were euthanized, tumor mass was determined, and glucose and triacylglycerol serum levels were measured by using commercial kits. Change in the body weight during tumor development was calculated, and proliferation capacity of tumor cells was assessed by the Alamar Blue assay. Phagocytosis and superoxide anion production by peritoneal macrophages and circulating neutrophils were analyzed by enzymatic and colorimetric assays. Data are analyzed by one-way ANOVA followed by Tukey's post-hoc test, with the significance level set at 5%. RESULTS The analysis of the latex revealed the presence of triterpenes. The ingestion of the latex aqueous solution promoted 40% and 60% reduction of the tumor mass in SW1 and SW2 groups, respectively (p < 0.05). The proliferative capacity of tumor cells from SW2 group was 76% lower than that of cells from W group (p < 0.0001). Animals treated with latex gained, on average, 20 g (SW1) and 8 g (SW2) weight. Glucose and triacylglycerol serum levels in SW1 and SW2 animals were similar to those in C group rats. Peritoneal macrophages and blood neutrophils from SW1 and SW2 animals produced 30-40% less superoxide anions than those from W group animals (p < 0.05), but neutrophils from SW2 group showed an increased phagocytic capacity (20%, vs. W group). CONCLUSIONS E. tirucalli latex, administered orally for 15 d, efficiently reduced tumor growth and cachexia in Walker 256 tumor-bearing rats. Decreased tumor cell proliferative capacity was one of the mechanisms involved in this effect. Further, the data suggest immunomodulatory properties of E. tirucalli latex. The results agree with folk data on the antitumor effect of latex ingestion, indicating that it may be useful as an adjunct in the treatment of cancer patients. For this, further in vivo studies in animal and human models need to be conducted.
Collapse
Affiliation(s)
- Carolina G Martins
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, PR, Brazil; Faculdades Pequeno Príncipe, Curitiba, PR, Brazil; Department of Physiology, Federal University of Paraná, Curitiba, PR, Brazil
| | - Marcia H Appel
- Department of Structural Biology, Molecular and Genetics, State University of Ponta Grossa, Ponta Grossa, PR, Brazil
| | - Débora S S Coutinho
- Department of Physiology, Federal University of Paraná, Curitiba, PR, Brazil
| | - Igor P Soares
- Department of Physiology, Federal University of Paraná, Curitiba, PR, Brazil
| | - Stefani Fischer
- Department of Physiology, Federal University of Paraná, Curitiba, PR, Brazil
| | - Bruna C de Oliveira
- Department of Physiology, Federal University of Paraná, Curitiba, PR, Brazil
| | - Mariana M Fachi
- Department of Pharmacy, Federal University of Paraná, Curitiba, PR, Brazil
| | - Roberto Pontarolo
- Department of Pharmacy, Federal University of Paraná, Curitiba, PR, Brazil
| | - Sandro J R Bonatto
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, PR, Brazil; Faculdades Pequeno Príncipe, Curitiba, PR, Brazil
| | | | - Fabíola Iagher
- Department of Physiology, Federal University of Paraná, Curitiba, PR, Brazil.
| | - Lauro M de Souza
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, PR, Brazil; Faculdades Pequeno Príncipe, Curitiba, PR, Brazil.
| |
Collapse
|
17
|
Gu Y, Zhu Z, Pei H, Xu D, Jiang Y, Zhang L, Xiao L. Long non-coding RNA NNT-AS1 promotes cholangiocarcinoma cells proliferation and epithelial-to-mesenchymal transition through down-regulating miR-203. Aging (Albany NY) 2020; 12:2333-2346. [PMID: 32019904 PMCID: PMC7041725 DOI: 10.18632/aging.102747] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 01/07/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Cholangiocarcinoma (CCA) is a serious malignant tumor. Long non-coding RNA NNT-AS1 (NNT-AS1) takes crucial roles in several tumors. So, we planned to research the roles and underlying mechanism of NNT-AS1 in CCA. RESULTS NNT-AS1 overexpression was appeared in CCA tissues and cell lines. Proliferation was promoted by NNT-AS1 overexpression in CCLP1 and TFK1 cells. Besides, NNT-AS1 overexpression reduced E-cadherin level and raised levels of N-cadherin, vimentin, Snail and Slug. However, the opposite trend was occurred by NNT-AS1 knockdown. Further, NNT-AS1 overexpression promoted phosphatidylinositol 3 kinase (PI3K)/AKT and extracellular signal-regulated kinase (ERK)1/2 pathways. MiR-203 was sponged by NNT-AS1 and miR-203 mimic reversed the above promoting effects of NNT-AS1. Additionally, insulin-like growth factor type 1 receptor (IGF1R) and zinc finger E-box binding homeobox 1 (ZEB1) were two potential targets of miR-203. CONCLUSION NNT-AS1 promoted proliferation, EMT and PI3K/AKT and ERK1/2 pathways in CCLP1 and TFK1 cells through down-regulating miR-203. METHODS CCLP1 and TFK1 cells were co-transfected with pcDNA-NNT-AS1 and miR-203 mimic. Bromodeoxyuridine (BrdU), flow cytometry, quantitative reverse transcription polymerase chain reaction (qRT-PCR) and western blot were employed to detect roles and mechanism of NNT-AS1. Interaction between NNT-AS1 and miR-203 or miR-203 and target genes was examined through luciferase activity experiment.
Collapse
Affiliation(s)
- Yulei Gu
- Emergency Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Zhiqiang Zhu
- Emergency Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Hui Pei
- Emergency Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Dong Xu
- Emergency Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yumin Jiang
- Emergency Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Luanluan Zhang
- Emergency Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Lili Xiao
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
18
|
Quan J, Dong D, Lun Y, Sun B, Sun H, Wang Q, Yuan G. Circular RNA circHIAT1 inhibits proliferation and epithelial-mesenchymal transition of gastric cancer cell lines through downregulation of miR-21. J Biochem Mol Toxicol 2020; 34:e22458. [PMID: 32020707 DOI: 10.1002/jbt.22458] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 01/06/2020] [Accepted: 01/21/2020] [Indexed: 12/11/2022]
Abstract
Gastric cancer (GC) is the third leading cause of cancer-related death worldwide. Circular RNA circHIAT1 has been proved to play an antitumor role. We aimed to explore the function and mechanism of circHIAT1 in GC. MKN28 and MKN45 cells were transfected with PLCDH-circHIAT1, miR-21 mimic, and relative control. Cell viability and apoptosis were examined through Cell Counting Kit-8 and flow cytometry, respectively. CircHIAT1 expression and other relative factors were tested through quantitative reverse transcription-polymerase chain reaction and Western blot analysis, respectively. Our findings demonstrated that circHIAT1 was lowly expressed in GC tissues. After transfection with PLCDH-circHIAT1 in MKN28 and MKN45 cells, cell viability was decreased, while the expression levels of p53 and p21 were raised, as well as apoptosis. Besides this, the epithelial-mesenchymal transition process was inhibited by PLCDH-circHIAT1 transfection. Mechanistically, miR-21 expression was upregulated in GC tissues and could be negatively regulated by circHIAT1. Further experiments showed that the addition of miR-21 mimic reversed the growth inhibition effects of circHIAT1 overexpression. Moreover, circHIAT1 inhibited the activation of phosphatase and tensin homolog/phosphatidylinositol 3 kinase/protein kinase B and extracellular signal-regulated kinase signal pathways via downregulating miR-21. CircHIAT1 functioned as a tumor inhibitor in GC cells through downregulating miR-21, and could be a novel target for GC treatment.
Collapse
Affiliation(s)
- Jingzi Quan
- Department of Gastroenterology, The Chinese People's Liberation Army Navy 971 Hospital, Qingdao, Shandong, China
| | - Dongfang Dong
- Department of Gastroenterology, The Chinese People's Liberation Army Navy 971 Hospital, Qingdao, Shandong, China
| | - Yue Lun
- Department of Gastroenterology, The Chinese People's Liberation Army Navy 971 Hospital, Qingdao, Shandong, China
| | - Bo Sun
- Department of Gastroenterology, The Chinese People's Liberation Army Navy 971 Hospital, Qingdao, Shandong, China
| | - Haiyuan Sun
- Department of Gastroenterology, The Chinese People's Liberation Army Navy 971 Hospital, Qingdao, Shandong, China
| | - Qunying Wang
- Department of Gastroenterology, The Chinese People's Liberation Army Navy 971 Hospital, Qingdao, Shandong, China
| | - Gang Yuan
- Department of Gastroenterology, The Chinese People's Liberation Army Navy 971 Hospital, Qingdao, Shandong, China
| |
Collapse
|
19
|
Brunetti RL, Da Paz DPA, Da Fonseca IIM, Nagamine MK, Mori CMC, Del Grande MP, Queiroz-Hazarbassanov N, Salles-Gomes COM, Dagli MLZ, Hernandez-Blazquez FJ. Inhibitory effects of Euphorbia tirucalli latex on murine B16/F10 melanoma cells and lung metastasis. Mol Clin Oncol 2019; 11:511-516. [PMID: 31620282 DOI: 10.3892/mco.2019.1916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 03/13/2019] [Indexed: 11/05/2022] Open
Abstract
Euphorbia tirucalli (E. tirucalli) is a tropical and subtropical plant that produces a latex which is used for several purposes. The components of E. tirucalli latex include triterpenes, diterpenes and steroids. The aim of the present study was to evaluate the effects of diluted E. tirucalli latex on murine B16/F10 melanoma cells and lung metastasis. For this purpose, an in vitro study was first performed, in which B16/F10 cells were treated with diluted (1/2 to 1/11,192) E. tirucalli latex. In a second study, B16/F10 melanoma cells were inoculated into the tail vein of mice to generate lung metastases; the mice then received 0.467 µg of latex diluted in 200 ml saline by gavage for 14 days. A significant decrease in B16/F10 cell viability was observed using the MTT assay at 24 and 48 h after treatment with E. tirucalli latex. In addition, a significant decrease in the volume fraction occupied by B16/F10 metastatic colonies in the lungs was observed in mice treated with E. tirucalli latex. These results confirm the antineoplastic effects of diluted E. tirucalli latex.
Collapse
Affiliation(s)
- Rafael Lanciani Brunetti
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-900, Brazil
| | - Diego Pinha Alves Da Paz
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-900, Brazil
| | | | - Márcia Kazumi Nagamine
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-900, Brazil
| | - Claudia Madalena Cabrera Mori
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-900, Brazil
| | - Murilo Penteado Del Grande
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-900, Brazil
| | - Nicolle Queiroz-Hazarbassanov
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-900, Brazil
| | | | - Maria Lucia Zaidan Dagli
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-900, Brazil
| | | |
Collapse
|
20
|
Liu Y, Fan D. Ginsenoside Rg5 induces G2/M phase arrest, apoptosis and autophagy via regulating ROS-mediated MAPK pathways against human gastric cancer. Biochem Pharmacol 2019; 168:285-304. [PMID: 31301277 DOI: 10.1016/j.bcp.2019.07.008] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 07/08/2019] [Indexed: 12/20/2022]
Abstract
Ginsenoside Rg5, a rare saponin belonging to the family of protopanaxadiol ginsenosides, has been demonstrated to have potential anti-tumor effects in various cancers. However, the effect of Rg5 on human gastric cancer and the underlying molecular mechanisms remain to be elucidated. In this study, Rg5 could suppress cell proliferation by causing G2/M phase arrest. Treatment with Rg5 could induce apoptosis through the extrinsic death receptor and intrinsic mitochondrial pathways. Autophagy induction was demonstrated by the formation of autophagosomes and autophagy-related proteins. Rg5-induced cell death was inhibited by the autophagy inhibitor 3-MA and apoptosis inhibitor Z-VAD-FMK. Moreover, the suppression of apoptosis weakened Rg5-induced autophagy, while the inhibition of autophagy attenuated Rg5-induced apoptosis. Further studies revealed that Rg5 induced ROS production and activated MAPK signaling pathways. The ROS scavenger NAC markedly diminished G2/M arrest, apoptosis, autophagy and activation of MAPK pathways induced by Rg5. The p38 inhibitor SB203580 or knockdown of p38 by siRNA clearly reversed Rg5-induced apoptosis and G2/M arrest. The JNK inhibitor SP600125 or knockdown of JNK by siRNA markedly attenuated Rg5-induced G2/M arrest, apoptosis and autophagy. The inhibition of ERK inhibitor U0126 or knockdown of ERK by siRNA clearly restored Rg5-induced apoptosis and autophagy. Finally, Rg5 significantly suppressed the growth of xenograft gastric tumors with fewer side effects. Overall, the evidence suggested that Rg5 is a novel and promising strategy for the treatment of gastric cancer owing to its high efficacy, multiple mechanisms and fewer side effects.
Collapse
Affiliation(s)
- Yannan Liu
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi 710069, China; Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi 710069, China; Biotech. & Biomed. Reserch Institute, Northwest University, Taibai North Road 229, Xi'an 710069 Shaanxi, China
| | - Daidi Fan
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi 710069, China; Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi 710069, China; Biotech. & Biomed. Reserch Institute, Northwest University, Taibai North Road 229, Xi'an 710069 Shaanxi, China.
| |
Collapse
|
21
|
Cortese K, Marconi S, D'Alesio C, Calzia D, Panfoli I, Tavella S, Aiello C, Pedrelli F, Bisio A, Castagnola P. The novel diterpene 7β-acetoxy-20-hydroxy-19,20-epoxyroyleanone from Salvia corrugata shows complex cytotoxic activities against human breast epithelial cells. Life Sci 2019; 232:116610. [PMID: 31254584 DOI: 10.1016/j.lfs.2019.116610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 06/25/2019] [Accepted: 06/26/2019] [Indexed: 12/13/2022]
Abstract
AIMS The aim of this study was the characterization of the in vitro cytotoxic properties of a recently isolated diterpene compound, 7β-acetoxy-20-hydroxy-19,20-epoxyroyleanone (compound 1), extracted from Salvia corrugata, versus human cell lines. MAIN METHODS We used as model study immortalized breast epithelial cells MCF10A and two ERBB2+ breast cancer (BCa) cell lines, SKBR-3 and BT474. Compound 1 was isolated by methanolic extraction from regenerated shoots of Salvia corrugata Vahl, and purified by high pressure liquid chromatography (HPLC). Flow cytometry (FCM) was employed for cell cycle, apoptosis and reactive oxygen species (ROS) analysis. Cell morphology was assessed by immunofluorescence and transmission electron microscopy (TEM). KEY FINDINGS Compound 1 inhibited cell survival of all breast cell lines. In particular, compound 1 promoted cell cycle arrest in the G0/G1 phase and apoptosis along with impairment of the mitochondrial function, which was reflected in a gross alteration of the mitochondrial network structure. Furthermore, we also detected a potent activation of the ERK1/2 kinase, which suggested the induction of reactive oxygen species (ROS). Partial rescue of survival obtained with n-acetylcysteine (NAC) when coadminstered with compound 1 further supported a contribution of ROS mediated mechanisms to the growth-arrest and proapoptotic activity of compound 1 in both BCa cell lines. ROS production was indeed confirmed in SKBR-3. SIGNIFICANCE Our findings show that compound 1 has a cytotoxic activity against both human normal and cancer cell lines derived from breast epithelia, which is mediated by ROS generation and mitochondrial damage.
Collapse
Affiliation(s)
- Katia Cortese
- DIMES, Department of Experimental Medicine, Human Anatomy, University of Genoa, Genoa, Italy.
| | - Silvia Marconi
- DIMES, Department of Experimental Medicine, Human Anatomy, University of Genoa, Genoa, Italy
| | - Carolina D'Alesio
- DiMI, Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy
| | - Daniela Calzia
- DIFAR, Department of Pharmacy, University of Genoa, Genoa, Italy
| | - Isabella Panfoli
- DIFAR, Department of Pharmacy, University of Genoa, Genoa, Italy
| | - Sara Tavella
- DIMES, Department of Experimental Medicine, Human Anatomy, University of Genoa, Genoa, Italy; Department of Integrated Oncological Therapies, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Cinzia Aiello
- Department of Integrated Oncological Therapies, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | | | - Angela Bisio
- DIFAR, Department of Pharmacy, University of Genoa, Genoa, Italy
| | - Patrizio Castagnola
- Department of Integrated Oncological Therapies, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| |
Collapse
|
22
|
de Souza LS, Puziol LC, Tosta CL, Bittencourt MLF, Ardisson JS, Kitagawa RR, Filgueiras PR, Kuster RM. Analytical methods to access the chemical composition of an Euphorbia tirucalli anticancer latex from traditional Brazilian medicine. JOURNAL OF ETHNOPHARMACOLOGY 2019; 237:255-265. [PMID: 30928500 DOI: 10.1016/j.jep.2019.03.041] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 03/11/2019] [Accepted: 03/16/2019] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Euphorbia tirucalli L. is widely used by Brazilian folk medicine, mainly for its anticancer activity. However, its commercialization was banned by The Brazilian National Sanitary Surveillance Agency (ANVISA) due to the presence of some compounds considered toxic, such as the diterpene esters. AIM OF THE STUDY Chemical and biological analyses were performed with the Brazilian Euphorbia tirucalli latex to support its wide traditional use in Brazil. MATERIAL AND METHODS Latex was collected by using two procedures, in a solution of dichloromethane: methanol (3:1, 100 mL) and in 100 mL of distilled water. The first procedure was concentrated as a crude extract and the second one was partitioned with hexane and dichloromethane. The partitions and crude extract were subjected to phytochemical analyses using three different methods: Fourier transform-ion cyclotron resonance mass spectrometry (FT-ICR MS) with electrospray ionization sources in negative mode (ESI(-)) as well as in tandem mass spectrometry ESI(-) MS/MS and Atmospheric Pressure Chemical Ionization in positive mode (APCI(+)), Gas Chromatography coupled Mass Spectrometry (GC-MS) and Nuclear Magnetic Resonance (NMR) (1H-NMR and 13C-NMR). The cytotoxic potential was evaluated using the crude extract in macrophages RAW 264.7 and Gastric Adenocarcinoma (AGS) cancer cells. The evaluation of immunomodulatory activity was made through the detection of Nitric Oxide (NO) and cytokines as Tumor necrosis factor α (TNF-α) and Interleukin-6 (IL-6). RESULTS GC-MS showed the presence of some esters of fatty acids, for instance myristic, palmitic, stearic, oleic and linoleic acid and, mainly, triterpenes such as euphol and tirucallol. With NMR, most of the signals were related to triterpenoids euphol and tirucallol. However, when the latex was analyzed with ESI(-) FT-ICR MS, a wide variety of molecules from different classes of natural products (fatty acids, diterpenes, triterpenes, steroids) were found. On the other hand, when APCI(+)FT-ICR MS was used, the ion M+. At ratio mass-charge (m/z) 426.38567, related to triterpenes euphol and tirucallol masses, presented the most intense peak, with a mass error of -0.11, indicating high accuracy. Diterpene esters from 4-deoxyphorbol and ingenol were identified only by ESI(-)FT-ICR MS and ESI(-)FT-ICR MS/MS. When evaluated biologically, the crude latex showed immunomodulatory activity, as it reduced the production of the pro-inflammatory cytokines TNF-α, IL-6 and NO, and the effect on NO reduction was more significant, obtaining in a similar result to the N(ω)-Nitro-L-Arginine Methyl Ester (L-NAME) standards, as well as significant cytotoxic activity with half inhibitory concentration (IC50) values of 69.43 ± 1.29 μg/mL against AGS without damaging healthy ones. CONCLUSION It was verified that the Brazilian Euphorbia tirucalli latex consists mainly of the triterpenes euphol and tirucallol, which may be the main cause of the anticancer activity attributed to the plant, but many other minor compounds could have been determined by the FT-ICR MS method, such as the diterpene esters. It has antitumor potential because it acts selectively against cancer cells and it also prevents the progression of tumors, because it carries an important immunomodulatory effect.
Collapse
Affiliation(s)
- Larissa Silva de Souza
- Laboratory of Chromatography, Department of Chemistry, Federal University of Espírito Santo, 29075-910, Vitória, ES, Brazil.
| | - Letícia C Puziol
- Laboratory of Chromatography, Department of Chemistry, Federal University of Espírito Santo, 29075-910, Vitória, ES, Brazil.
| | - Cristina Luz Tosta
- Laboratory of Chromatography, Department of Chemistry, Federal University of Espírito Santo, 29075-910, Vitória, ES, Brazil.
| | - Milena L F Bittencourt
- Graduate Program of Pharmaceutical Sciences, Health Sciences Center, Federal University of Espírito Santo, 29047-105, Vitória, ES, Brazil.
| | - Juliana Santa Ardisson
- Graduate Program of Pharmaceutical Sciences, Health Sciences Center, Federal University of Espírito Santo, 29047-105, Vitória, ES, Brazil.
| | - Rodrigo Rezende Kitagawa
- Graduate Program of Pharmaceutical Sciences, Health Sciences Center, Federal University of Espírito Santo, 29047-105, Vitória, ES, Brazil.
| | - Paulo Roberto Filgueiras
- Laboratory of Chromatography, Department of Chemistry, Federal University of Espírito Santo, 29075-910, Vitória, ES, Brazil.
| | - Ricardo Machado Kuster
- Laboratory of Chromatography, Department of Chemistry, Federal University of Espírito Santo, 29075-910, Vitória, ES, Brazil.
| |
Collapse
|
23
|
Zhang Z, Zhang HY, Zhang Y, Li H. Inactivation of the Ras/MAPK/PPARγ signaling axis alleviates diabetic mellitus-induced erectile dysfunction through suppression of corpus cavernosal endothelial cell apoptosis by inhibiting HMGCS2 expression. Endocrine 2019; 63:615-631. [PMID: 30460485 DOI: 10.1007/s12020-018-1810-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 10/30/2018] [Indexed: 01/30/2023]
Abstract
PURPOSE Diabetic mellitus-induced erectile dysfunction (DMED) represents a significant complication associated with diabetes mellitus (DM) that greatly affects human life quality. Various reports have highlighted the involvement of mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase 2 (HMGCS2) in the regulation of mitochondrial fatty acid oxidation, which has also been linked with DM. Through bioinformatics analysis, HMGCS2 was determined to be a novel target among DM patients suffering from erectile dysfunction (ED), and enriched in the Ras/ERK/PPAR signaling axis. Owing to the fact that the key mechanism HMGCS2 involved in DM remains largely unknown, we set out to investigate the role of the Ras/MAPK/PPARγ signaling axis and HMGCS2 in the corpus cavernosal endothelial cells (CCECs) of rats with DMED. METHODS Firstly, bioinformatics analysis was used to screen out differentially expressed genes in DMED. Then, to investigate the influence of the Ras/MAPK/PPARγ signaling axis and HMGCS2 on DMED, a rat model of DMED was established and injected with Simvastatin and si-Hmgcs2. The individual expression patterns of Ras, MAPK, PPARγ and HMGCS2 were determined by RT-qPCR, immunohistochemistry and western blot analysis methods. Afterwards, to investigate the mechanism of Ras/MAPK/PPARγ signaling axis and HMGCS2, CCECs were isolated from DMED rats and transfected with agonists and inhibitors of the Ras/MAPK/PPARγ signaling axis and siRNA of HMGCS2, with their respective functions in apoptosis and impairment of CCECs evaluated using TUNEL staining and flow cytometry. RESULTS Microarray analysis and KEGG pathway enrichment analysis revealed that Ras/ERK/PPAR signaling axis mediated HMGCS2 in DMED. Among the DMED rats, the Ras/MAPK/PPAR signaling axis was also activated while the expression of HMGCS2 was upregulated. The activation of Ras was determined to be capable of upregulating ERK expression which resulted in the inhibition of the transcription of PPARγ and subsequent upregulation of HMGCS2 expression. The inhibited activation of the Ras/ERK/PPAR signaling axis and silencing HMGCS2 were observed to provide an alleviatory effect on the injury of DMED while acting to inhibit the apoptosis of CCECs. CONCLUSION Collectively, the key findings suggested that suppression of the Ras/MAPK/PPARγ signaling axis could downregulate expression of HMGCS2, so as to alleviate DMED. This study defines the potential treatment for DMED through inhibition of the Ras/MAPK/PPARγ signaling axis and silencing HMGCS2.
Collapse
Affiliation(s)
- Zhuo Zhang
- Department of Urology, China-Japan Union Hospital of Jilin University, 130000, Changchun, P.R. China
| | - Hai-Yan Zhang
- Department of Gastrointestinal Surgery, China-Japan Union Hospital of Jilin University, 130000, Changchun, P.R. China
| | - Ying Zhang
- Department of Pathology, China-Japan Union Hospital of Jilin University, 130000, Changchun, P.R. China
| | - Hai Li
- Department of Urology, China-Japan Union Hospital of Jilin University, 130000, Changchun, P.R. China.
| |
Collapse
|
24
|
Interpretation of Euphorbia Kansui Stir-Fried with Vinegar Treating Malignant Ascites by a UPLC-Q-TOF/MS Based Rat Serum and Urine Metabolomics Strategy Coupled with Network Pharmacology. Molecules 2018; 23:molecules23123246. [PMID: 30544627 PMCID: PMC6322356 DOI: 10.3390/molecules23123246] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/04/2018] [Accepted: 12/05/2018] [Indexed: 12/12/2022] Open
Abstract
Euphorbia kansui stir-fried with vinegar (V-kansui) has promising biological activities toward treating malignant ascites with reduced toxicity compared to crude kansui. But the mechanism concerning promoting the excretion of ascites has not been systematically studied. The purpose of this paper was to investigate the possible mechanism of V-kansui in treating malignant ascites, including metabolic pathways and molecular mechanism using an integrated serum and urine metabolomics coupled with network pharmacology. Serum and urine samples of rats were collected and analyzed by ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS). A comparison with crude kansui was also made to demonstrate the feasibility of processing. Principle component analysis (PCA) and orthogonal partial least square discriminate analysis (OPLS-DA) were conducted to discriminate the groups, search important variables and reveal the possible pathways. A compound-target-metabolite network was finally constructed to identify the crucial targets to further understand the molecular mechanism. Sixteen significant metabolites contributing to the discrimination of model and control groups were tentatively screened out. They were mainly involved in the arachidonic acid metabolism, steroid hormone biosynthesis and primary bile acid to possibly reduce inflammatory and modulate the renin-angiotensin-aldosterone system to achieve treating malignant ascites. A bio-network starting from the compounds and ending in the metabolites was constructed to elucidate the molecular mechanism. HSP90AA1, ANXA2, PRDX6, PCNA, SOD2 and ALB were identified as the potential key targets that were responsible for the treatment of malignant ascites by the parameter combining the average shortest path length and betweenness centrality. The correlated 17 compounds were considered as the potential active ingredients in V-kansui. In addition, the metabolomics showed that the effect of V-kansui was almost in accordance with crude kansui. These results systematically revealed the mechanism of V-kansui against malignant ascites for the first time using metabolomics coupled with network pharmacology. V-kansui could be a promising safe and therapeutic medicine for the excretion of ascites.
Collapse
|
25
|
Valadão ALC, Pezzuto P, Silva VAO, Gonçalves BS, Rossi ÁD, da Cunha RD, Siani AC, Tostes JBDF, Trovó M, Damasco P, Gonçalves G, Reis RM, Aguiar RS, Bento CADM, Tanuri A. Reactivation of latent HIV-1 in vitro using an ethanolic extract from Euphorbia umbellata (Euphorbiaceae) latex. PLoS One 2018; 13:e0207664. [PMID: 30481211 PMCID: PMC6258530 DOI: 10.1371/journal.pone.0207664] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 11/05/2018] [Indexed: 01/14/2023] Open
Abstract
Euphorbia umbellata (E. umbellata) belongs to Euphorbiaceae family, popularly known as Janauba, and its latex contains a combination of phorbol esters with biological activities described to different cellular protein kinase C (PKC) isoforms. Here, we identified deoxi-phorbol esters present in E. umbellata latex alcoholic extract that are able to increase HIV transcription and reactivate virus from latency models. This activity is probably mediated by NF-kB activation followed by nuclear translocation and binding to the HIV LTR promoter. In addition, E. umbellata latex extract induced the production of pro inflammatory cytokines in vitro in human PBMC cultures. This latex extract also activates latent virus in human PBMCs isolated from HIV positive patients as well as latent SIV in non-human primate primary CD4+ T lymphocytes. Together, these results indicate that the phorbol esters present in E. umbellata latex are promising candidate compounds for future clinical trials for shock and kill therapies to promote HIV cure and eradication.
Collapse
Affiliation(s)
- Ana Luiza Chaves Valadão
- Laboratório de Virologia Molecular, Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Paula Pezzuto
- Laboratório de Virologia Molecular, Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Barbara Simonson Gonçalves
- Departamento de Microbiologia e Parasitologia, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Átila Duque Rossi
- Laboratório de Virologia Molecular, Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rodrigo Delvecchio da Cunha
- Laboratório de Virologia Molecular, Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Antonio Carlos Siani
- Departamento de Produtos Naturais, Instituto de Tecnologia em Fármacos, Fundação Oswaldo Cruz, Rio de Janeiro Brazil
| | | | - Marcelo Trovó
- Departamento de Botânica, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Paulo Damasco
- Departamento de Microbiologia e Parasitologia, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gabriel Gonçalves
- Laboratório de Virologia Molecular, Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rui Manuel Reis
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s–PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Renato Santana Aguiar
- Laboratório de Virologia Molecular, Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cleonice Alves de Melo Bento
- Departamento de Microbiologia e Parasitologia, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Amilcar Tanuri
- Laboratório de Virologia Molecular, Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
26
|
Ibrahim EH, Kilany M, Mostafa OMS, Shaker KH, Alshehri M, Alsyaad KM, Alshehri A, Khan KA, Qasim M, Kotb N, Alahmari AS, Ghramh HA, Dajem SM. TH1/TH2 chemokines/cytokines profile in rats treated with tetanus toxoid and Euphorbia tirucalli. Saudi J Biol Sci 2018; 26:1716-1723. [PMID: 31762649 PMCID: PMC6864399 DOI: 10.1016/j.sjbs.2018.08.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 08/05/2018] [Accepted: 08/07/2018] [Indexed: 01/17/2023] Open
Abstract
Natural products, including their purified materials, play a remarkable role in drug development. The Euphorbiaceae family, mainly Euphorbia tirucalli, is used in some traditional medicine, and has evidence that its latex comprises immunomodulatory properties and cytokine production. This study aimed to measure the in vivo production of chemokines (IL-1α, IL-1β, IL-12, and RANTES), TH1 cytokines (IFN-γ, TNF-α, GM-CSF, and IL-2) and TH2 cytokines (IL-4, IL-6, IL-10, and IL-13) in rats after treatments with ethanol latex extract of E. tirucalli. Vaccine treated and untreated rats were divided into seven groups to assess antimicrobial activities of the extracted components. After completion of the treatment schedule, blood was withdrawn and sera were collected. The results showed that the main component of the extract was a euphol compound. The extract showed antimicrobial activity and had the ability to modulate innate and adaptive immunity. Animals treated with extract for only 7 days before vaccination showed higher levels of antibody production. The extract showed antibacterial and antifungal activities. The extract could stimulate both adaptive and innate immunity. Pre-treatment with the extract increased immune responses in vaccinated animals, indicating the usefulness of the extract before immunization.
Collapse
Affiliation(s)
- Essam H Ibrahim
- Biology Department, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia.,Blood Products Quality Control and Research Department, National Organization for Research and Control of Biologicals, Cairo, Egypt
| | - Mona Kilany
- Biology Department, Faculty of Sciences and Arts, King Khalid University, Dhahran Al Janoub, Saudi Arabia.,Department of Microbiology, National Organization for Drug Control and Research (NODCAR), Cairo, Egypt
| | - Osama M S Mostafa
- Biology Department, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia.,Zoology Department, Faculty of Science, Ain Shams University, Abbassia 11566, Cairo, Egypt
| | - Kamel H Shaker
- Chemistry Department, College of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia.,Chemistry of Natural Compounds Department, Pharmaceutical Industrial Div, National Research Center, El-Behoos St., Dokki, Cairo, Egypt
| | - Mohammed Alshehri
- Biology Department, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Khalid M Alsyaad
- Biology Department, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Ali Alshehri
- Biology Department, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Khalid Ali Khan
- Biology Department, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia.,Unit of Bee Research and Honey Production, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Muhammad Qasim
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Nahla Kotb
- Blood Products Quality Control and Research Department, National Organization for Research and Control of Biologicals, Cairo, Egypt
| | - Abeer S Alahmari
- Biology Department, Girls Section, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | - Hamed A Ghramh
- Biology Department, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia.,Unit of Bee Research and Honey Production, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia.,Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Saad M Dajem
- Biology Department, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| |
Collapse
|
27
|
Cruz LS, de Oliveira TL, Kanunfre CC, Paludo KS, Minozzo BR, Prestes AP, Wang M, Fernandes D, Santos FAD, Manda VK, Khan SI, Ali Z, de Messias-Reason IJ, Avula B, Khan IA, Beltrame FL. Pharmacokinetics and cytotoxic study of euphol from Euphorbia umbellata (Bruyns) Pax latex. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 47:105-112. [PMID: 30166094 DOI: 10.1016/j.phymed.2018.04.055] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 03/20/2018] [Accepted: 04/29/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Medicinal plants are an important source to identify new active pharmaceutical compounds. Traditionally, the sap of Euphorbia umbellata is widely used to treat cancer and inflammatory conditions. These effects have been attributed to the presence of terpenes and phenolic compounds in the extracts of this plant. Euphol, a tetracyclic triterpene alcohol, is one of the major compounds present in Euphorbia species, and some biological activities have been attributed to this compound. PURPOSE This study aimed to evaluate the in vitro cytotoxicity of euphol against Jurkat, HL-60, K-562, B16F10, and HRT-18 cells lines, as well as the biological stability, distribution, metabolism properties in vitro, and the determination of the concentration of euphol in the plasma and liver of rats. METHODS The MTT reduction assay was used to evaluate the cytotoxicity of euphol against cancer cell lines, and the selectivity index, the morphology and cell cycle assays to evaluate the death mechanisms in K-562 and B16F10 lineages. UHPLC-MS was applied for the in vivo evaluation of the concentration of euphol in plasma and liver, and in vitro metabolic stability in human liver microsomes and S9 fraction, plasma protein binding, and stability in simulated gastric and intestinal fluids assays. CONCLUSIONS This study demonstrated that euphol exhibited cytotoxic effects against a variety of cancer cells lines, selectivity against leukemia and possibly, the mechanism involved is apoptosis. The evaluation of stability, distribution, and metabolism properties showed that euphol was unstable in gastric and intestinal fluids, presenting moderate plasma protein binding with two hours elimination half-life and possible phase II liver metabolism. All the results suggested that further studies could be developed to prove the viability of euphol as an anticancer agent.
Collapse
Affiliation(s)
- Luiza S Cruz
- Department of Pharmaceutical Sciences, State University of Ponta Grossa, Carlos Cavalcanti Avenue, 4748, Uvaranas, Ponta Grossa, Paraná 84030-900, Brazil
| | - Thais L de Oliveira
- Department of Medical Pathology, Federal University of Parana, General Carneiro Street, 460, Downtown, Curitiba, Paraná 80060-900, Brazil
| | - Carla C Kanunfre
- Department of Structural and Molecular Biology and Genetics, State University of Ponta Grossa, Carlos Cavalcanti Avenue, 4748, Uvaranas, Ponta Grossa, Paraná 84030-900, Brazil
| | - Katia S Paludo
- Department of Structural and Molecular Biology and Genetics, State University of Ponta Grossa, Carlos Cavalcanti Avenue, 4748, Uvaranas, Ponta Grossa, Paraná 84030-900, Brazil
| | - Bruno R Minozzo
- Department of Pharmaceutical Sciences, State University of Ponta Grossa, Carlos Cavalcanti Avenue, 4748, Uvaranas, Ponta Grossa, Paraná 84030-900, Brazil
| | - Ana P Prestes
- Department of Pharmaceutical Sciences, State University of Ponta Grossa, Carlos Cavalcanti Avenue, 4748, Uvaranas, Ponta Grossa, Paraná 84030-900, Brazil
| | - Mei Wang
- National Center for Natural Products Research, University of Mississippi, MS 38677, USA
| | - Daniel Fernandes
- Department of Pharmaceutical Sciences, State University of Ponta Grossa, Carlos Cavalcanti Avenue, 4748, Uvaranas, Ponta Grossa, Paraná 84030-900, Brazil
| | - Fábio A Dos Santos
- Department of Dendistry, State University of Ponta Grossa, Carlos Cavalcanti Avenue, 4748, Uvaranas, Ponta Grossa, Paraná 84030-900, Brazil
| | - Vamshi K Manda
- National Center for Natural Products Research, University of Mississippi, MS 38677, USA
| | - Shabana I Khan
- National Center for Natural Products Research, University of Mississippi, MS 38677, USA
| | - Zulfiqar Ali
- National Center for Natural Products Research, University of Mississippi, MS 38677, USA
| | - Iara J de Messias-Reason
- Department of Medical Pathology, Federal University of Parana, General Carneiro Street, 460, Downtown, Curitiba, Paraná 80060-900, Brazil
| | - Bharathi Avula
- National Center for Natural Products Research, University of Mississippi, MS 38677, USA
| | - Ikhlas A Khan
- National Center for Natural Products Research, University of Mississippi, MS 38677, USA
| | - Flávio L Beltrame
- Department of Pharmaceutical Sciences, State University of Ponta Grossa, Carlos Cavalcanti Avenue, 4748, Uvaranas, Ponta Grossa, Paraná 84030-900, Brazil.
| |
Collapse
|
28
|
Silva VAO, Rosa MN, Miranda-Gonçalves V, Costa AM, Tansini A, Evangelista AF, Martinho O, Carloni AC, Jones C, Lima JP, Pianowski LF, Reis RM. Euphol, a tetracyclic triterpene, from Euphorbia tirucalli induces autophagy and sensitizes temozolomide cytotoxicity on glioblastoma cells. Invest New Drugs 2018; 37:223-237. [DOI: 10.1007/s10637-018-0620-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 06/07/2018] [Indexed: 02/06/2023]
|
29
|
Silva VAO, Rosa MN, Tansini A, Oliveira RJS, Martinho O, Lima JP, Pianowski LF, Reis RM. In vitro screening of cytotoxic activity of euphol from Euphorbia tirucalli on a large panel of human cancer-derived cell lines. Exp Ther Med 2018; 16:557-566. [PMID: 30112023 PMCID: PMC6090420 DOI: 10.3892/etm.2018.6244] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 03/13/2018] [Indexed: 12/15/2022] Open
Abstract
A large number of classic antineoplastic agents are derived from plants. Euphorbia tirucalli L. (Euphorbiaceae) is a subtropical and tropical plant, used in Brazilian folk medicine against many diseases, including cancer, yet little is known about its true anticancer properties. The present study evaluated the antitumor effect of the tetracyclic triterpene alcohol, euphol, the main constituent of E. tirucalli in a panel of 73 human cancer lines from 15 tumor types. The biological effect of euphol in pancreatic cells was also assessed. The combination index was further used to explore euphol interactions with standard drugs. Euphol showed a cytotoxicity effect against several cancer cell lines (IC50 range, 1.41–38.89 µM), particularly in esophageal squamous cell (11.08 µM) and pancreatic carcinoma cells (6.84 µM), followed by prostate, melanoma, and colon cancer. Cytotoxicity effects were seen in all cancer cell lines, with more than half deemed highly sensitive. Euphol inhibited proliferation, motility and colony formation in pancreatic cancer cells. Importantly, euphol exhibited synergistic interactions with gemcitabine and paclitaxel in pancreatic and esophageal cell lines, respectively. To the best of our knowledge, this study constitutes the largest in vitro screening of euphol efficacy on cancer cell lines and revealed its in vitro anti-cancer properties, particularly in pancreatic and esophageal cell lines, suggesting that euphol, either as a single agent or in combination with conventional chemotherapy, is a potential anti-cancer drug.
Collapse
Affiliation(s)
| | - Marcela Nunes Rosa
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, SP 14784 400, Brazil
| | - Aline Tansini
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, SP 14784 400, Brazil
| | - Renato J S Oliveira
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, SP 14784 400, Brazil
| | - Olga Martinho
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, SP 14784 400, Brazil.,Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga 4710-057, Portugal.,ICVS/3B's PT Government Associate Laboratory, Braga/Guimarães 4806-909, Portugal
| | - João Paulo Lima
- Medical Oncology Department, AC Camargo Cancer Center, São Paulo, SP 01509-010, Brazil
| | - Luiz F Pianowski
- Kyolab Laboratório de Pesquisa Farmacêutica Ltda, Valinhos, SP 13273-105, Brazil
| | - Rui M Reis
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, SP 14784 400, Brazil.,Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga 4710-057, Portugal.,ICVS/3B's PT Government Associate Laboratory, Braga/Guimarães 4806-909, Portugal
| |
Collapse
|
30
|
Qiao W, Li C, Mosongo I, Liang Q, Liu M, Wang X. Comparative Transcriptome Analysis Identifies Putative Genes Involved in Steroid Biosynthesis in Euphorbia tirucalli. Genes (Basel) 2018; 9:E38. [PMID: 29342957 PMCID: PMC5793189 DOI: 10.3390/genes9010038] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 01/09/2018] [Accepted: 01/11/2018] [Indexed: 11/17/2022] Open
Abstract
Phytochemical analysis of different Euphorbia tirucalli tissues revealed a contrasting tissue-specificity for the biosynthesis of euphol and β-sitosterol, which represent the two pharmaceutically active steroids in E. tirucalli. To uncover the molecular mechanism underlying this tissue-specificity for phytochemicals, a comprehensive E. tirucalli transcriptome derived from its root, stem, leaf and latex was constructed, and a total of 91,619 unigenes were generated with 51.08% being successfully annotated against the non-redundant (Nr) protein database. A comparison of the transcriptome from different tissues discovered members of unigenes in the upstream steps of sterol backbone biosynthesis leading to this tissue-specific sterol biosynthesis. Among them, the putative oxidosqualene cyclase (OSC) encoding genes involved in euphol synthesis were notably identified, and their expressions were significantly up-regulated in the latex. In addition, genome-wide differentially expressed genes (DEGs) in the different E. tirucalli tissues were identified. The cluster analysis of those DEGs showed a unique expression pattern in the latex compared with other tissues. The DEGs identified in this study would enrich the insights of sterol biosynthesis and the regulation mechanism of this latex-specificity.
Collapse
Affiliation(s)
- Weibo Qiao
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Changfu Li
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China.
| | - Isidore Mosongo
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Qin Liang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Mengdi Liu
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xin Wang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China.
| |
Collapse
|
31
|
Apoptosis-inducing Effect of the Hexane Extracts from Three Native Iranian Euphorbia Plants. INTERNATIONAL JOURNAL OF CANCER MANAGEMENT 2017. [DOI: 10.5812/ijcm.8306] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
32
|
Attenuation of nociceptive pain and inflammatory disorders by total steroid and terpenoid fraction of Euphorbia tirucalli Linn root in experimental in vitro and in vivo model. Inflammopharmacology 2017; 26:235-250. [PMID: 29063488 DOI: 10.1007/s10787-017-0403-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 10/03/2017] [Indexed: 12/22/2022]
Abstract
The plant Euphorbia tirucalli Linn has been successfully used as a tribal folk medicine in India and Africa for the management of acute inflammatory, arthritic, nociceptive pain and asthmatic symptoms. The present study was conducted to assess the anti-inflammatory, analgesic, anti-asthmatic and anti-arthritic role of the total steroid and terpenoid rich fractions of the hydro-alcoholic extract of E. tirucalli root (STF-HAETR). STF-HAETR fraction demonstrated 71.25 ± 2.5 and 74.25 ± 5.1% protection against acetic acid-induced pain and central neuropathic pain at 75 and 100 mg/kg doses, respectively. It showed 96.97% protection against acute inflammation at 100 mg/kg with 1.6-fold better activity than the standard drug. The fraction exhibited such efficacy via inhibition of proinflammatory cytokines TNF-α, IFN-γ, by 61.12 and 65.18%, respectively, at 100 μg/mL. Inhibition of cyclooxygenase and Nitric oxide synthase in a dose-dependent manner affirms its analgesic and anti-inflammatory activity. The spectrophotometric analysis reveals that STF-HAETR induces ameliorative effect against heat-induced denaturation of Bovine serum albumin (BSA) and exhibits significant anti-proteinase activity. The plant fraction also demonstrated anti-asthmatic activity by displaying 62.45% protection against histamine induced bronchoconstriction or dyspnoea. Our findings suggest that STF-HAETR could be an effective safe therapeutic agent to treat nociceptive pain, acute inflammation, asthma, and arthritis which may authenticate its traditional use.
Collapse
|
33
|
Mali PY, Panchal SS. Euphorbia tirucalli L.: Review on morphology, medicinal uses, phytochemistry and pharmacological activities. Asian Pac J Trop Biomed 2017. [DOI: 10.1016/j.apjtb.2017.06.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
34
|
Fan ZM, Wang DY, Yang JM, Lin ZX, Lin YX, Yang AL, Fan H, Cao M, Yuan SY, Liu ZJ, Zhou X, Wang YH. Dalbergia odorifera extract promotes angiogenesis through upregulation of VEGFRs and PI3K/MAPK signaling pathways. JOURNAL OF ETHNOPHARMACOLOGY 2017; 204:132-141. [PMID: 28412217 DOI: 10.1016/j.jep.2017.04.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 03/21/2017] [Accepted: 04/07/2017] [Indexed: 06/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The heart wood of Dalbergia odorifera is a Chinese herbal medicine commonly used for the treatment of various ischemic diseases in Chinese medicine practice. AIM OF THE STUDY In this study, therapeutic angiogenesis effects of the Dalbergia odorifera extract (DOE) were investigated on transgenic zebrafish in vivo and human umbilical vein endothelial cells (HUVECs) in vitro. MATERIALS AND METHODS The pro-angiogenic effects of DOE on zebrafish were examined by subintestinal vessels (SIVs) sprouting assay and intersegmental vessels (ISVs) injury assay. And the pro-angiogenic effects of DOE on HUVECs were examined by MTT, scratch assay, protein chip and western blot. RESULTS In the in vivo studies, we found that DOE was able to dose-dependently promote angiogenesis in zebrafish SIVs area. In addition, DOE could also restore the injury in zebrafish ISVs area and upregulate the reduced mRNA expression of VEGFRs including kdr, kdrl and flt-1 induced by VEGF receptor kinase inhibitor II (VRI). In the in vitro studies, we observed that DOE promoted the proliferation, migration of HUVECs and also restored the injury induced by VRI. Moreover, protein chip and western blot experiments showed the PI3K/MAPK cell proliferation/migration pathway were activated by DOE. CONCLUSIONS DOE has a therapeutic effects on angiogenesis, and its mechanism may be related to adjusting the VEGFRs mRNA and activation of PI3K/MAPK signaling pathway. These results suggest a strong potential for Dalbergia odorifera to be developed as an angiogenesis-promoting therapeutic.
Collapse
Affiliation(s)
- Zhu-Ming Fan
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, PR China
| | - Da-Ying Wang
- Central Hospital of Shanghai Xuhui District, Shanghai 200031, PR China
| | - Jian-Mei Yang
- Central Hospital of Shanghai Putuo District, Shanghai 200062, PR China
| | - Zhi-Xiu Lin
- Faculty of Science, School of Chinese Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Yun-Xiao Lin
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, PR China
| | - Ai-Lin Yang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, PR China
| | - Hua Fan
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, PR China
| | - Min Cao
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, PR China
| | - Su-Yun Yuan
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, PR China
| | - Zong-Jun Liu
- Central Hospital of Shanghai Xuhui District, Shanghai 200031, PR China
| | - Xin Zhou
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, PR China.
| | - You-Hua Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, PR China.
| |
Collapse
|
35
|
Li P, Zhou X, Sun W, Sheng W, Tu Y, Yu Y, Dong J, Ye B, Zheng Z, Lu M. Elemene Induces Apoptosis of Human Gastric Cancer Cell Line BGC-823 via Extracellular Signal-Regulated Kinase (ERK) 1/2 Signaling Pathway. Med Sci Monit 2017; 23:809-817. [PMID: 28196062 PMCID: PMC5321174 DOI: 10.12659/msm.903197] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Background Elemene is extracted from a traditional herbal medicine and is commonly used in the treatment of cancer in China. However, its effect on gastric cancer cells remains unknown. The goal of this study was to investigate its effect on human gastric cancer cells. Material/Methods Human gastric cancer BGC-823 cells and a tumor-bearing mouse model were employed to be divided into 4 groups: control group, elemene group, PD98059 group (an ERK 1/2 signaling pathway inhibitor), and the combined group (elemene plus PD98059). The tumor size, cell proliferation, expression of ERK 1/2 and phosphorylated ERK 1/2 (p-ERK 1/2), Bcl-2 mRNA, and Bax mRNA were measured. Moreover, cell apoptosis was detected and the apoptosis index was calculated. Results Elemene and PD98059 each significantly inhibited the proliferation of gastric cancer cells BGC-823, and their combination showed higher synergistic inhibitory effect (P<0.05). We also found increased expression levels of p-ERK l/2 protein and Bax mRNA, but reduced level of Bcl-2 mRNA expression (P<0.05). Elemene presented higher apoptosis rate in a dose-dependent manner (P<0.05). Furthermore, the injection of elemene decreased the weight of transplanted tumors. Conclusions Elemene can inhibit the proliferation and induce the apoptosis of gastric cancer cells associated with the ERK 1/2 signaling pathway and expression levels of Bax mRNA and Bcl-2 mRNA.
Collapse
Affiliation(s)
- Pihong Li
- Department of General Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China (mainland)
| | - Xiang Zhou
- Department of General Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China (mainland)
| | - Weijian Sun
- Department of General Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China (mainland)
| | - Weiwei Sheng
- Department of General Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China (mainland)
| | - Yangyang Tu
- Department of General Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China (mainland)
| | - Yaojun Yu
- Department of General Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China (mainland)
| | - Jianda Dong
- Department of General Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China (mainland)
| | - Bing Ye
- Department of General Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China (mainland)
| | - Zhiqiang Zheng
- Department of General Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China (mainland)
| | - Mingdong Lu
- Department of General Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China (mainland)
| |
Collapse
|
36
|
Barroso PR, Verli FD, Rocha RL, Lima NL, Avelar BAD, Melo GEBAD. Effect of crude latex from Euphorbia tirucalli on DMBA-induced carcinogenesis. Histol Histopathol 2017. [DOI: 10.7243/2055-091x-4-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
37
|
Dutra RC, Campos MM, Santos AR, Calixto JB. Medicinal plants in Brazil: Pharmacological studies, drug discovery, challenges and perspectives. Pharmacol Res 2016; 112:4-29. [DOI: 10.1016/j.phrs.2016.01.021] [Citation(s) in RCA: 138] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 01/17/2016] [Indexed: 12/16/2022]
|
38
|
CHEN XIAOMENG, ZHANG MENG, FAN PENGLI, QIN YUHUA, ZHAO HONGWEI. Chelerythrine chloride induces apoptosis in renal cancer HEK-293 and SW-839 cell lines. Oncol Lett 2016; 11:3917-3924. [PMID: 27313717 PMCID: PMC4888265 DOI: 10.3892/ol.2016.4520] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 12/23/2015] [Indexed: 11/06/2022] Open
Abstract
Previous studies have demonstrated that the benzo[c]phenanthridine alkaloid chelerythrine chloride (CC) has inhibitory effects on various tumors. However, the anticancer activity of CC and its underlying mechanisms have not been elucidated in renal cancer cells. The present study examined the effects of CC on growth inhibition and apoptosis of renal cancer cells in vitro and in vivo. Flow cytometry and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays revealed that CC markedly suppressed the growth of HEK-293 and human renal cancer SW-839 cells in a time- and dose-dependent manner. The xenograft mouse model, which was performed in nude mice, exhibited a reduced tumor growth following CC treatment. In addition, the present study revealed that CC significantly decreased the phosphorylation of extracellular signal-regulated kinase (ERK) and Akt, which was accompanied by upregulation of p53, B-cell lymphoma 2 (Bcl-2)-associated X protein, cleaved caspase-3 and cleaved poly (adenosine diphosphate-ribose) polymerase (PARP), and downregulation of Bcl-2, caspase-3 and PARP. Furthermore, the use of PD98059, a specific mitogen-activated protein kinase kinase inhibitor, potentiated the proapoptotic effects of CC, which indicated that CC may induce apoptosis in renal cancer cells partly via inhibition of ERK activity. Overall, the results of the present study demonstrated that CC may be developed as a potential anticancer treatment for patients with renal cancer.
Collapse
Affiliation(s)
- XIAO-MENG CHEN
- Department of Pharmacy, Henan Provincial People's Hospital, Zhengzhou, Henan 450000, P.R. China
| | - MENG ZHANG
- Department of Pharmacy, Henan Provincial People's Hospital, Zhengzhou, Henan 450000, P.R. China
| | - PENG-LI FAN
- Department of Pharmacy, Henan Provincial People's Hospital, Zhengzhou, Henan 450000, P.R. China
| | - YU-HUA QIN
- Department of Pharmacy, Henan Provincial People's Hospital, Zhengzhou, Henan 450000, P.R. China
| | - HONG-WEI ZHAO
- Department of Pharmacy, Henan Provincial People's Hospital, Zhengzhou, Henan 450000, P.R. China
| |
Collapse
|
39
|
Franco-Salla GB, Prates J, Cardin LT, Dos Santos ARD, Silva WAD, da Cunha BR, Tajara EH, Oliani SM, Rodrigues-Lisoni FC. Euphorbia tirucalli modulates gene expression in larynx squamous cell carcinoma. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 16:136. [PMID: 27209356 PMCID: PMC4875670 DOI: 10.1186/s12906-016-1115-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 05/13/2016] [Indexed: 01/19/2023]
Abstract
BACKGROUND Some plants had been used in the treatment of cancer and one of these has attracted scientific interest, the Euphorbia tirucalli (E. tirucalli), used in the treatment of asthma, ulcers, warts has active components with activities scientifically proven as antimutagenic, anti-inflammatory and anticancer. METHODS We evaluate the influence of the antitumoral fraction of the E. tirucalli latex in the larynx squamous cell carcinoma (Hep-2), on the morphology, cell proliferation and gene expression. The Hep-2 cells were cultivated in complete medium (MEM 10 %) and treated with E. tirucalli latex for 1, 3, 5 and 7 days. After statistically analyzing the proliferation of the tested cells, the cells were cultivated again for RNA extraction and the Rapid Subtractive Hybridization (RaSH) technique was used to identify genes with altered expression. The genes found using the RaSH technique were analyzed by Gene Ontology (GO) using Ingenuity Systems. RESULTS The five genes found to have differential expression were validated by real-time quantitative PCR. Though treatment with E. tirucalli latex did not change the cell morphology in comparison to control samples, but the cell growth was significantly decreased. The RaSH showed change in the expression of some genes, including ANXA1, TCEA1, NGFRAP1, ITPR1 and CD55, which are associated with inflammatory response, transcriptional regulation, apoptosis, calcium ion transport regulation and complement system, respectively. The E. tirucalli latex treatment down-regulated ITPR1 and up-regulated ANXA1 and CD55 genes, and was validated by real-time quantitative PCR. CONCLUSIONS The data indicate the involvement of E. tirucalli latex in the altered expression of genes involved in tumorigenic processes, which could potentially be applied as a therapeutic indicator of larynx cancer.
Collapse
Affiliation(s)
- Gabriela Bueno Franco-Salla
- Department of Biology, Institute of Biosciences, Letters and Science - IBILCE/UNESP, São José do Rio Preto, SP, Brazil
| | - Janesly Prates
- Department of Biology, Institute of Biosciences, Letters and Science - IBILCE/UNESP, São José do Rio Preto, SP, Brazil
| | - Laila Toniol Cardin
- Department of Biology, Institute of Biosciences, Letters and Science - IBILCE/UNESP, São José do Rio Preto, SP, Brazil
| | - Anemari Ramos Dinarte Dos Santos
- Department of Clinical Medical, Foundation Blood Center of Ribeirão Preto, Faculty of Medicine of Ribeirão Preto, University of São Paulo - FCFRP/USP, Ribeirão Preto, SP, Brazil
| | - Wilson Araújo da Silva
- Department of Clinical Medical, Foundation Blood Center of Ribeirão Preto, Faculty of Medicine of Ribeirão Preto, University of São Paulo - FCFRP/USP, Ribeirão Preto, SP, Brazil
| | - Bianca Rodrigues da Cunha
- Department of Molecular Biology, Faculty of Medicine of São José do Rio Preto - FAMERP, São José do Rio Preto, SP, Brazil
| | - Eloiza Helena Tajara
- Department of Molecular Biology, Faculty of Medicine of São José do Rio Preto - FAMERP, São José do Rio Preto, SP, Brazil
| | - Sonia Maria Oliani
- Department of Biology, Institute of Biosciences, Letters and Science - IBILCE/UNESP, São José do Rio Preto, SP, Brazil
| | - Flávia Cristina Rodrigues-Lisoni
- Department of Biology and Animal Science, Faculty of Engineering of Ilha Solteira - FEIS/UNESP, Av. Brasil, 56, CEP: 15385-000, Ilha Solteira, São Paulo, Brazil.
| |
Collapse
|
40
|
Luz LEC, Kanunfre CC, Paludo KS, da Silva Justo A, Petry VK, Lemes BM, Barison A, Nepel A, Wang M, Avula B, Khan IA, Beltrame FL. Cytotoxic biomonitored study of Euphorbia umbellata (Pax) Bruyns. JOURNAL OF ETHNOPHARMACOLOGY 2016; 183:29-37. [PMID: 26906968 DOI: 10.1016/j.jep.2016.02.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 01/30/2016] [Accepted: 02/19/2016] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Euphorbia umbellata latex (sap) has normally been used in folk medicine in southern Brazil to treat different types of cancers. AIM OF STUDY To carry out a biomonitored investigation of partitioned latex using in vitro assay, to identify the main mechanisms related with the action of the most active fraction as well as to develop a phytochemical study with this material. MATERIALS AND METHODS Biological screening was performed with hexane, chloroform, ethyl acetate and methanol fractions from the latex of E. umbellata using MTT, trypan blue, and neutral red assays to determine the cytotoxicity against HRT-18, HeLa and Jurkat cells and flow cytometry, DNA quantification, acridine orange and Hoechst 33342 staining to investigate mechanisms of action for the hexane extract. The phytochemical study of the hexane fraction was performed by chromatographic procedures and the substances were identified by NMR analysis. The isolated terpenes were evaluated using MTT to determine the cytotoxicity against Jurkat cells. RESULTS All the fractions presented concentration and time dependent cytotoxicity. The hexane fraction showed the highest cytotoxicity; whereas the Jurkat cell was the lineage with the highest sensitivity (IC50 1.87µg/mL). Fragmentation of DNA and apoptosis are two mechanisms related with the toxicity of hexane fraction. The hexane fraction arrested the cell cycle in the G0/G1 phase, and the selectivity index was 4.30. Phytochemical study of the hexane fraction led to isolation of euphol (main compound) and germanicol acetate. Both substances demonstrated some slight cytotoxic activity against Jurkat cells after 72h; however the activity was minimal compared to vincristine (anticancer standard drug). CONCLUSION The current research proves that the fractions of the latex from E. umbellata have a cytotoxic effect against three different cancer cells lines. The hexane fraction showed high in vitro cytotoxic effects against Jurkat cells demonstrating that the effect may be due to non-polar constituents. The two isolated terpenes (euphol and germanicol acetate) showed poor cytotoxic activity indicating that the anticancer properties of the extract may be caused by other substances present in the hexane fraction.
Collapse
Affiliation(s)
- Lívia Eidam Camargo Luz
- Department of Pharmaceutical Science, State University of Ponta Grossa, Ponta Grossa, PR, Brazil
| | | | - Katia Sabrina Paludo
- Department of General Biology, State University of Ponta Grossa, Ponta Grossa, PR, Brazil
| | - Aline da Silva Justo
- Department of Pharmaceutical Science, State University of Ponta Grossa, Ponta Grossa, PR, Brazil
| | - Victor Kubaski Petry
- Department of Pharmaceutical Science, State University of Ponta Grossa, Ponta Grossa, PR, Brazil
| | - Bruna Mikulis Lemes
- Department of Pharmaceutical Science, State University of Ponta Grossa, Ponta Grossa, PR, Brazil
| | - Andersson Barison
- Nuclear Magnetic Resonance Centre, Federal University of Paraná, Curitiba, PR, Brazil
| | - Angelita Nepel
- Nuclear Magnetic Resonance Centre, Federal University of Paraná, Curitiba, PR, Brazil
| | - Mei Wang
- National Centre for Natural Products Research, University of Mississippi, Oxford, MS, USA
| | - Bharathi Avula
- National Centre for Natural Products Research, University of Mississippi, Oxford, MS, USA
| | - Ikhlas Ahmad Khan
- National Centre for Natural Products Research, University of Mississippi, Oxford, MS, USA; Division of Pharmacognosy, Department of Biomolecular Sciences, School of Pharmacy, University of Mississippi, Oxford, MS, USA
| | - Flávio Luís Beltrame
- Department of Pharmaceutical Science, State University of Ponta Grossa, Ponta Grossa, PR, Brazil.
| |
Collapse
|
41
|
Machado MM, de Oliveira LFS, Zuravski L, de Souza RO, Fischer P, Duarte JA, Rocha MO, Güez CM, Boligon AA, Athayde ML. Evaluation of genotoxic and cytotoxic effects of hydroalcoholic extract of Euphorbia tirucalli (Euphorbiaceae) in cell cultures of human leukocytes. AN ACAD BRAS CIENC 2016; 88:17-28. [PMID: 26840004 DOI: 10.1590/0001-3765201520140076] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 07/13/2015] [Indexed: 11/21/2022] Open
Abstract
Euphorbia tirucalli (L.), commonly known as aveloz, has been indiscriminately used in popular medicine to treat various illnesses. However, some components can have devastating consequences. Injury to a cell's genetic material can cause mutations, cancer, and cell death. Our main goal in this work was to evaluate the genotoxic and cytotoxic effects of E. tirucalli extract on human leukocytes. For this purpose, we performed a phytochemical analysis to evaluate the plant's components. In the second step, we treated cultured human leukocytes with different concentrations of the dry extract of the plant and then evaluated the oxidative and genotoxic profiles of these leukocytes. We found that at 1% and 10% concentrations, the aveloz extract acted as a genotoxic agent that could damage DNA and increase oxidative damage. We conclude that despite its popular use, aveloz can act as a genotoxic agent, especially when it contains phorbol ester. Aveloz's indiscriminate use might actually promote tumors and therefore carry a considerable genetic risk for its users.
Collapse
Affiliation(s)
- Michel M Machado
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Pampa, Uruguaiana, RS, Brazil
| | - Luis F S de Oliveira
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Pampa, Uruguaiana, RS, Brazil
| | - Luisa Zuravski
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Pampa, Uruguaiana, RS, Brazil
| | - Raul O de Souza
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Pampa, Uruguaiana, RS, Brazil
| | - Paula Fischer
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Pampa, Uruguaiana, RS, Brazil
| | - Jonathaline A Duarte
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Pampa, Uruguaiana, RS, Brazil
| | - Manoelly O Rocha
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Pampa, Uruguaiana, RS, Brazil
| | - Camila M Güez
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Pampa, Uruguaiana, RS, Brazil
| | - Aline A Boligon
- Programa de Pós-Graduação em Ciências Farmacêuticas, Departamento de Farmácia Industrial, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Margareth L Athayde
- Programa de Pós-Graduação em Ciências Farmacêuticas, Departamento de Farmácia Industrial, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| |
Collapse
|
42
|
Munro B, Vuong QV, Chalmers AC, Goldsmith CD, Bowyer MC, Scarlett CJ. Phytochemical, Antioxidant and Anti-Cancer Properties of Euphorbia tirucalli Methanolic and Aqueous Extracts. Antioxidants (Basel) 2015; 4:647-61. [PMID: 26783950 PMCID: PMC4712938 DOI: 10.3390/antiox4040647] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 08/24/2015] [Accepted: 08/24/2015] [Indexed: 11/16/2022] Open
Abstract
Euphorbia tirucalli is a succulent shrub or small tree that is native to the African continent, however, it is widely cultivated across the globe due to its use in traditional medicines to treat ailments, ranging from scorpion stings to HIV. Recent studies have identified compounds present in the latex of the plant, including a range of bi- and triterpenoids that exhibit bioactivity, including anticancer activity. This study aimed to optimize water extraction conditions for high-yield total phenolic content recovery, to prepare methanol and aqueous extracts from the aerial sections of the plant, and to test the phytochemical, antioxidant, and anti-cancer properties of these extracts. Water extraction of total phenolic compounds (TPC) was optimized across a range of parameters including temperature, extraction time, and plant mass-to-solvent ratio. The water extract of the E. tirucalli powder was found to contain TPC of 34.01 mg GAE (gallic acid equivalents)/g, which was approximately half that of the methanol extract (77.33 mg GAE/g). The results of antioxidant assays showed a uniform trend, with the methanol extract's antioxidant reducing activity exceeding that of water extracts, typically by a factor of 2:1. Regression analysis of the antioxidant assays showed the strongest correlation between extract TPC and antioxidant activity for the ABTS (2,2-azino-bis(3-ethyl-benzothiazoline-6-sulfonic acid) and DPPH (2,2-diphenyl-1-picrylhydrazyl) methods. The methanol extract also showed greater growth inhibition capacity towards the MiaPaCa-2 pancreatic cancer cell line. These data suggest that further investigations are required to confirm the source of activity within the E. tirucalli leaf and stems for potential use in the nutraceutical and pharmaceutical industries.
Collapse
Affiliation(s)
- Benjamin Munro
- Pancreatic Cancer Research, Nutrition Food & Health Research Group, University of Newcastle, Ourimbah, NSW 2258 Australia.
- School of Environmental and Life Sciences, University of Newcastle, Ourimbah, NSW 2258, Australia.
| | - Quan V Vuong
- Pancreatic Cancer Research, Nutrition Food & Health Research Group, University of Newcastle, Ourimbah, NSW 2258 Australia.
- School of Environmental and Life Sciences, University of Newcastle, Ourimbah, NSW 2258, Australia.
| | - Anita C Chalmers
- School of Environmental and Life Sciences, University of Newcastle, Ourimbah, NSW 2258, Australia.
| | - Chloe D Goldsmith
- Pancreatic Cancer Research, Nutrition Food & Health Research Group, University of Newcastle, Ourimbah, NSW 2258 Australia.
- School of Environmental and Life Sciences, University of Newcastle, Ourimbah, NSW 2258, Australia.
| | - Michael C Bowyer
- Pancreatic Cancer Research, Nutrition Food & Health Research Group, University of Newcastle, Ourimbah, NSW 2258 Australia.
- School of Environmental and Life Sciences, University of Newcastle, Ourimbah, NSW 2258, Australia.
| | - Christopher J Scarlett
- Pancreatic Cancer Research, Nutrition Food & Health Research Group, University of Newcastle, Ourimbah, NSW 2258 Australia.
- School of Environmental and Life Sciences, University of Newcastle, Ourimbah, NSW 2258, Australia.
- Cancer Research Program, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia.
| |
Collapse
|
43
|
Euphol from Euphorbia tirucalli Negatively Modulates TGF-β Responsiveness via TGF-β Receptor Segregation inside Membrane Rafts. PLoS One 2015; 10:e0140249. [PMID: 26448474 PMCID: PMC4598150 DOI: 10.1371/journal.pone.0140249] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Accepted: 09/23/2015] [Indexed: 01/07/2023] Open
Abstract
Transforming growth factor-β (TGF-β) responsiveness in cultured cells can be modulated by TGF-β partitioning between lipid raft/caveolae- and clathrin-mediated endocytosis pathways. Lipid rafts are plasma membrane microdomains with an important role in cell survival signaling, and cholesterol is necessary for the lipid rafts’ structure and function. Euphol is a euphane-type triterpene alcohol that is structurally similar to cholesterol and has a wide range of pharmacological properties, including anti-inflammatory and anti-cancer effects. In the present study, euphol suppressed TGF-β signaling by inducing TGF-β receptor movement into lipid-raft microdomains and degrading TGF-β receptors.
Collapse
|
44
|
Hsieh WT, Lin HY, Chen JH, Lin WC, Kuo YH, Wood WG, Lu HF, Chung JG. Latex of Euphorbia antiquorum-induced S-phase arrest via active ATM kinase and MAPK pathways in human cervical cancer HeLa cells. ENVIRONMENTAL TOXICOLOGY 2015; 30:1205-1215. [PMID: 24706497 DOI: 10.1002/tox.21992] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 03/23/2014] [Indexed: 06/03/2023]
Abstract
Latex of Euphorbia antiquorum (EA) has demonstrated great chemotherapeutic potential for cancer. However, the mechanisms of anti-proliferation of EA on cancer cell remain to be further investigated. The purpose of this study was to explore the influence of EA in human cervical cancer cells. Here, the cell cycle distribution by flow cytometry was examined and the protein expression by the western blotting methods was analyzed. From the cytometric results it was shown that EA-induced S-phase arrest in a concentration manner both in human cervical cancer HeLa and CaSki cells. According the western blot results it was illustrated that EA could downregulate early cyclin E1-Cdk2; and cyclin A-Cdc2 provides a significant additional quantity of S-phase promotion, that in turn promoted the expression of p21(waf1/cip1) and p27(kip1) which were the inhibitors in the complex of cyclin A and Cdc2 that led to cell cycle arrest. Moreover, EA promoted the activation of ataxia telangiectasia mutated (ATM) and check-point kinase-2 (Chk2); however, it negatively regulated the expression of Topoisomerases I and II, Cdc25A, and Cdc25C signaling. Caffeine, an ATM/ATR inhibitor significantly reversed EA downregulation in the levels of Cdc25A. Furthermore, JNK inhibitor SP600125 and p38 MAPK inhibitor SB203580 both could reverse the EA upregulation of the protein of Chk2 level, significantly. This study, therefore, revealed that EA could downregulate topoisomerase, and activate ATM kinase, which then induce parallel Chk 1/2 and MAPK signaling pathways to promote the degradation of Cdc25A to induced S-phase arrest in human cervical cancer HeLa cells.
Collapse
Affiliation(s)
- Wen-Tsong Hsieh
- Department of Pharmacology, China Medical University, Taichung, Taiwan
| | - Hui-Yi Lin
- School of Pharmacy, China Medical University, Taichung, Taiwan
| | - Jou-Hsuan Chen
- Department of Pharmacology, China Medical University, Taichung, Taiwan
| | - Wen-Chung Lin
- Department of Pharmacology, China Medical University, Taichung, Taiwan
| | - Yueh-Hsiung Kuo
- Tsuzuki Institute for Traditional Medicine, College of Pharmacy, China Medical University, Taichung, Taiwan
| | - W Gibson Wood
- Department of Pharmacology, School of Medicine, Geriatric Research, Education and Clinical Center, VA Medical Center, University of Minnesota, Minneapolis, Minnesota
| | - Hsu-Feng Lu
- Department of Clinical Pathology, Cheng Hsin General Hospital, Taipei, 112, Taiwan
- Department of Restaurant, Hotel and Institutional Management, Fu-Jen Catholic University, New Taipei, 242, Taiwan
| | - Jing-Gung Chung
- Department of Biological Science and Technology, China Medical University, Taichung, 404, Taiwan
- Department of Biotechnology, Asia University, Taichung, 413, Taiwan
| |
Collapse
|
45
|
Abdel-Sattar E, Abou-Hussein D, Petereit F. Chemical Constituents from the Leaves of Euphorbia ammak Growing in Saudi Arabia. Pharmacognosy Res 2015; 7:14-7. [PMID: 25598629 PMCID: PMC4285643 DOI: 10.4103/0974-8490.147136] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 06/09/2014] [Accepted: 12/17/2014] [Indexed: 12/03/2022] Open
Abstract
Investigation of the chloroform extract of Euphorbia ammak leaves led to the isolation of three compounds: euphol (1), α-glutinol (2) and stigmasterol (3) Their structures were elucidated by 1D and 2D NMR, as well as by comparison with the reported data. Compounds 1-3 exhibited cytotoxicity in vitro against human cervical adenocarcinoma (Hela), among which, compound 1 showed the best activity.
Collapse
Affiliation(s)
- Essam Abdel-Sattar
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Dina Abou-Hussein
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt ; Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Frank Petereit
- University of Münster, Institute of Pharmaceutical Biology and Phytochemistry, Hittorfstraße 56, D-48149 Münster, Germany
| |
Collapse
|
46
|
Tao C, Lin H, Chen S. The regulation of ERK and p-ERK expression by cisplatin and sorafenib in gastric cancer cells. Gene 2014; 552:106-15. [PMID: 25219752 DOI: 10.1016/j.gene.2014.09.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 09/03/2014] [Accepted: 09/10/2014] [Indexed: 02/05/2023]
Abstract
Previous studies have reported strong antitumor effects of cisplatin and sorafenib. Our results indicated that cisplatin and sorafenib exhibited anti-tumor effects on gastric cancer cells. They significantly inhibited gastric cell growth and induced apoptosis. They effectively inhibited gastric cancer cell proliferation and induced G0/G1 phase arrest. Western blotting analysis indicated that it also promoted the phosphorylation extracellular signal regulated kinase (p-ERK). Moreover, cisplatin and sorafenib played a synergistic antitumor effect. These results suggested that the antitumor mechanism of cisplatin and sorafenib involved altering the cell cycle and stimulating ERK phosphorylation in the ERK signaling pathway.
Collapse
Affiliation(s)
- ChunLian Tao
- The First Affiliated Hospital of Shantou University Medical College, Shantou 515063, PR China
| | - Hao Lin
- Department of Urology, The First Affiliated Hospital, Sun Yat-sen University 510275, PR China
| | - ShunQing Chen
- Department of Nursing, The First Affiliated Hospital of Shantou University Medical College, 515063 Shantou, PR China.
| |
Collapse
|
47
|
Nitidine chloride induces apoptosis and inhibits tumor cell proliferation via suppressing ERK signaling pathway in renal cancer. Food Chem Toxicol 2014; 66:210-6. [DOI: 10.1016/j.fct.2014.01.049] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 01/27/2014] [Accepted: 01/28/2014] [Indexed: 01/14/2023]
|
48
|
Xie X, Li Y, Gao D, Zhang Y, Ren Y. Quantitative determination of euphol in rat plasma by LC-MS/MS and its application to a pharmacokinetic study. Biomed Chromatogr 2014; 28:1229-34. [PMID: 25237707 DOI: 10.1002/bmc.3151] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Xu Xie
- Department of Hepatobiliary Surgery; The First Affiliated Hospital of Dalian Medical University; Dalian 116011 People's Republic of China
| | - Yongning Li
- Department of Emergency; The First Affiliated Hospital of Dalian Medical University; Dalian 116011 People's Republic of China
| | - Dongna Gao
- Department of Emergency; The First Affiliated Hospital of Dalian Medical University; Dalian 116011 People's Republic of China
| | - Yu Zhang
- Department of Emergency; The First Affiliated Hospital of Dalian Medical University; Dalian 116011 People's Republic of China
| | - Yanbo Ren
- Department of Emergency; The First Affiliated Hospital of Dalian Medical University; Dalian 116011 People's Republic of China
| |
Collapse
|
49
|
Antioxidant and Antiproliferative Activities of Leaf Extracts from Plukenetia volubilis Linneo (Euphorbiaceae). EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:950272. [PMID: 24159355 PMCID: PMC3789487 DOI: 10.1155/2013/950272] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 07/06/2013] [Accepted: 07/30/2013] [Indexed: 11/24/2022]
Abstract
Plukenetia volubilis Linneo, or Sacha inca, is an oleaginous plant from the Euphorbiaceae family. The aim of this work was to perform a chemical and biological analysis of different leaf extracts from P. volubilis such as aqueous extract (AEL), methanol (MEL), ethanol (EEL), chloroform (CEL), and hexane (HEL). Thin layer chromatography analysis revealed the presence of phenolic compounds, steroids, and/or terpenoídes. Furthermore, the antioxidant activities were analyzed by in vitro assays and their effects on cell lineages by in vivo assays. The Total Antioxidant Capacity (TCA) was expressed as equivalent ascorbic acid (EEA/g) and it was observed that the extracts showed values ranging from 59.31 to 97.76 EAA/g. Furthermore, the DPPH assay values ranged from 62.8% to 88.3%. The cell viability assay showed that the extracts were able to reduce viability from cancer cells such as HeLa and A549 cells. The extracts MEL and HEL (250 µg/mL) were able to reduce the proliferation of HeLa cells up to 54.3% and 48.5%, respectively. The flow cytometer results showed that these extracts induce cell death via the apoptosis pathway. On the other hand, the extracts HEL and AEL were able to induce cell proliferation of normal fibroblast 3T3 cells.
Collapse
|
50
|
Luo T, Chen B, Zhao Z, He N, Zeng Z, Wu B, Fukushima Y, Dai M, Huang Q, Xu D, Bin J, Kitakaze M, Liao Y. Histamine H2 receptor activation exacerbates myocardial ischemia/reperfusion injury by disturbing mitochondrial and endothelial function. Basic Res Cardiol 2013; 108:342. [PMID: 23467745 DOI: 10.1007/s00395-013-0342-4] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 02/12/2013] [Accepted: 02/18/2013] [Indexed: 10/27/2022]
Abstract
There is evidence that H2R blockade improves ischemia/reperfusion (I/R) injury, but the underlying cellular mechanisms remain unclear. Histamine is known to increase vascular permeability and induce apoptosis, and these effects are closely associated with endothelial and mitochondrial dysfunction, respectively. Here, we investigated whether activation of the histamine H2 receptor (H2R) exacerbates myocardial I/R injury by increasing mitochondrial and endothelial permeability. Serum histamine levels were measured in patients with coronary heart disease, while the influence of H2R activation was assessed on mitochondrial and endothelial function in cultured cardiomyocytes or vascular endothelial cells, and myocardial I/R injury in mice. The serum histamine level was more than twofold higher in patients with acute myocardial infarction than in patients with angina or healthy controls. In neonatal rat cardiomyocytes, histamine dose-dependently reduced viability and induced apoptosis. Mitochondrial permeability and the levels of p-ERK1/2, Bax, p-DAPK2, and caspase 3 were increased by H2R agonists. In cultured human umbilical vein endothelial cells (HUVECs), H2R activation increased p-ERK1/2 and p-moesin levels and also enhanced permeability of HUVEC monolayer. All of these effects were abolished by the H2R blocker famotidine or the ERK inhibitor U0126. After I/R injury or permanent ischemia, the infarct size was reduced by famotidine and increased by an H2R agonist in wild-type mice. In H2R KO mice, the infarct size was smaller; myocardial p-ERK1/2, p-DAPK2, and mitochondrial Bax were downregulated. These findings indicate that H2R activation exaggerates myocardial I/R injury by promoting myocardial mitochondrial dysfunction and by increasing cardiac vascular endothelial permeability.
Collapse
Affiliation(s)
- Tao Luo
- Department of Cardiology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, 510515, Guangzhou, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|