1
|
Grădinaru AC, Popa S. Vitamin C: From Self-Sufficiency to Dietary Dependence in the Framework of Its Biological Functions and Medical Implications. Life (Basel) 2025; 15:238. [PMID: 40003647 PMCID: PMC11856994 DOI: 10.3390/life15020238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/25/2025] [Accepted: 01/25/2025] [Indexed: 02/27/2025] Open
Abstract
Vitamin C is an organic compound biosynthesized in plants and most vertebrates. Since its discovery, the benefits of vitamin C use in the cure and prevention of various pathologies have been frequently reported, including its anti-oxidant, anti-inflammatory, anticoagulant, and immune modulatory properties. Vitamin C plays an important role in collagen synthesis and subsequent scurvy prevention. It is also required in vivo as a cofactor for enzymes involved in carnitine and catecholamine norepinephrine biosynthesis, peptide amidation, and tyrosine catabolism. Moreover, as an enzymatic cofactor, vitamin C is involved in processes of gene transcription and epigenetic regulation. The absence of the synthesis of L-gulono-1,4-lactone oxidase, a key enzyme in the pathway of vitamin C synthesis, is an inborn metabolism error in some fishes and several bird and mammalian species, including humans and non-human primates; it is caused by various changes in the structure of the original GULO gene, making these affected species dependent on external sources of vitamin C. The evolutionary cause of GULO gene pseudogenization remains controversial, as either dietary supplementation or neutral selection is evoked. An evolutionary improvement in the control of redox homeostasis was also considered, as potentially toxic H2O2 is generated as a byproduct in the vitamin C biosynthesis pathway. The inactivation of the GULO gene and the subsequent reliance on dietary vitamin C may have broader implications for aging and age-related diseases, as one of the most important actions of vitamin C is as an anti-oxidant. Therefore, an important aim for medical professionals regarding human and animal health should be establishing vitamin C homeostasis in species that are unable to synthesize it themselves, preventing pathologies such as cardiovascular diseases, cognitive decline, and even cancer.
Collapse
Affiliation(s)
- Andrei Cristian Grădinaru
- Faculty of Veterinary Medicine, “Ion Ionescu de la Brad” University of Life Sciences, 3 M. Sadoveanu Alley, 700490 Iasi, Romania
| | - Setalia Popa
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| |
Collapse
|
2
|
Mecheri N, Lefrada L, Benounis M, Ben Hassine C, Berhoumi H, Mabrouk C. A novel Au-NPs/DBTTA nanocomposite-based electrochemical sensor for the detection of ascorbic acid (AA). SENSOR REVIEW 2024; 44:712-720. [DOI: 10.1108/sr-05-2024-0433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Purpose
Ascorbic acid, a water-soluble antioxidant, is an essential component of the human diet and is known for its potent antioxidant properties against several diseases. In recent years, there has been increasing interest in the development of nonenzymatic sensors due to their simplicity, efficiency and excellent selectivity. The aim of this study is to present a selective and sensitive method for the detection of ascorbic acid in aqueous system using a new electrochemical non-enzymatic sensor based on a gold nanoparticles Au-NPs-1,3-di(4-bromophényl)-5-tert-butyl-1,3,5-triazinane (DBTTA) composite.
Design/methodology/approach
Using the square wave voltammetry (SWV) technique, a series of Au-NPs-DBTTA composites were successfully developed and investigated. First, DBTTA was synthesized via the condensation of tert-butylamine and a4-bromoaniline. The structure obtained was identified by IR, 1H NMR and 13C NMR analysis. A glassy carbon electrode (GCE) was modified with 10–1 M DBTTA dissolved in an aqueous solution by cyclic voltammetry in the potential range of 1–1.4 V. Au-NPs were then deposited on the DBTTA/GCE by a chronoamperometric technique. SWV was used to study the electrochemical behavior of the modified electrode (DBTTA/Au-NPs/GCEs). To observe the effect of nanoparticles, ascorbic acid in a buffer solution was analyzed by SWV at the modified electrode with and without gold nanoparticles (Au-NPs).
Findings
The DBTTA/Au-NPs/GCE showed better electroanalytical results. The detection limit of 10–5 M was obtained and the electrode was proportional to the logarithm of the AA concentration in the range of 5 × 10−3 M to 1 × 10−1 with very good correlation parameters.
Originality/value
It was also found that the elaborated sensor exhibited reproducibility and excellent selectivity against interfering molecules such as uric acid, aspartic acid and glucose. The proposed sensor was tested for the recognition of AA in orange, and satisfactory results were obtained.
Collapse
|
3
|
Flasz B, Tarnawska M, Kędziorski A, Napora-Rutkowski Ł, Szczygieł J, Gajda Ł, Nowak N, Augustyniak M. Ascorbic Acid and Graphene Oxide Exposure in the Model Organism Acheta domesticus Can Change the Reproduction Potential. Molecules 2024; 29:4594. [PMID: 39407524 PMCID: PMC11478226 DOI: 10.3390/molecules29194594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
The use of nanoparticles in the industry carries the risk of their release into the environment. Based on the presumption that the primary graphene oxide (GO) toxicity mechanism is reactive oxygen species production in the cell, the question arises as to whether well-known antioxidants can protect the cell or significantly reduce the effects of GO. This study focused on the possible remedial effect of vitamin C in Acheta domesticus intoxicated with GO for whole lives. The reproduction potential was measured at the level of Vitellogenin (Vg) gene expression, Vg protein expression, hatching success, and share of nutrition in the developing egg. There was no simple relationship between the Vg gene's expression and the Vg protein content. Despite fewer eggs laid in the vitamin C groups, hatching success was high, and egg composition did not differ significantly. The exceptions were GO20 and GO20 + Vit. C groups, with a shift in the lipid content in the egg. Most likely, ascorbic acid impacts the level of Vg gene expression but does not affect the production of Vg protein or the quality of eggs laid. Low GO concentration in food did not cause adverse effects, but the relationship between GO toxicity and its concentration should be investigated more thoroughly.
Collapse
Affiliation(s)
- Barbara Flasz
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-032 Katowice, Poland; (B.F.); (M.T.); (A.K.); (Ł.G.); (N.N.)
| | - Monika Tarnawska
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-032 Katowice, Poland; (B.F.); (M.T.); (A.K.); (Ł.G.); (N.N.)
| | - Andrzej Kędziorski
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-032 Katowice, Poland; (B.F.); (M.T.); (A.K.); (Ł.G.); (N.N.)
| | - Łukasz Napora-Rutkowski
- Polish Academy of Sciences, Institute of Ichthyobiology and Aquaculture in Gołysz, 43-520 Zaborze, Poland; (Ł.N.-R.); (J.S.)
| | - Joanna Szczygieł
- Polish Academy of Sciences, Institute of Ichthyobiology and Aquaculture in Gołysz, 43-520 Zaborze, Poland; (Ł.N.-R.); (J.S.)
| | - Łukasz Gajda
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-032 Katowice, Poland; (B.F.); (M.T.); (A.K.); (Ł.G.); (N.N.)
| | - Natalia Nowak
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-032 Katowice, Poland; (B.F.); (M.T.); (A.K.); (Ł.G.); (N.N.)
| | - Maria Augustyniak
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-032 Katowice, Poland; (B.F.); (M.T.); (A.K.); (Ł.G.); (N.N.)
| |
Collapse
|
4
|
Vernieri C, Ligorio F, Tripathy D, Longo VD. Cyclic fasting-mimicking diet in cancer treatment: Preclinical and clinical evidence. Cell Metab 2024; 36:1644-1667. [PMID: 39059383 DOI: 10.1016/j.cmet.2024.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 06/03/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024]
Abstract
In preclinical tumor models, cyclic fasting and fasting-mimicking diets (FMDs) produce antitumor effects that become synergistic when combined with a wide range of standard anticancer treatments while protecting normal tissues from treatment-induced adverse events. More recently, results of phase 1/2 clinical trials showed that cyclic FMD is safe, feasible, and associated with positive metabolic and immunomodulatory effects in patients with different tumor types, thus paving the way for larger clinical trials to investigate FMD anticancer activity in different clinical contexts. Here, we review the tumor-cell-autonomous and immune-system-mediated mechanisms of fasting/FMD antitumor effects, and we critically discuss new metabolic interventions that could synergize with nutrient starvation to boost its anticancer activity and prevent or reverse tumor resistance while minimizing toxicity to patients. Finally, we highlight potential future applications of FMD approaches in combination with standard anticancer strategies as well as strategies to implement the design and conduction of clinical trials.
Collapse
Affiliation(s)
- Claudio Vernieri
- Medical Oncology and Hematology-Oncology Department, University of Milan, 20122 Milan, Italy; IFOM ETS, the AIRC Institute of Molecular Oncology, 20139 Milan, Italy.
| | - Francesca Ligorio
- Medical Oncology and Hematology-Oncology Department, University of Milan, 20122 Milan, Italy; Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
| | - Debu Tripathy
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Unit 1354, 1515 Holcombe Blvd, Houston, TX 77030-4009, USA
| | - Valter D Longo
- IFOM ETS, the AIRC Institute of Molecular Oncology, 20139 Milan, Italy; Longevity Institute, Davis School of Gerontology and Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
5
|
Karagianni C, Bazopoulou D. Redox regulation in lifespan determination. J Biol Chem 2024; 300:105761. [PMID: 38367668 PMCID: PMC10965828 DOI: 10.1016/j.jbc.2024.105761] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 02/07/2024] [Accepted: 02/11/2024] [Indexed: 02/19/2024] Open
Abstract
One of the major challenges that remain in the fields of aging and lifespan determination concerns the precise roles that reactive oxygen species (ROS) play in these processes. ROS, including superoxide and hydrogen peroxide, are constantly generated as byproducts of aerobic metabolism, as well as in response to endogenous and exogenous cues. While ROS accumulation and oxidative damage were long considered to constitute some of the main causes of age-associated decline, more recent studies reveal a signaling role in the aging process. In fact, accumulation of ROS, in a spatiotemporal manner, can trigger beneficial cellular responses that promote longevity and healthy aging. In this review, we discuss the importance of timing and compartmentalization of external and internal ROS perturbations in organismal lifespan and the role of redox regulated pathways.
Collapse
|
6
|
Yu G, Liu S, Yang K, Wu Q. Reproductive-dependent effects of B vitamin deficiency on lifespan and physiology. Front Nutr 2023; 10:1277715. [PMID: 37941770 PMCID: PMC10627837 DOI: 10.3389/fnut.2023.1277715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/10/2023] [Indexed: 11/10/2023] Open
Abstract
B vitamins constitute essential micronutrients in animal organisms, executing crucial roles in numerous biological processes. B vitamin deficiency can result in severe health consequences, including the impairment of reproductive functions and increased susceptibility to age-related diseases. However, the understanding of how reproduction alters the requirements of each individual B vitamins for healthy aging and lifespan remains limited. Here, utilizing Drosophila as a model organism, we revealed the substantial impacts of deficiencies in specific B vitamins on lifespan and diverse physiological functions, with the effects being significantly shaped by reproductive status. Notably, the dietary absence of VB1, VB3, VB5, VB6, or VB7 significantly decreased the lifespan of wild-type females, yet demonstrated relatively little effect on ovoD1 infertile mutant females' lifespan. B vitamin deficiencies also resulted in distinct impacts on the reproduction, starvation tolerance and fat metabolism of wild-type females, though no apparent effects were observed in the infertile mutant females. Moreover, a deficiency in VB1 reshaped the impacts of macronutrient intervention on the physiology and lifespan of fertile females in a reproductive-dependent manner. Overall, our study unravels that the reproductive status of females serves as a critical modulator of the lifespan and physiological alterations elicited by B-vitamin deficiencies.
Collapse
Affiliation(s)
- Guixiang Yu
- Key Laboratory for Aging and Regenerative Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Shaowei Liu
- Key Laboratory for Aging and Regenerative Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Kun Yang
- Key Laboratory for Aging and Regenerative Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Qi Wu
- Key Laboratory for Aging and Regenerative Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Central Nervous System Drug Key Laboratory of Sichuan Province, Luzhou, Sichuan, China
| |
Collapse
|
7
|
Varela-López A, Romero-Márquez JM, Navarro-Hortal MD, Ramirez-Tortosa CL, Battino M, Forbes-Hernández TY, Quiles JL. Dietary antioxidants and lifespan: Relevance of environmental conditions, diet, and genotype of experimental models. Exp Gerontol 2023; 178:112221. [PMID: 37230336 DOI: 10.1016/j.exger.2023.112221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/21/2023] [Accepted: 05/22/2023] [Indexed: 05/27/2023]
Abstract
The rise of life expectancy in current societies is not accompanied, to date, by a similar increase in healthspan, which represents a great socio-economic problem. It has been suggested that aging can be manipulated and then, the onset of all age-associated chronic disorders can be delayed because these pathologies share age as primary underlying risk factor. One of the most extended ideas is that aging is consequence of the accumulation of molecular damage. According to the oxidative damage theory, antioxidants should slow down aging, extending lifespan and healthspan. The present review analyzes studies evaluating the effect of dietary antioxidants on lifespan of different aging models and discusses the evidence on favor of their antioxidant activity as anti-aging mechanisms. Moreover, possible causes for differences between the reported results are evaluated.
Collapse
Affiliation(s)
- Alfonso Varela-López
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix", Biomedical Research Center, University of Granada, Avda del Conocimiento s/n, Parque Tecnologico de la Salud, Armilla, Granada 18016, Spain
| | - José M Romero-Márquez
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix", Biomedical Research Center, University of Granada, Avda del Conocimiento s/n, Parque Tecnologico de la Salud, Armilla, Granada 18016, Spain
| | - María D Navarro-Hortal
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix", Biomedical Research Center, University of Granada, Avda del Conocimiento s/n, Parque Tecnologico de la Salud, Armilla, Granada 18016, Spain
| | | | - Maurizio Battino
- Department of Clinical Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, Jiangsu University, Zhenjiang 212013, China
| | - Tamara Y Forbes-Hernández
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix", Biomedical Research Center, University of Granada, Avda del Conocimiento s/n, Parque Tecnologico de la Salud, Armilla, Granada 18016, Spain
| | - José L Quiles
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix", Biomedical Research Center, University of Granada, Avda del Conocimiento s/n, Parque Tecnologico de la Salud, Armilla, Granada 18016, Spain; Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Isabel Torres, 21, 39011 Santander, Spain; Research and Development Functional Food Centre (CIDAF), Health Science Technological Park, Avenida del Conocimiento 37, 18016 Granada, Spain.
| |
Collapse
|
8
|
Prasad KN. A micronutrient mixture with collagen peptides, probiotics, cannabidiol, and diet may reduce aging, and development and progression of age-related alzheimer's disease, and improve its treatment. Mech Ageing Dev 2023; 210:111757. [PMID: 36460123 DOI: 10.1016/j.mad.2022.111757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/21/2022] [Accepted: 11/28/2022] [Indexed: 11/30/2022]
Abstract
Human aging involves gradual decline in organ functions leading to organ specific age-related chronic diseases such as Alzheimer's disease (AD). Although advances in the development of new drugs, novel surgical procedures, improved diet and lifestyle, have resulted in doubling of lifespan of humans, the quality of life in many cases remains poor because of increased incidence of age-related chronic diseases. Using experimental models of accelerated aging, several cellular defects associated with aging and AD have been identified. Some cellular defects due to increased oxidative stress, chronic inflammation, autophagy defects, mitochondrial dysfunction, and imbalances in the composition probiotics in favor of harmful bacteria over beneficial bacteria are common to both aging and AD, while others such as telomere attrition, loss of collagen, elastin, and hyaluronic acid, failure of DNA repair system, and impaired immune function are unique to aging; and some such as increased production of beta-amyloids, hyperphosphorylation of tau protein, and abnormal behaviors are unique to AD. It is suggested that supplementation with a micronutrient mixture, probiotics, collagen peptides, CBD, and modifications in the diet and lifestyle may reduce the aging processes, and the development, progression of AD, and improve the treatments of this disease.
Collapse
Affiliation(s)
- Kedar N Prasad
- Engage Global, Inc. 245 El Faisan Dr., San Rafael, CA 94903, USA.
| |
Collapse
|
9
|
Dynamic changes in genomic 5-hydroxymethyluracil and N6-methyladenine levels in the Drosophila melanogaster life cycle and in response to different temperature conditions. Sci Rep 2022; 12:17552. [PMID: 36266436 PMCID: PMC9584883 DOI: 10.1038/s41598-022-22490-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/14/2022] [Indexed: 01/13/2023] Open
Abstract
In this study, the level of DNA modifications was investigated in three developmental stages of Drosophila melanogaster (larvae, pupae, imago) and in an in vitro model (Schneider 2 cells). Analysis was carried out using two-dimensional ultra-performance liquid chromatography with tandem mass spectrometry. Our method made it possible, for the first time, to analyze a broad spectrum of DNA modifications in the three stages of Drosophila. Each stage was characterized by a specific modification pattern, and the levels of these compounds fluctuated throughout the D. melanogaster life cycle. The level of DNA modification was also compared between insects bred at 25 °C (optimal temperature) and at 18 °C, and the groups differed significantly. The profound changes in N6-methyladenine and 5-hydroxymethyluracil levels during the Drosophila life cycle and as a result of breeding temperature changes indicate that these DNA modifications can play important regulatory roles in response to environmental changes and/or biological conditions. Moreover, the supplementation of Schneider 2 cells with 1 mM L-ascorbic acid caused a time-dependent increase in the level of 5-(hydroxymethyl)-2'-deoxyuridine. These data suggest that a certain pool of this compound may arise from the enzymatic activity of the dTET protein.
Collapse
|
10
|
Wang Y, Guo K, Wang Q, Zhong G, Zhang W, Jiang Y, Mao X, Li X, Huang Z. Caenorhabditis elegans as an emerging model in food and nutrition research: importance of standardizing base diet. Crit Rev Food Sci Nutr 2022; 64:3167-3185. [PMID: 36200941 DOI: 10.1080/10408398.2022.2130875] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
As a model organism that has helped revolutionize life sciences, Caenorhabditis elegans has been increasingly used in nutrition research. Here we explore the tradeoffs between pros and cons of its use as a dietary model based primarily on literature review from the past decade. We first provide an overview of its experimental strengths as an animal model, focusing on lifespan and healthspan, behavioral and physiological phenotypes, and conservation of key nutritional pathways. We then summarize recent advances of its use in nutritional studies, e.g. food preference and feeding behavior, sugar status and metabolic reprogramming, lifetime and transgenerational nutrition tracking, and diet-microbiota-host interactions, highlighting cutting-edge technologies originated from or developed in C. elegans. We further review current challenges of using C. elegans as a nutritional model, followed by in-depth discussions on potential solutions. In particular, growth scales and throughputs, food uptake mode, and axenic culture of C. elegans are appraised in the context of food research. We also provide perspectives for future development of chemically defined nematode food ("NemaFood") for C. elegans, which is now widely accepted as a versatile and affordable in vivo model and has begun to show transformative potential to pioneer nutrition science.
Collapse
Affiliation(s)
- Yuqing Wang
- Institute for Food Nutrition and Human Health, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Guangdong Province Key Laboratory for Biocosmetics, Guangzhou, China
| | - Kaixin Guo
- Institute for Food Nutrition and Human Health, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Qiangqiang Wang
- Institute for Food Nutrition and Human Health, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Guangdong Province Key Laboratory for Biocosmetics, Guangzhou, China
| | - Guohuan Zhong
- Institute for Food Nutrition and Human Health, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Center for Bioresources and Drug Discovery, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Wenjun Zhang
- Center for Bioresources and Drug Discovery, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yiyi Jiang
- Guangdong Province Key Laboratory for Biocosmetics, Guangzhou, China
- Perfect Life & Health Institute, Zhongshan, Guangdong, China
| | - Xinliang Mao
- Guangdong Province Key Laboratory for Biocosmetics, Guangzhou, China
- Perfect Life & Health Institute, Zhongshan, Guangdong, China
| | - Xiaomin Li
- Guangdong Province Key Laboratory for Biocosmetics, Guangzhou, China
- Perfect Life & Health Institute, Zhongshan, Guangdong, China
| | - Zebo Huang
- Institute for Food Nutrition and Human Health, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Guangdong Province Key Laboratory for Biocosmetics, Guangzhou, China
- Center for Bioresources and Drug Discovery, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
11
|
Visioli F, Ingram A, Beckman JS, Magnusson KR, Hagen TM. Strategies to protect against age-related mitochondrial decay: Do natural products and their derivatives help? Free Radic Biol Med 2022; 178:330-346. [PMID: 34890770 DOI: 10.1016/j.freeradbiomed.2021.12.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/24/2021] [Accepted: 12/04/2021] [Indexed: 12/12/2022]
Abstract
Mitochondria serve vital roles critical for overall cellular function outside of energy transduction. Thus, mitochondrial decay is postulated to be a key factor in aging and in age-related diseases. Mitochondria may be targets of their own decay through oxidative damage. However, treating animals with antioxidants has been met with only limited success in rejuvenating mitochondrial function or in increasing lifespan. A host of nutritional strategies outside of using traditional antioxidants have been devised to promote mitochondrial function. Dietary compounds are under study that induce gene expression, enhance mitochondrial biogenesis, mitophagy, or replenish key metabolites that decline with age. Moreover, redox-active compounds may now be targeted to mitochondria which improve their effectiveness. Herein we review the evidence that representative dietary effectors modulate mitochondrial function by stimulating their renewal or reversing the age-related loss of key metabolites. While in vitro evidence continues to accumulate that many of these compounds benefit mitochondrial function and/or prevent their decay, the results using animal models and, in some instances human clinical trials, are more mixed and sometimes even contraindicated. Thus, further research on optimal dosage and age of intervention are warranted before recommending potential mitochondrial rejuvenating compounds for human use.
Collapse
Affiliation(s)
- Francesco Visioli
- Department of Molecular Medicine, University of Padova, Italy; IMDEA-Food, Madrid, Spain
| | - Avery Ingram
- Linus Pauling Institute, Oregon State University, Corvallis, OR, 97331, USA; Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, 97331, USA
| | - Joseph S Beckman
- Linus Pauling Institute, Oregon State University, Corvallis, OR, 97331, USA; Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, 97331, USA
| | - Kathy R Magnusson
- Linus Pauling Institute, Oregon State University, Corvallis, OR, 97331, USA
| | - Tory M Hagen
- Linus Pauling Institute, Oregon State University, Corvallis, OR, 97331, USA; Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, 97331, USA.
| |
Collapse
|
12
|
Flasz B, Dziewięcka M, Kędziorski A, Tarnawska M, Augustyniak J, Augustyniak M. Multigenerational selection towards longevity changes the protective role of vitamin C against graphene oxide-induced oxidative stress in house crickets. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 290:117996. [PMID: 34416498 DOI: 10.1016/j.envpol.2021.117996] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 07/21/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
This research was designed to investigate changes that can arise in an invertebrate organism due to stress caused by a strong prooxidant, graphene oxide (GO), and a potent antioxidant, vitamin C. The study aimed to investigate if vitamin C may support convalescence after chronic GO intoxication. We investigated the toxicity of chronic dietary graphene oxide administration in house cricket (Acheta domesticus) types: wild and selected for longevity (with a better developed antioxidant system, conducive to long life). Vitamin C was applied immediately after cessation of graphene oxide intoxication to check if it can support the remedial effect. The condition of cells, DNA stability, catalase activity, and the reproduction potential, measured as the Vitellogenin (Vg) protein expression level, were investigated in control and GO treated groups, recovery groups (-GO), and recovery groups with Vit. C (-GO + Vit.C). In this study vitamin C had no evident remedial effect on the house crickets exposed to graphene oxide. Most probably, the mechanism of vitamin C action, in case of intoxication with nanoparticles, is much more complicated. In the context of the results obtained, it is worth considering whether Vit. C, applied after GO intoxication, causes further disturbance of homeostasis in terms of the cells' redox potential.
Collapse
Affiliation(s)
- Barbara Flasz
- University of Silesia in Katowice, Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, Bankowa 9, 40-007, Katowice, Poland.
| | - Marta Dziewięcka
- University of Silesia in Katowice, Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, Bankowa 9, 40-007, Katowice, Poland
| | - Andrzej Kędziorski
- University of Silesia in Katowice, Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, Bankowa 9, 40-007, Katowice, Poland
| | - Monika Tarnawska
- University of Silesia in Katowice, Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, Bankowa 9, 40-007, Katowice, Poland
| | - Jan Augustyniak
- Medical University of Silesia, Faculty of Medical Sciences in Zabrze, Department of Physiology, Jordana 19, 41-808, Zabrze, Poland
| | - Maria Augustyniak
- University of Silesia in Katowice, Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, Bankowa 9, 40-007, Katowice, Poland
| |
Collapse
|
13
|
Healthy Drinks with Lovely Colors: Phenolic Compounds as Constituents of Functional Beverages. BEVERAGES 2021. [DOI: 10.3390/beverages7010012] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Consumers increasingly prefer and seek food and beverages, which, due to their natural characteristics, bring health benefits, both in the prevention of diseases and in their curative power. In this way, the production of nutraceutical foods and beverages gains more and more importance in the market. On the other hand, and because the eyes also eat, producing attractive foods due to their color, texture, appearance, and sensory characteristics is a permanent challenge in the food industry. Being able to gather healthy and attractive items in a single food is an even greater challenge. The long list of benefits associated with phenolic compounds, such as antioxidant, anticancer, anti-inflammatory, and antiaging properties, among others, fully justifies their use in the enrichment of various food products. Thus, in this review, we propose to summarize the potential use of phenolic compounds used as ingredients of pleasant and functional beverages.
Collapse
|
14
|
Pallauf K, Günther I, Kühn G, Chin D, de Pascual-Teresa S, Rimbach G. The Potential of Resveratrol to Act as a Caloric Restriction Mimetic Appears to Be Limited: Insights from Studies in Mice. Adv Nutr 2020; 12:995-1005. [PMID: 33271594 PMCID: PMC8166566 DOI: 10.1093/advances/nmaa148] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/13/2020] [Accepted: 10/21/2020] [Indexed: 12/14/2022] Open
Abstract
Caloric restriction (CR) has been shown repeatedly to prolong the lifespan in laboratory animals, with its benefits dependent on molecular targets forming part of the nutrient signaling network, including the NAD-dependent deacetylase silent mating type information regulation 2 homologue 1 (SIRT1). It has been hypothesized that the stilbene resveratrol (RSV) may counteract age- and obesity-related diseases similarly to CR. In yeast and worms, RSV-promoted longevity also depended on SIRT1. While it remains unclear whether RSV can prolong lifespans in mammals, some studies in rodents supplemented with RSV have reported lowered body weight (BW) and fat mass, improved insulin sensitivity, lowered cholesterol levels, increased fitness, and mitochondrial biogenesis. Molecular mechanisms possibly leading to such changes include altered gene transcription and activation of SIRT1, AMP-activated kinase (AMPK), and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PPARGC1A). However, some mouse models did not benefit from RSV treatment to the same extent as others. We conducted a literature search on PubMed (15 April, 2020) for trials directly comparing RSV application to CR feeding in mice. In most studies retrieved by this systematic PubMed search, mice supplemented with RSV did not show significant reductions of BW, glucose, or insulin. Moreover, in some of these studies, RSV and CR treatments affected molecular targets differently and/or findings on RSV and CR impacts varied between trials. We discuss those RSV-induced changes in gene transcription hypothesized to partly counteract age-related alterations. Although there may be a moderate effect of RSV supplementation on parameters such as insulin sensitivity toward a more CR-like profile in mice, data are inconsistent. Likewise, RSV supplementation trials in humans report controversial findings. While we consider that RSV may, under certain circumstances, moderately mimic some aspects of CR, current evidence does not fully support its use to prevent or treat age- or obesity-related diseases.
Collapse
Affiliation(s)
| | - Ilka Günther
- Institute of Human Nutrition and Food Science, University of Kiel, Kiel, Germany
| | - Gianna Kühn
- Institute of Human Nutrition and Food Science, University of Kiel, Kiel, Germany
| | - Dawn Chin
- Institute of Human Nutrition and Food Science, University of Kiel, Kiel, Germany
| | - Sonia de Pascual-Teresa
- Department of Metabolism and Nutrition, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Madrid, Spain
| | - Gerald Rimbach
- Institute of Human Nutrition and Food Science, University of Kiel, Kiel, Germany
| |
Collapse
|
15
|
Baru Pulp ( Dipteryx alata Vogel): Fruit from the Brazilian Savanna Protects against Oxidative Stress and Increases the Life Expectancy of Caenorhabditis elegans via SOD-3 and DAF-16. Biomolecules 2020; 10:biom10081106. [PMID: 32722431 PMCID: PMC7463619 DOI: 10.3390/biom10081106] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 07/22/2020] [Accepted: 07/22/2020] [Indexed: 12/27/2022] Open
Abstract
Fruits are sources of bioactive compounds that are responsible for several biological activities. Therefore, this study aimed to identify the chemical composition of the pulp of the Brazilian Savanna fruit Dipteryx alata; evaluate its toxic effects, influence on the life expectancy of the nematode Caenorhabditis elegans, and its antioxidant activities in vitro and in vivo; and describe the mechanisms involved. The chemical compounds identified include phenols, terpenes, fatty acid derivatives, vitamins, and a carboxylic acid. The in vitro antioxidant activity was demonstrated by radical scavenging methods. In vivo, the D. alata fruit pulp was not toxic and promoted resistance to oxidative stress in nematodes exposed to a chemical oxidizing agent. Furthermore, it promoted an increased life expectancy in wild-type nematodes and increased the expression of superoxide dismutase and the nuclear translocation of DAF-16. These results suggest that the beneficial effects identified are related to these two genes, which are involved in the regulation of metabolic activities, the control of oxidative stress, and the lifespan of C. elegans. These beneficial effects, which may be related to its chemical constituents, demonstrate its potential use as a functional and/or nutraceutical food.
Collapse
|
16
|
Li Y, Romey-Glüsing R, Tahan Zadeh N, von Frieling J, Hoffmann J, Huebbe P, Bruchhaus I, Rimbach G, Fink C, Roeder T. Furbellow (Brown Algae) Extract Increases Lifespan in Drosophila by Interfering with TOR-Signaling. Nutrients 2020; 12:E1172. [PMID: 32331413 PMCID: PMC7230866 DOI: 10.3390/nu12041172] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/17/2020] [Accepted: 04/21/2020] [Indexed: 12/30/2022] Open
Abstract
Algal products are well known for their health promoting effects. Nonetheless, an in depth understanding of the underlying molecular mechanisms is still only fragmentary. Here, we show that aqueous furbelow extracts (brown algae, Saccorhiza polyschides) lengthen the life of both sexes of the fruit fly Drosophila melanogaster substantially, if used as nutritional additives to conventional food. This life prolonging effect became even more pronounced in the presence of stressors, such as high-fat dieting of living under drought conditions. Application of the extracts did not change food intake, excretion, or other major physiological parameters. Nevertheless, effects on the intestinal microbiota were observed, leading to an increased species richness, which is usually associated with healthy conditions. Lifespan extension was not observed in target of rapamycin (TOR)-deficient animals, implying that functional TOR signaling is necessary to unfold the positive effects of brown algae extract (BAE) on this important trait. The lack of life lengthening in animals with deregulated TOR signaling exclusively targeted to body fat showed that this major energy storage organ is instrumental for transmitting these effects. In addition, expression of Imaginal morphogenesis protein-Late 2 (Imp-L2), an effective inhibitor of insulin signaling implies that BAE exerts their positive effects through interaction with the tightly interwoven TOR- and insulin-signaling systems, although insulin levels were not directly affected by this intervention.
Collapse
Affiliation(s)
- Yang Li
- Department of Molecular Physiology, Kiel University, D-24098 Kiel, Germany; (Y.L.); (R.R.-G.); (N.T.Z.); (J.v.F.); (J.H.); (C.F.)
- College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Renja Romey-Glüsing
- Department of Molecular Physiology, Kiel University, D-24098 Kiel, Germany; (Y.L.); (R.R.-G.); (N.T.Z.); (J.v.F.); (J.H.); (C.F.)
| | - Navid Tahan Zadeh
- Department of Molecular Physiology, Kiel University, D-24098 Kiel, Germany; (Y.L.); (R.R.-G.); (N.T.Z.); (J.v.F.); (J.H.); (C.F.)
| | - Jakob von Frieling
- Department of Molecular Physiology, Kiel University, D-24098 Kiel, Germany; (Y.L.); (R.R.-G.); (N.T.Z.); (J.v.F.); (J.H.); (C.F.)
| | - Julia Hoffmann
- Department of Molecular Physiology, Kiel University, D-24098 Kiel, Germany; (Y.L.); (R.R.-G.); (N.T.Z.); (J.v.F.); (J.H.); (C.F.)
| | - Patricia Huebbe
- Department of Food Sciences, Kiel University, 24098 Kiel, Germany; (P.H.); (G.R.)
| | - Iris Bruchhaus
- Bernhard-Nocht-Institute for Tropical Medicine, D-20359 Hamburg, Germany;
| | - Gerald Rimbach
- Department of Food Sciences, Kiel University, 24098 Kiel, Germany; (P.H.); (G.R.)
| | - Christine Fink
- Department of Molecular Physiology, Kiel University, D-24098 Kiel, Germany; (Y.L.); (R.R.-G.); (N.T.Z.); (J.v.F.); (J.H.); (C.F.)
- DZL, German Center for Lung Research, ARCN, D-24098 Kiel, Germany
| | - Thomas Roeder
- Department of Molecular Physiology, Kiel University, D-24098 Kiel, Germany; (Y.L.); (R.R.-G.); (N.T.Z.); (J.v.F.); (J.H.); (C.F.)
- DZL, German Center for Lung Research, ARCN, D-24098 Kiel, Germany
| |
Collapse
|
17
|
Kunath S, Moosmann B. What is the rate-limiting step towards aging? Chemical reaction kinetics might reconcile contradictory observations in experimental aging research. GeroScience 2019; 42:857-866. [PMID: 30809734 DOI: 10.1007/s11357-019-00058-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 02/11/2019] [Indexed: 02/05/2023] Open
Abstract
Modern geroscience is divided as regards the validity of the free radical theory of aging. Thermodynamic arguments and observations from comparative zoology support it, whereas results from experimental manipulations in representative animal species sometimes strongly contradict it. From a comparison of the multi-step aging process with a linear metabolic pathway (glycolysis), we here argue that the identification of the rate-limiting kinetic steps of the aging cascade is essential to understand the overall flux through the cascade, i.e., the rate of aging. Examining free radical reactions as a case in point, these reactions usually occur as chain reactions with three kinetically independent steps: initiation, propagation, and termination, each of which can be rate-limiting. Revisiting the major arguments in favor and against a role of free radicals in aging, we find that the majority of arguments in favor point to radical propagation as relevant and rate-limiting, whereas almost all arguments in disfavor are based on experimental manipulations of radical initiation or radical termination which turned out to be ineffective. We conclude that the overall lack of efficacy of antioxidant supplementation (which fosters termination) and antioxidant enzyme overexpression (which inhibits initiation) in longevity studies is attributable to the fact that initiation and termination are not the rate-limiting steps of the aging cascade. The biological and evolutionary plausibility of this interpretation is discussed. In summary, radical propagation is predicted to be rate-limiting for aging and should be explored in more detail.
Collapse
Affiliation(s)
- Sascha Kunath
- Evolutionary Biochemistry and Redox Medicine, Institute for Pathobiochemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, 55128, Mainz, Germany
| | - Bernd Moosmann
- Evolutionary Biochemistry and Redox Medicine, Institute for Pathobiochemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, 55128, Mainz, Germany.
| |
Collapse
|
18
|
Argoubi W, Rabti A, Ben Aoun S, Raouafi N. Sensitive detection of ascorbic acid using screen-printed electrodes modified by electroactive melanin-like nanoparticles. RSC Adv 2019; 9:37384-37390. [PMID: 35542308 PMCID: PMC9075527 DOI: 10.1039/c9ra07948c] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 11/04/2019] [Indexed: 11/21/2022] Open
Abstract
In this work, we report on the design of an enzyme-less sensitive and selective electrochemical electrode for ascorbic acid (AA) detection using a modified screen-printed electrode of melanin-like nanoparticles (Mel-NPs). Cyclic voltammetry shows that the melanin-modified electrode exhibits high electrocatalytic activity for ascorbic acid. The melanin-like nanoparticles serve as a shuttle to transport electrons from ascorbic acid to the electrode surface. The modified electrode is endowed with a large dynamic window ranging from 5 to 500 ppb. The detection and quantification limits were estimated to be 0.07 and 0.23 ppb, respectively. The modified electrode was successfully used to determine AA in human blood serum, urine and saliva with satisfactory recovery levels. A melanin-like nanoparticle modified screen-printed electrode for enzyme-less detection of ascorbic acid.![]()
Collapse
Affiliation(s)
- Wicem Argoubi
- Tunis El Manar University
- Chemistry Department
- Laboratory of Analytical Chemistry and Electrochemistry (LR99ES15)
- Tunis
- Tunisia
| | - Amal Rabti
- Tunis El Manar University
- Chemistry Department
- Laboratory of Analytical Chemistry and Electrochemistry (LR99ES15)
- Tunis
- Tunisia
| | - Sami Ben Aoun
- Taibah University
- Faculty of Science
- Chemistry Department
- Al-Madinah Al-Munawarah
- Saudi Arabia
| | - Noureddine Raouafi
- Tunis El Manar University
- Chemistry Department
- Laboratory of Analytical Chemistry and Electrochemistry (LR99ES15)
- Tunis
- Tunisia
| |
Collapse
|
19
|
Matta E, Tavera-Quiroz MJ, Bertola N. Active edible films of methylcellulose with extracts of green apple (Granny Smith) skin. Int J Biol Macromol 2018; 124:1292-1298. [PMID: 30557640 DOI: 10.1016/j.ijbiomac.2018.12.114] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 12/05/2018] [Accepted: 12/13/2018] [Indexed: 11/25/2022]
Abstract
The aim a present study was developed methylcellulose (MC) active edible films with extracts of green apple skin, as model systems of edible coating. Active edible films were developed by incorporation of ethanolic extract of freeze-dried apple skin (EEFD) and aqueous extract of apple skin (AES) at 10, 20 and 25% (v/v) concentrations. Analysis of thermal, mechanical and functional properties was carried out. Results showed that incorporation of green apple skin extracts into MC films contribute to total phenolic content and antioxidant properties. Addition of green apple skin extracts generated shifts toward lower glass transition temperature values regarding MC films without extracts. A lower tensile strength and increased elongation at break in MC-AES films were observed. Mechanical properties of MC-EEFD films were less affected by the increase in extract concentration due to absence of the plasticizing effect of sugars present in AES. The methylcellulose films are important for actives edibles coatings with applications in the food industry.
Collapse
Affiliation(s)
- Eliana Matta
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA)-CONICET, CIC, Facultad de Ciencias Exactas - UNLP, 47 y 116, La Plata 1900, Argentina
| | - María José Tavera-Quiroz
- Desarrollo e Innovación de Procesos Alimentarios (DESINPA), Facultad de Ingeniería, Departamento de Ingeniería Agroindustrial, Universidad de Sucre, Carrera 28 No 5-267 Barrio Puerta Roja, Sincelejo, Sucre, Colombia
| | - Nora Bertola
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA)-CONICET, CIC, Facultad de Ciencias Exactas - UNLP, 47 y 116, La Plata 1900, Argentina.
| |
Collapse
|
20
|
Matejczyk M, Świderski G, Świsłocka R, Rosochacki SJ, Lewandowski W. Seleno-l-methionine and l-ascorbic acid differentiate the biological activity of doxorubicin and its metal complexes as a new anticancer drugs candidate. J Trace Elem Med Biol 2018; 48:141-148. [PMID: 29773172 DOI: 10.1016/j.jtemb.2018.03.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 03/16/2018] [Accepted: 03/23/2018] [Indexed: 01/03/2023]
Abstract
The most important problems of anti-cancer therapy include the toxicity of the drugs applied to healthy cells and the multi-drug cells resistance to chemotherapeutics. One of the most commonly used anticancer drugs is doxorubicin (DOX) used to treat certain leukemias and non-Hodgkin's lymphomas, as well as bladder, breast, stomach, lung, ovarian, thyroid, multiple myeloma and other cancers. Preliminary studies showed that metal complex with DOX improve its cytostatic activity with changes in their molecular structure and distribution of electrons, resulting in a substantial change of its biological activity (including antitumor activity). Thus, there is a chance to receiving derivatives of DOX with low toxicity for the healthy body cells, thus increasing its therapeutic selectivity. In the present study we examined the influence of Mn, Mg, Fe, Co and Ni, seleno-l-methionine and vitamin C on biological activity of DOX in prokaryotic model - Escherichia coli RFM443, with plasmid transcriptional fusion of recA promoter and luxCDABE as a reporter gene. Cytotoxic potency of tested chemicals was calculated on the basis of the bacteria culture growth inhibition (GI%) values. Genotoxic properties were calculated on the basis of the fold increase (FI) of relative luminescence units (RLU) values compared to control. Obtained results showed that doxorubicin metal complexes particularly with Ni, Co and Fe increased the cyto- and genotoxic activities of DOX. Bacteria culture supplemented with SeMet and vitamin C differentiate the DOX and its metal complexes toxicity. It seems, that DOX-Ni, DOX-Fe and DOX-Co complexes could be potent cytostatic drug candidates. Moreover, we noticed different sensitivity of recA::luxCDABE for 3 h and 24 h cultures of bacteria strain. It suggests, that the potency of genetic construct reactivity- recA::luxCDABE in E. coli depends on the growth-phase of bacterial culture.
Collapse
Affiliation(s)
- Marzena Matejczyk
- Bialystok University of Technology, Faculty of Civil Engineering and Environmental Engineering, Division of Chemistry, Biology and Biotechnology, Wiejska 45E, 15-351, Bialystok, Poland.
| | - Grzegorz Świderski
- Bialystok University of Technology, Faculty of Civil Engineering and Environmental Engineering, Division of Chemistry, Biology and Biotechnology, Wiejska 45E, 15-351, Bialystok, Poland
| | - Renata Świsłocka
- Bialystok University of Technology, Faculty of Civil Engineering and Environmental Engineering, Division of Chemistry, Biology and Biotechnology, Wiejska 45E, 15-351, Bialystok, Poland
| | - Stanisław Józef Rosochacki
- Bialystok University of Technology, Faculty of Civil Engineering and Environmental Engineering, Division of Chemistry, Biology and Biotechnology, Wiejska 45E, 15-351, Bialystok, Poland
| | - Włodzimierz Lewandowski
- Bialystok University of Technology, Faculty of Civil Engineering and Environmental Engineering, Division of Chemistry, Biology and Biotechnology, Wiejska 45E, 15-351, Bialystok, Poland
| |
Collapse
|
21
|
Co-nanoencapsulation of antimalarial drugs increases their in vitro efficacy against Plasmodium falciparum and decreases their toxicity to Caenorhabditis elegans. Eur J Pharm Sci 2018; 118:1-12. [PMID: 29550283 DOI: 10.1016/j.ejps.2018.03.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 03/05/2018] [Accepted: 03/13/2018] [Indexed: 02/03/2023]
Abstract
Drugs used for the treatment and prevention of malaria have resistance-related problems, making them ineffective for monotherapy. If properly associated, many of these antimalarial drugs may find their way back to the treatment regimen. Among the therapeutic arsenal, quinine (QN) is a second-line treatment for uncomplicated malaria but has side effects that limit its use. Curcumin (CR) is a natural compound with anti-plasmodial activities and low bioavailability. In this context, the aim of this work was to develop and characterize co-encapsulated QN + CR-loaded polysorbate-coated polymeric nanocapsules (NC-QC) to evaluate their activity on Plasmodium falciparum and the safety of the nanoformulations for Caenorhabditis elegans. NC-QC displayed a diameter of approximately 200 nm, a negative zeta potential and a slightly basic pH. The drugs are homogeneously distributed in the NCs in the amorphous form. Co-encapsulated NCs exhibited a significant reduction in P. falciparum parasitemia, better than QN/CR. The worms exposed to NC-QC showed higher survival and longevity and no decrease in their reproductive capacity compared to free and associated drugs. It was possible to prove that the NCs were absorbed orally by the worms using fluorescence microscopy. Co-encapsulation of QN and CR was effective against P. falciparum, minimizing the toxic effects caused by chronic exposure of the free drugs in C. elegans.
Collapse
|
22
|
Son YS, Ullah HMA, Elfadl AK, Chung MJ, Ghim SG, Kim YD, Lee EJ, Kang KK, Jeong KS. Preventive Effects of Vitamin C on Diethylnitrosamine-induced Hepatotoxicity in Smp30 Knockout Mice. In Vivo 2018; 32:93-99. [PMID: 29275304 PMCID: PMC5892647 DOI: 10.21873/invivo.11209] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 10/18/2017] [Accepted: 10/26/2017] [Indexed: 02/07/2023]
Abstract
Vitamin C (L-ascorbic acid) is well known as a free radical scavenger that protects cells against damage from oxidative stress. Herein, we investigated the effects of vitamin C against diethylnitrosamine (DEN)-induced hepatotoxicity. Male wild-type (C57BL/6) and senescence marker protein-30 (Smp30) knockout (KO) mice were used and divided in the following four groups: WT group (n=15): Wild-type (WT) mice fed vitamin C-free diet with tap water; WV group (n=14): WT mice fed vitamin C-free diet with water supplemented with 1.5 g/kg vitamin C; KT group (n=12): Smp30 KO mice fed vitamin C-free diet with tap water; and KV group (n=13): Smp30 KO mice fed vitamin C-free diet with water supplemented with 1.5 g/kg vitamin C. A single intraperitoneal injection of DEN (5 mg/kg body weight) was injected in the second week during the experimental period. Mice were sacrificed after 17 weeks of treatment to investigate the effect of dietary vitamin C on DEN-induced hepatotoxicity. The results showed that vitamin C significantly increased the mean lifespan (p<0.05) in the WT, WV and KV groups compared with the KT group. The serum concentrations of γ-glutamyl transpeptidase, alanine aminotransferase, and aspartate aminotransferase did not significantly differ among groups. The WT group exhibited significantly more acute cellular swelling accompanied by centrilobular necrosis, focal lymphocyte infiltration, and eosinophilic intracytoplasmic inclusion bodies as compared with the WV and KV groups, suggesting that vitamin C had a hepatoprotective effect. Dysplastic, large, and binucleated hepatocytes were also observed in the WT group, but these pathological signs were absent from the WV and KV groups. Our experimental evidence suggests that vitamin C supplementation in Smp30 KO mice was effective for the treatment of DEN-induced hepatotoxicity.
Collapse
Affiliation(s)
- Young-Sook Son
- College of Veterinary Medicine and Stem Cell Therapeutic Research Institute, Kyungpook National University, Daegu, Republic of Korea
| | - H M Arif Ullah
- College of Veterinary Medicine and Stem Cell Therapeutic Research Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Ahmed K Elfadl
- College of Veterinary Medicine and Stem Cell Therapeutic Research Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Myung-Jin Chung
- College of Veterinary Medicine and Stem Cell Therapeutic Research Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Soong-Gu Ghim
- College of Veterinary Medicine and Stem Cell Therapeutic Research Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Yong Deuk Kim
- College of Veterinary Medicine and Stem Cell Therapeutic Research Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Eun-Joo Lee
- College of Veterinary Medicine and Stem Cell Therapeutic Research Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Kyung-Ku Kang
- College of Veterinary Medicine and Stem Cell Therapeutic Research Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Kyu-Shik Jeong
- College of Veterinary Medicine and Stem Cell Therapeutic Research Institute, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
23
|
Sonane M, Moin N, Satish A. The role of antioxidants in attenuation of Caenorhabditis elegans lethality on exposure to TiO 2 and ZnO nanoparticles. CHEMOSPHERE 2017; 187:240-247. [PMID: 28854380 DOI: 10.1016/j.chemosphere.2017.08.080] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 08/05/2017] [Accepted: 08/16/2017] [Indexed: 05/26/2023]
Abstract
The exponential increase in the usage of engineered nanoparticles (ENPs) has raised global concerns due to their potential toxicity and environmental impacts. Nano-TiO2 and nano-ZnO have been extensively used in various applications. Thus, there is a need for determining the toxic potentials of ENPs as well as, to develop the possible attenuation method for ENPs toxicity. Both in the in vitro and in vivo systems, exposure to the majority of ENPs have shown Reactive Oxygen Species (ROS) generation, which leads to oxidative stress mediated inflammation, genotoxicity, and cytotoxicity. Hence, with the rationale of determining easy and economical protection against ENPs exposure, the amelioration effect of the antioxidants (curcumin and vitamin-C) against the nano-TiO2 and nano-ZnO induced ROS and lethality were investigated in Caenorhabditis elegans. We not only employed pre-treatment and along with treatment approach, but also determined the effect of antioxidants at different time points of treatment. Our study revealed that both the antioxidants efficiently ameliorate nanoparticles induced ROS as well as lethality in worms. Further, the pretreatment approach was more effective than the along with treatment. Therefore, our study indicates the possibility of evading the nanotoxicity by incorporating curcumin and vitamin-C in everyday diet.
Collapse
Affiliation(s)
- Madhavi Sonane
- Ecotoxicology Laboratory, Nanotherapeutics & Nanomaterial Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, M.G. Marg, Post Box-80, Lucknow 226 001, Uttar Pradesh, India; Department of Biochemistry, Babu Banarasi Das University, Lucknow 227015, India
| | - Nida Moin
- Ecotoxicology Laboratory, Nanotherapeutics & Nanomaterial Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, M.G. Marg, Post Box-80, Lucknow 226 001, Uttar Pradesh, India; Department of Biochemistry, Babu Banarasi Das University, Lucknow 227015, India
| | - Aruna Satish
- Ecotoxicology Laboratory, Nanotherapeutics & Nanomaterial Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, M.G. Marg, Post Box-80, Lucknow 226 001, Uttar Pradesh, India.
| |
Collapse
|
24
|
Flavonoids as Putative Inducers of the Transcription Factors Nrf2, FoxO, and PPAR γ. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:4397340. [PMID: 28761622 PMCID: PMC5518529 DOI: 10.1155/2017/4397340] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 05/21/2017] [Indexed: 12/13/2022]
Abstract
Dietary flavonoids have been shown to extend the lifespan of some model organisms and may delay the onset of chronic ageing-related diseases. Mechanistically, the effects could be explained by the compounds scavenging free radicals or modulating signalling pathways. Transcription factors Nrf2, FoxO, and PPARγ possibly affect ageing by regulating stress response, adipogenesis, and insulin sensitivity. Using Hek-293 cells transfected with luciferase reporter constructs, we tested the potency of flavonoids from different subclasses (flavonols, flavones, flavanols, and isoflavones) to activate these transcription factors. Under cell-free conditions (ABTS and FRAP assays), we tested their free radical scavenging activities and used α-tocopherol and ascorbic acid as positive controls. Most of the tested flavonoids, but not the antioxidant vitamins, stimulated Nrf2-, FoxO-, and PPARγ-dependent promoter activities. Flavonoids activating Nrf2 also tended to induce a FoxO and PPARγ response. Interestingly, activation patterns of cellular stress response by flavonoids were not mirrored by their activities in ABTS and FRAP assays, which depended mostly on hydroxylation in the flavonoid B ring and, in some cases, extended that of the vitamins. In conclusion, the free radical scavenging properties of flavonoids do not predict whether these molecules can stimulate a cellular response linked to activation of longevity-associated transcription factors.
Collapse
|
25
|
Suh HJ, Shin B, Han SH, Woo MJ, Hong KB. Behavioral Changes and Survival in Drosophila melanogaster: Effects of Ascorbic Acid, Taurine, and Caffeine. Biol Pharm Bull 2017; 40:1873-1882. [DOI: 10.1248/bpb.b17-00321] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Hyung Joo Suh
- Department of Public Health Sciences, Korea University
| | - Byungsoo Shin
- Department of Integrated Biomedical and Life Sciences, Graduate School, Korea University
| | - Sung-Hee Han
- BK21Plus, College of Health Science, Korea University
| | | | - Ki-Bae Hong
- Department of Biological Sciences and Environmental Sciences Program, Southern Illinois University-Edwardsville
| |
Collapse
|
26
|
Wang E, Wink M. Chlorophyll enhances oxidative stress tolerance inCaenorhabditis elegansand extends its lifespan. PeerJ 2016; 4:e1879. [PMID: 27077003 PMCID: PMC4830245 DOI: 10.7717/peerj.1879] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 03/11/2016] [Indexed: 02/03/2023] Open
Abstract
Green vegetables are thought to be responsible for several beneficial properties such as antioxidant, anti-mutagenic, and detoxification activities. It is not known whether these effects are due to chlorophyll which exists in large amounts in many foods or result from other secondary metabolites. In this study, we used the model systemCaenorhabditis elegansto investigate the anti-oxidative and anti-aging effects of chlorophyllin vivo. We found that chlorophyll significantly improves resistance to oxidative stress. It also enhances the lifespan ofC. elegansby up to 25% via activation of the DAF-16/FOXO-dependent pathway. The results indicate that chlorophyll is absorbed by the worms and is thus bioavailable, constituting an important prerequisite for antioxidant and longevity-promoting activities inside the body. Our study thereby supports the view that green vegetables may also be beneficial for humans.
Collapse
Affiliation(s)
- Erjia Wang
- Department of Biology, Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer, Heidelberg, Germany
| | - Michael Wink
- Department of Biology, Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer, Heidelberg, Germany
| |
Collapse
|
27
|
Zhang Y, Liu H, Li H, Chen M, Pang P, Wang H, Wu Z, Yang W. Determination of Ascorbic Acid by a Gold–Zinc Oxide Nanoparticle-Modified Glassy Carbon Electrode. ANAL LETT 2016. [DOI: 10.1080/00032719.2016.1142557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
28
|
The Mediterranean Lifestyle as a Non-Pharmacological and Natural Antioxidant for Healthy Aging. Antioxidants (Basel) 2015; 4:719-36. [PMID: 26783955 PMCID: PMC4712942 DOI: 10.3390/antiox4040719] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 11/03/2015] [Accepted: 11/04/2015] [Indexed: 12/31/2022] Open
Abstract
Oxidative stress has been suggested to affect age-associated physiological dysfunction. Therefore, it is speculated that antioxidant supplements could have a potential role in preventing age-related diseases and death. Among different dietary habits, the highly antioxidant Mediterranean dietary pattern, which includes high vegetable and fruit intake, consumption of legumes, cereals, and fish, low intake of meat and dairy derivatives, moderate red wine consumption, and use of extra-virgin olive oil, is characterized by other aspects than food, such as conviviality, sensory stimulation, socialization, biodiversity, and seasonality that can reinforce the Mediterranean diet’s (MeD) beneficial effects on wellbeing, quality of life, and healthy aging. The present review aims to discuss available data on the relationship between oxidative stress and aging, biomarkers of oxidative stress status, protective effects of the MeD, and the adoption of the Mediterranean lifestyle as a non-pharmacological and natural tool to cope with oxidative stress damage for a longer life span, and—even more important—healthy aging beyond the biological, psychological, and social challenges that old age entails.
Collapse
|
29
|
|
30
|
Liu T, Qi H, Ma L, Liu Z, Fu H, Zhu W, Song T, Yang B, Li G. Resveratrol Attenuates Oxidative Stress and Extends Life Span in the Annual Fish Nothobranchius guentheri. Rejuvenation Res 2015; 18:225-33. [DOI: 10.1089/rej.2014.1618] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Tingting Liu
- Shandong Provincial Key Laboratory of Animal Resistant Biology, School of Life Sciences, Shandong Normal University, Jinan, China
| | - He Qi
- Shandong Provincial Key Laboratory of Animal Resistant Biology, School of Life Sciences, Shandong Normal University, Jinan, China
| | - Long Ma
- Shandong Provincial Key Laboratory of Animal Resistant Biology, School of Life Sciences, Shandong Normal University, Jinan, China
| | - Zhaojun Liu
- Shandong Provincial Key Laboratory of Animal Resistant Biology, School of Life Sciences, Shandong Normal University, Jinan, China
| | - Huiling Fu
- Shandong Provincial Key Laboratory of Animal Resistant Biology, School of Life Sciences, Shandong Normal University, Jinan, China
| | - Wenzhen Zhu
- Shandong Provincial Key Laboratory of Animal Resistant Biology, School of Life Sciences, Shandong Normal University, Jinan, China
| | - Taiyu Song
- Shandong Provincial Key Laboratory of Animal Resistant Biology, School of Life Sciences, Shandong Normal University, Jinan, China
| | - Bingwu Yang
- Shandong Provincial Key Laboratory of Animal Resistant Biology, School of Life Sciences, Shandong Normal University, Jinan, China
| | - Guorong Li
- Shandong Provincial Key Laboratory of Animal Resistant Biology, School of Life Sciences, Shandong Normal University, Jinan, China
| |
Collapse
|
31
|
Rinnerthaler M, Bischof J, Streubel MK, Trost A, Richter K. Oxidative stress in aging human skin. Biomolecules 2015; 5:545-89. [PMID: 25906193 PMCID: PMC4496685 DOI: 10.3390/biom5020545] [Citation(s) in RCA: 545] [Impact Index Per Article: 54.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 03/18/2015] [Accepted: 04/09/2015] [Indexed: 02/07/2023] Open
Abstract
Oxidative stress in skin plays a major role in the aging process. This is true for intrinsic aging and even more for extrinsic aging. Although the results are quite different in dermis and epidermis, extrinsic aging is driven to a large extent by oxidative stress caused by UV irradiation. In this review the overall effects of oxidative stress are discussed as well as the sources of ROS including the mitochondrial ETC, peroxisomal and ER localized proteins, the Fenton reaction, and such enzymes as cyclooxygenases, lipoxygenases, xanthine oxidases, and NADPH oxidases. Furthermore, the defense mechanisms against oxidative stress ranging from enzymes like superoxide dismutases, catalases, peroxiredoxins, and GSH peroxidases to organic compounds such as L-ascorbate, α-tocopherol, beta-carotene, uric acid, CoQ10, and glutathione are described in more detail. In addition the oxidative stress induced modifications caused to proteins, lipids and DNA are discussed. Finally age-related changes of the skin are also a topic of this review. They include a disruption of the epidermal calcium gradient in old skin with an accompanying change in the composition of the cornified envelope. This modified cornified envelope also leads to an altered anti-oxidative capacity and a reduced barrier function of the epidermis.
Collapse
Affiliation(s)
- Mark Rinnerthaler
- Department of Cell Biology, Division of Genetics, University of Salzburg, Salzburg 5020, Austria.
| | - Johannes Bischof
- Department of Cell Biology, Division of Genetics, University of Salzburg, Salzburg 5020, Austria.
| | - Maria Karolin Streubel
- Department of Cell Biology, Division of Genetics, University of Salzburg, Salzburg 5020, Austria.
| | - Andrea Trost
- Department of Ophthalmology and Optometry, Paracelsus Medical University, Muellner Hauptstrasse 48, 5020 Salzburg, Austria.
| | - Klaus Richter
- Department of Cell Biology, Division of Genetics, University of Salzburg, Salzburg 5020, Austria.
| |
Collapse
|
32
|
Fu X, Tang Y, Dickinson BC, Chang CJ, Chang Z. An oxidative fluctuation hypothesis of aging generated by imaging H₂O₂ levels in live Caenorhabditis elegans with altered lifespans. Biochem Biophys Res Commun 2015; 458:896-900. [PMID: 25701790 DOI: 10.1016/j.bbrc.2015.02.055] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 02/11/2015] [Indexed: 12/21/2022]
Abstract
Reactive oxygen species (ROS) are important factors mediating aging according to the free radical theory of aging. Few studies have systematically measured ROS levels in relationship to aging, partly due to the lack of tools for detection of specific ROS in live animals. By using the H₂O₂-specific fluorescence probe Peroxy Orange 1, we assayed the H₂O₂ levels of live Caenorhabditis elegans with 41 aging-related genes being individually knocked down by RNAi. Knockdown of 14 genes extends the lifespan but increases H₂O₂ level or shortens the lifespan but decreases H₂O₂ level, contradicting the free radical theory of aging. Strikingly, a significant inverse correlation between lifespan and the normalized standard deviation of H₂O₂ levels was observed (p < 0.0001). Such inverse correlation was also observed in worms cultured under heat shock conditions. An oxidative fluctuation hypothesis of aging is thus proposed and suggests that the ability of animals to homeostatically maintain the ROS levels within a narrow range is more important for lifespan extension than just minimizing the ROS levels though the latter still being crucial.
Collapse
Affiliation(s)
- Xinmiao Fu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Yan Tang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Bryan C Dickinson
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Christopher J Chang
- Department of Chemistry and the Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA.
| | - Zengyi Chang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
33
|
Patananan AN, Budenholzer LM, Pedraza ME, Torres ER, Adler LN, Clarke SG. The invertebrate Caenorhabditis elegans biosynthesizes ascorbate. Arch Biochem Biophys 2015; 569:32-44. [PMID: 25668719 PMCID: PMC4357563 DOI: 10.1016/j.abb.2015.02.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Revised: 01/28/2015] [Accepted: 02/01/2015] [Indexed: 01/01/2023]
Abstract
L-ascorbate, commonly known as vitamin C, serves as an antioxidant and cofactor essential for many biological processes. Distinct ascorbate biosynthetic pathways have been established for animals and plants, but little is known about the presence or synthesis of this molecule in invertebrate species. We have investigated ascorbate metabolism in the nematode Caenorhabditis elegans, where this molecule would be expected to play roles in oxidative stress resistance and as cofactor in collagen and neurotransmitter synthesis. Using high-performance liquid chromatography and gas-chromatography mass spectrometry, we determined that ascorbate is present at low amounts in the egg stage, L1 larvae, and mixed animal populations, with the egg stage containing the highest concentrations. Incubating C. elegans with precursor molecules necessary for ascorbate synthesis in plants and animals did not significantly alter ascorbate levels. Furthermore, bioinformatic analyses did not support the presence in C. elegans of either the plant or the animal biosynthetic pathway. However, we observed the complete 13C-labeling of ascorbate when C. elegans was grown with 13C-labeled Escherichia coli as a food source. These results support the hypothesis that ascorbate biosynthesis in invertebrates may proceed by a novel pathway and lay the foundation for a broader understanding of its biological role.
Collapse
Affiliation(s)
- Alexander N Patananan
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, UCLA, Los Angeles, CA 90095, USA
| | - Lauren M Budenholzer
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, UCLA, Los Angeles, CA 90095, USA
| | - Maria E Pedraza
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, UCLA, Los Angeles, CA 90095, USA
| | - Eric R Torres
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, UCLA, Los Angeles, CA 90095, USA
| | - Lital N Adler
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, UCLA, Los Angeles, CA 90095, USA
| | - Steven G Clarke
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, UCLA, Los Angeles, CA 90095, USA.
| |
Collapse
|
34
|
Grimm C, Osiewacz HD. Manganese rescues adverse effects on lifespan and development in Podospora anserina challenged by excess hydrogen peroxide. Exp Gerontol 2015; 63:8-17. [PMID: 25616172 DOI: 10.1016/j.exger.2015.01.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 01/14/2015] [Accepted: 01/19/2015] [Indexed: 10/24/2022]
Abstract
For biological systems, balancing cellular levels of reactive oxygen species (ROS) is of great importance because ROS are both, essential for cellular signaling and dangerous in causing molecular damage. Cellular ROS abundance is controlled by a delicate network of molecular pathways. Within this network, superoxide dismutases (SODs) are active in disproportion of the superoxide anion leading to the formation of hydrogen peroxide. The fungal aging model Podospora anserina encodes at least three SODs. One of these is the mitochondrial PaSOD3 isoform containing manganese as a cofactor. Previous work resulted in the selection of strains in which PaSod3 is strongly overexpressed. These strains display impairments in growth and lifespan. A computational model suggests a series of events to occur in Sod3 overexpressing strains leading to adverse effects due to elevated hydrogen peroxide levels. In an attempt to validate this model and to obtain more detailed information about the cellular responses involved in ROS balancing, we further investigated the PaSod3 overexpressing strains. Here we show that hydrogen peroxide levels are indeed strongly increased in the mutant strain. Surprisingly, this phenotype can be rescued by the addition of manganese to the growth medium. Strikingly, while we obtained no evidence for an antioxidant effect of manganese, we found that the metal is required for induction of components of the ROS scavenging network and lowers the hydrogen peroxide level of the mutant. A similar effect of manganese on lifespan reversion was obtained in wild-type strains challenged with exogenous hydrogen peroxide. It appears that manganese is limited under high hydrogen peroxide and suggests that a manganese-dependent activity leads to the induction of ROS scavenging components.
Collapse
Affiliation(s)
- Carolin Grimm
- Johann Wolfgang Goethe University, Faculty for Biosciences & Cluster of Excellence 'Macromolecular Complexes' Frankfurt, Institute of Molecular Biosciences, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Heinz D Osiewacz
- Johann Wolfgang Goethe University, Faculty for Biosciences & Cluster of Excellence 'Macromolecular Complexes' Frankfurt, Institute of Molecular Biosciences, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany.
| |
Collapse
|
35
|
Yilmaz LS, Walhout AJM. Worms, bacteria, and micronutrients: an elegant model of our diet. Trends Genet 2014; 30:496-503. [PMID: 25172020 PMCID: PMC4399232 DOI: 10.1016/j.tig.2014.07.010] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 07/22/2014] [Accepted: 07/22/2014] [Indexed: 01/21/2023]
Abstract
Micronutrients are required in small proportions in a diet to carry out key metabolic roles for biomass and energy production. Humans receive micronutrients either directly from their diet or from gut microbiota that metabolize other nutrients. The nematode Caenorhabditis elegans and its bacterial diet provide a relatively simple and genetically tractable model to study both direct and microbe-mediated effects of micronutrients. Recently, this model has been used to gain insight into the relationship between micronutrients, physiology, and metabolism. In particular, two B-type vitamins, vitamin B12 and folate, have been studied in detail. Here we review how C. elegans and its bacterial diet provide a powerful interspecies systems biology model that facilitates the precise delineation of micronutrient effects and the mechanisms involved.
Collapse
Affiliation(s)
- Lutfu Safak Yilmaz
- Program in Systems Biology, Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Albertha J M Walhout
- Program in Systems Biology, Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
36
|
Balcerczyk A, Gajewska A, Macierzyńska-Piotrowska E, Pawelczyk T, Bartosz G, Szemraj J. Enhanced antioxidant capacity and anti-ageing biomarkers after diet micronutrient supplementation. Molecules 2014; 19:14794-808. [PMID: 25232703 PMCID: PMC6270881 DOI: 10.3390/molecules190914794] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 09/03/2014] [Accepted: 09/09/2014] [Indexed: 12/21/2022] Open
Abstract
A growing number of studies confirm an important effect of diet, lifestyle and physical activity on health status, the ageing process and many metabolic disorders. This study focuses on the influence of a diet supplement, NucleVital®Q10 Complex, on parameters related to redox homeostasis and ageing. An experimental group of 66 healthy volunteer women aged 35–55 supplemented their diet for 12 weeks with the complex, which contained omega-3 acids (1350 mg/day), ubiquinone (300 mg/day), astaxanthin (15 mg/day), lycopene (45 mg/day), lutein palmitate (30 mg/day), zeaxanthine palmitate (6 mg/day), L-selenomethionine (330 mg/day), cholecalciferol (30 µg/day) and α-tocopherol (45 mg/day). We found that NucleVital®Q10 Complex supplementation significantly increased total antioxidant capacity of plasma and activity of erythrocyte superoxide dismutase, with slight effects on oxidative stress biomarkers in erythrocytes; MDA and 4-hydroxyalkene levels. Apart from the observed antioxidative effects, the tested supplement also showed anti-ageing activity. Analysis of expression of SIRT1 and 2 in PBMCs showed significant changes for both genes on a mRNA level. The level of telomerase was also increased by more than 25%, although the length of lymphocyte telomeres, determined by RT-PCR, remained unchanged. Our results demonstrate beneficial effects concerning the antioxidant potential of plasma as well as biomarkers related to ageing even after short term supplementation of diet with NucleVital®Q10 Complex.
Collapse
Affiliation(s)
- Aneta Balcerczyk
- Department of Molecular Biophysics, University of Lodz, Pomorska 141/143, Lodz 90-236, Poland
| | - Agnieszka Gajewska
- Department of Molecular Biophysics, University of Lodz, Pomorska 141/143, Lodz 90-236, Poland
| | | | - Tomasz Pawelczyk
- Department of Affective and Psychotic Disorders, Medical University of Lodz, Czechoslowacka 8/10, Lodz 92-216, Poland
| | - Grzegorz Bartosz
- Department of Molecular Biophysics, University of Lodz, Pomorska 141/143, Lodz 90-236, Poland
| | - Janusz Szemraj
- Department of Medical Biochemistry, Medical University in Lodz, Mazowiecka 6/8, Lodz 92-215, Poland.
| |
Collapse
|
37
|
|
38
|
Effect of antioxidants supplementation on aging and longevity. BIOMED RESEARCH INTERNATIONAL 2014; 2014:404680. [PMID: 24783202 PMCID: PMC3982418 DOI: 10.1155/2014/404680] [Citation(s) in RCA: 157] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 02/11/2014] [Indexed: 01/06/2023]
Abstract
If aging is due to or contributed by free radical reactions, as postulated by the free radical theory of aging, lifespan of organisms should be extended by administration of exogenous antioxidants. This paper reviews data on model organisms concerning the effects of exogenous antioxidants (antioxidant vitamins, lipoic acid, coenzyme Q, melatonin, resveratrol, curcumin, other polyphenols, and synthetic antioxidants including antioxidant nanoparticles) on the lifespan of model organisms. Mechanisms of effects of antioxidants, often due to indirect antioxidant action or to action not related to the antioxidant properties of the compounds administered, are discussed. The legitimacy of antioxidant supplementation in human is considered.
Collapse
|
39
|
Speakman JR, Garratt M. Oxidative stress as a cost of reproduction: Beyond the simplistic trade-off model. Bioessays 2013; 36:93-106. [DOI: 10.1002/bies.201300108] [Citation(s) in RCA: 161] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- John R. Speakman
- Key State Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology; Chinese Academy of Sciences; Beijing China
- Institute of Biological and Environmental sciences; University of Aberdeen; Aberdeen Scotland UK
| | - Michael Garratt
- Evolution and Ecology Research Group and School of Biological, Earth and Environmental Sciences; The University of New South Wales; Sydney NSW Australia
| |
Collapse
|
40
|
Juránek I, Nikitovic D, Kouretas D, Hayes AW, Tsatsakis AM. Biological importance of reactive oxygen species in relation to difficulties of treating pathologies involving oxidative stress by exogenous antioxidants. Food Chem Toxicol 2013; 61:240-7. [PMID: 24025685 DOI: 10.1016/j.fct.2013.08.074] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 08/21/2013] [Accepted: 08/22/2013] [Indexed: 02/07/2023]
Abstract
Findings about involvement of reactive oxygen species (ROS) not only in defense processes, but also in a number of pathologies, stimulated discussion about their role in etiopathogenesis of various diseases. Yet questions regarding the role of ROS in tissue injury, whether ROS may serve as a common cause of different disorders or whether their uncontrolled production is just a manifestation of the processes involved, remain unexplained. Dogmatically, increased ROS formation is considered to be responsible for development of the so-called free-radical diseases. The present review discusses importance of ROS in various biological processes, including origin of life, evolution, genome plasticity, maintaining homeostasis and organism protection. This may be a reason why no significant benefit was found when exogenous antioxidants were used to treat free-radical diseases, even though their causality was primarily attributed to ROS. Here, we postulate that ROS unlikely play a causal role in tissue damage, but may readily be involved in signaling processes and as such in mediating tissue healing rather than injuring. This concept is thus in a contradiction to traditional understanding of ROS as deleterious agents. Nonetheless, under conditions of failing autoregulation, ROS may attack integral cellular components, cause cell death and deteriorate the evolving injury.
Collapse
Affiliation(s)
- Ivo Juránek
- Institute of Experimental Pharmacology & Toxicology, Slovak Academy of Sciences, Bratislava, Slovakia.
| | | | | | | | | |
Collapse
|
41
|
Boehm AM, Rosenstiel P, Bosch TCG. Stem cells and aging from a quasi-immortal point of view. Bioessays 2013; 35:994-1003. [PMID: 24037777 DOI: 10.1002/bies.201300075] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Understanding aging and how it affects an organism's lifespan is a fundamental problem in biology. A hallmark of aging is stem cell senescence, the decline of functionality, and number of somatic stem cells, resulting in an impaired regenerative capacity and reduced tissue function. In addition, aging is characterized by profound remodeling of the immune system and a quantitative decline of adequate immune responses, a phenomenon referred to as immune-senescence. Yet, what is causing stem cell and immune-senescence? This review discusses experimental studies of potentially immortal Hydra which have made contributions to answering this question. Hydra transcription factor FoxO has been shown to modulate both stem cell proliferation and innate immunity, lending strong support to a role of FoxO as critical rate-of-aging regulator from Hydra to human. Constructing a model of how FoxO responds to diverse environmental factors provides a framework for how stem cell factors might contribute to aging.
Collapse
Affiliation(s)
- Anna-Marei Boehm
- Zoological Institute, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | | | | |
Collapse
|