1
|
Mashkoor NR, Abed SA, Davoudi A, Jassim ZAA, Faraj ZY, Akbari F, Bajgiran FA, Hedayati M, Salehzadeh A. Synthesis of platinum nanoparticles functionalized with glutamine and conjugated with thiosemicarbazone and their cytotoxic effects on MDA-MB-231 breast cancer cell line and evaluation of CASP-8 gene expression. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03629-z. [PMID: 39665983 DOI: 10.1007/s00210-024-03629-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 11/11/2024] [Indexed: 12/13/2024]
Abstract
Breast cancer (BC) is the most prevalent form of cancer among women and is a major contributor to cancer-related fatalities. Nanotechnology has provided novel approaches to drug delivery to cancer cells. In this work, we synthesized platinum (Pt) nanoparticles, functionalized them with glutamine, conjugated them with thiosemicarbazone (TSC), and characterized their anticancer effects on the MDA-MB-231 breast cancer cell line. Characteristics of the nanoparticles were assessed by FT-IR, XRD, EDS mapping, SEM, TEM, DLS, and zeta potential measurement. Cell viability was characterized by MTT assay, and cell necrosis/apoptosis levels were determined by flow cytometry. The expression level of the CASP-8 gene was investigated by real-time PCR. Pt@Gln-TSC nanoparticles are spherical, 20-70 nm in diameter in dry form, 662 nm after hydration, and their zeta potential was - 6.6 mV. The 50% inhibitory concentration (IC50) for MDA-MB-231 (breast cancer) and HDF (normal) cell lines was 170 and 348µg/ml, respectively. Also, the IC50 of oxaliplatin drug and TSC on MDA-MB-231 cells was 184 µg/ml and 307 µg/ml, respectively. Treatment with Pt@Gln-TSC nanoparticles caused an increase in cell necrosis and primary apoptosis and elevated the expression of the CASP-8 gene by 2.54 folds. This study shows that Pt@Gln-TSC nanoparticles are significantly more toxic to breast cancer cells than to normal cells and can inhibit MDA-MB-231 cells by activating extrinsic apoptosis.
Collapse
Affiliation(s)
- Nabeel Rahi Mashkoor
- Department of Pathological Analysis, College of Science, AL-Qadisiyah University, Al Diwaniyah, AL-Qadisiyah, Iraq
| | - Salwan Ali Abed
- Environmental Science Department, College of Science, AL-Qadisiyah University, Al Diwaniyah, AL-Qadisiyah, Iraq
| | - Arash Davoudi
- Division of Cytogenetic, Dr. Keshavarz Medical Genetics Lab, Rasht, Iran
- Department of Biology, Rasht Branch, Islamic Azad University, Rasht, Iran
| | | | - Zainab Yousif Faraj
- Scientific Affairs Department, AL-Qadisiyah University, Al Diwaniyah, AL-Qadisiyah, Iraq
| | - Fatemeh Akbari
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | | | | | - Ali Salehzadeh
- Department of Biology, Rasht Branch, Islamic Azad University, Rasht, Iran.
| |
Collapse
|
2
|
Lv Z, Ali A, Zou C, Wang Z, Ma M, Cheng N, Shad M, Hao H, Zhang Y, Rahman FU. Salicylaldehyde-derived piperazine-functionalized hydrazone ligand-based Pt(II) complexes: inhibition of EZH2-dependent tumorigenesis in pancreatic ductal adenocarcinoma, synergism with PARP inhibitors and enhanced apoptosis. Dalton Trans 2024; 53:13871-13889. [PMID: 39091221 DOI: 10.1039/d4dt01243g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Piperazine is an important functional unit of many clinically approved drugs, including chemotherapeutic agents. In the current study, methyl piperazine was incorporated and eight salicylaldehyde-derived piperazine-functionalized hydrazone ONN-donor ligands (L) and their Pt(II) complexes (L-PtCl) were prepared. The structures of all these ligands (L1-L8) and Pt(II) complexes (C1-C8) were determined using 1H and 13C NMR, UV-vis, FT-IR and HR-ESI MS analyses, whereas the structures of C1, C5, C6, C7 and C8 were determined in the solid state using single crystal X-ray diffraction analysis. Solution state stabilities of C3, C4, C5 and C6 were determined via time-dependent UV-vis spectroscopy. All these complexes (C1-C8) were studied for their anticancer effect in pancreatic ductal adenocarcinoma cells, including BxPC3, MIAPaCa-2 and PANC1 cells. C1-C8 displayed a potential cytotoxic effect in all these cancer cells, among which C5, C6 and C8 showed the strongest inhibitory effect in comparison with standard chemotherapeutic agents, including 5-fluorouracil (5-FU), cisplatin (CP), oxaliplatin and doxorubicin (DOX). C5, C6 and C8 suppressed the growth of pancreatic cancer cells in a dose-dependent manner. Moreover, C5, C6 and C8 inhibited clonogenic potential and invasion ability and induced apoptosis in PANC1 cells. Importantly, C5, C6 and C8 synergized the anticancer effect with PARP inhibitors, including olaparib, veliparib and niraparib, in pancreatic cancer cells, thus suggesting an important role of C5, C6 and C8 in induction of apoptosis in combination with PARP inhibitors. C5 combined with PARP inhibitors induced caspase3/7 activity and suppressed ATP production. Mechanistically, C5, C6 and C8 inhibited EZH2 protein expression to suppress EZH2-dependent tumorigenesis. Overall, these results highlighted the importance of these piperazine-functionalized Pt(II) complexes as potential anticancer agents to suppress pancreatic ductal adenocarcinoma tumorigenesis by targeting the EZH2-dependent pathway.
Collapse
Affiliation(s)
- Zhimin Lv
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, People's Republic of China.
| | - Amjad Ali
- Institute of Integrative Biosciences, CECOS University of IT and Emerging Sciences, Peshawar, KPK, Pakistan
- Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, People's Republic of China
| | - Cheng Zou
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, People's Republic of China.
| | - Zerui Wang
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, People's Republic of China.
| | - Minglu Ma
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, People's Republic of China.
| | - Na Cheng
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, People's Republic of China.
| | - Man Shad
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, People's Republic of China.
- School of Life Sciences, Inner Mongolia University, Hohhot 010021, People's Republic of China
| | - Huifang Hao
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, People's Republic of China.
- School of Life Sciences, Inner Mongolia University, Hohhot 010021, People's Republic of China
| | - Yongmin Zhang
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, People's Republic of China.
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, 4 Place Jussieu, 75005 Paris, France
| | - Faiz-Ur Rahman
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, People's Republic of China.
| |
Collapse
|
3
|
Kaproń B, Płazińska A, Płaziński W, Plech T. Identification of the first-in-class dual inhibitors of human DNA topoisomerase IIα and indoleamine-2,3-dioxygenase 1 (IDO 1) with strong anticancer properties. J Enzyme Inhib Med Chem 2023; 38:192-202. [DOI: 10.1080/14756366.2022.2140420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Barbara Kaproń
- Department of Clinical Genetics, Medical University of Lublin, Lublin, Poland
| | - Anita Płazińska
- Department of Biopharmacy, Medical University of Lublin, Lublin, Poland
| | - Wojciech Płaziński
- Department of Biopharmacy, Medical University of Lublin, Lublin, Poland
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Cracow, Poland
| | - Tomasz Plech
- Department of Pharmacology, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
4
|
Tavares da Rocha RE, de Almeida Júnior ASA, Júnior NCP, do Nascimento AV, Leite NMS, de Oliveira JF, Alves de Lima MDC, Feitosa APS, Bezerra de Mélo ME, Brayner FA, Alves LC. Synthesis, in vitro schistosomicidal activity and ultrastructural alterations caused by thiosemicarbazones and thiazolidinones against juvenile and adult Schistosoma mansoni worms (Sambon, 1907). Mol Biochem Parasitol 2022; 252:111520. [PMID: 36122704 DOI: 10.1016/j.molbiopara.2022.111520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 08/14/2022] [Accepted: 09/08/2022] [Indexed: 12/31/2022]
Abstract
Schistosomiasis is a neglected disease that affects about 258 million people worldwide. Caused by Schistosoma mansoni, helminth which, in Brazil, it is present on 19 states and capital. Praziquantel (PZQ) treatment presents low efficacy and adverse effects in parasites juvenile stages. Thiosemicarbazones and thiazolidinones are rising as potent chemical groups that have biological activity wide spectrum, and with radical modifications, they may become more effective and selective. Aiming to evaluate the action of these molecules against S. mansoni, JF series thiosemicarbazones and thiazolidinones (LqIT/UFPE) were synthesized: JF30, JF31, JF33, JF34, JF35, JF36, JF38, JF39, JF42 and JF43. Several parameters were evaluated, such as: their cytotoxicity in VERO cells, in vitro schistosomicidal activity for juvenile and adult worms and their action on worms through ultrastructural changes. Cytotoxicity indices ranged from 272 µM to 725 µM. When evaluating mortality rate, adult and juvenile worms showed 100 % mortality rate within 24 h and 48 h, respectively, when exposed to the compounds JF31 and JF43 at a dose of 200 µM. Also, motility, mortality and oviposition parameters were evaluated: JF31 and JF43 presented a score of 0 in 24 h, meaning total absence of movement, whereas no eggs and soft tissue damage were observed under optical microscopy. Through scanning electron microscopy, integumentary alterations caused by the compounds JF31 and JF43 were observed, such as: exposure of the musculature, formation of integumentary bubbles, integuments with abnormal morphology and destruction of tubercles and spikes. The results shoerd that the compound JF31 was 2.39 times more selective for adult worms and JF43 was 3.74 times more selective for juvenile worms. Thus, the compounds JF43 and JF31 are the most promising for presenting schistosomicidal activity of S. mansoni.
Collapse
Affiliation(s)
- Rubens Emanoel Tavares da Rocha
- Federal University of Pernambuco (UFPE), Keizo Asami Institute, 50740-465 Recife, PE, Brazil; Aggeu Magalhães Institute, Oswaldo Cruz Foundation (IAM-FIOCRUZ), Department of Parasitology, 50740-465 Recife, PE, Brazil.
| | | | - Nairomberg Cavalcanti Portela Júnior
- Federal University of Pernambuco (UFPE), Keizo Asami Institute, 50740-465 Recife, PE, Brazil; Aggeu Magalhães Institute, Oswaldo Cruz Foundation (IAM-FIOCRUZ), Department of Parasitology, 50740-465 Recife, PE, Brazil
| | - Amanda Vasconcelos do Nascimento
- Federal University of Pernambuco (UFPE), Keizo Asami Institute, 50740-465 Recife, PE, Brazil; Aggeu Magalhães Institute, Oswaldo Cruz Foundation (IAM-FIOCRUZ), Department of Parasitology, 50740-465 Recife, PE, Brazil
| | | | | | | | - Ana Paula Sampaio Feitosa
- Federal University of Pernambuco (UFPE), Keizo Asami Institute, 50740-465 Recife, PE, Brazil; Aggeu Magalhães Institute, Oswaldo Cruz Foundation (IAM-FIOCRUZ), Department of Parasitology, 50740-465 Recife, PE, Brazil
| | - Maria Eliane Bezerra de Mélo
- Aggeu Magalhães Institute, Oswaldo Cruz Foundation (IAM-FIOCRUZ), Department of Parasitology, 50740-465 Recife, PE, Brazil
| | - Fábio André Brayner
- Federal University of Pernambuco (UFPE), Keizo Asami Institute, 50740-465 Recife, PE, Brazil; Aggeu Magalhães Institute, Oswaldo Cruz Foundation (IAM-FIOCRUZ), Department of Parasitology, 50740-465 Recife, PE, Brazil
| | - Luiz Carlos Alves
- Federal University of Pernambuco (UFPE), Keizo Asami Institute, 50740-465 Recife, PE, Brazil; Aggeu Magalhães Institute, Oswaldo Cruz Foundation (IAM-FIOCRUZ), Department of Parasitology, 50740-465 Recife, PE, Brazil
| |
Collapse
|
5
|
Identification of Monobenzone as a Novel Potential Anti-Acute Myeloid Leukaemia Agent That Inhibits RNR and Suppresses Tumour Growth in Mouse Xenograft Model. Cancers (Basel) 2022; 14:cancers14194710. [PMID: 36230632 PMCID: PMC9564123 DOI: 10.3390/cancers14194710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/17/2022] [Accepted: 09/24/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary The clinical treatment of acute myeloid leukaemia is still dominated by chemotherapy. Clinically used anti-leukaemia drugs have shortcomings such as myelosuppression, toxicity and drug resistance. Therefore, the need to develop other chemotherapeutic drugs to meet more clinical needs is urgent. Ribonucleotide reductase (RNR) consists of a catalytic large subunit M1 (RRM1) and a regulatory small subunit M2 (RRM2), which provides dNTPs for DNA synthesis. The rapid proliferation of cancer cells requires large amounts of dNTPs. Therefore, the use of RNR inhibitors is a promising strategy for the clinical treatment of various malignancies. Monobenzone is an FDA-approved depigmenting agent for vitiligo patients. In this study, we demonstrate that monobenzone is a potent inhibitor of RNR enzyme activity by targeting RRM2 protein, and thus has significant anti-leukaemia efficacy in vitro and in vivo. This finding suggests that monobenzone has the potential to be optimized as a novel anti-AML therapeutic drug in the future. Abstract Acute myeloid leukaemia (AML) is one of the most common types of haematopoietic malignancy. Ribonucleotide reductase (RNR) is a key enzyme required for DNA synthesis and cell proliferation, and its small subunit RRM2 plays a key role for the enzymatic activity. We predicted monobenzone (MB) as a potential RRM2 target compound based on the crystal structure of RRM2. In vitro, MB inhibited recombinant RNR activity (IC50 = 0.25 μM). Microscale thermophoresis indicated that MB inhibited RNR activity by binding to RRM2. MB inhibited cell proliferation (MTT IC50 = 6–18 μM) and caused dose-dependent DNA synthesis inhibition, cell cycle arrest, and apoptosis in AML cells. The cell cycle arrest was reversed by the addition of deoxyribonucleoside triphosphates precursors, suggesting that RNR was the intracellular target of the compound. Moreover, MB overcame drug resistance to the common AML drugs cytarabine and doxorubicin, and treatment with the combination of MB and the Bcl-2 inhibitor ABT-737 exerted a synergistic inhibitory effect. Finally, the nude mice xenografts study indicated that MB administration produced a significant inhibitory effect on AML growth with relatively weak toxicity. Thus, we propose that MB has the potential as a novel anti-AML therapeutic agent in the future.
Collapse
|
6
|
Bandaru CM, Poojith N, Jadav SS, Basaveswara Rao MV, Babu KS, Sreenivasulu R, Alluri R. Design, Synthesis, Anticancer Evaluation, and Molecular Docking Studies of Thiazole–Pyrimidine Linked Amide Derivatives. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2021.1939067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Chandra Mohan Bandaru
- Department of Chemistry, Acharya Nagarjuna University, Guntur, Andhra Pradesh, India
| | - Nuthalapati Poojith
- Department of General Medicine, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamilnadu, India
| | - Surender Singh Jadav
- Centre for Molecular Cancer Research (CMCR), Department of Pharmaceutical Chemistry, Vishnu Institute of Pharmaceutical Education and Research (VIPER), Narsapur, Telangana, India
| | | | - K. Surendra Babu
- Department of Chemistry, Shree Velagapudi Ramakrishna Memorial College, Nagaram, Andhra Pradesh, India
| | - Reddymasu Sreenivasulu
- Department of Chemistry, University College of Engineering (Autonomous), Jawaharlal Nehru Technological University, Kakinada, Andhra Pradesh, India
| | - Ramesh Alluri
- Centre for Molecular Cancer Research (CMCR), Department of Pharmaceutical Chemistry, Vishnu Institute of Pharmaceutical Education and Research (VIPER), Narsapur, Telangana, India
| |
Collapse
|
7
|
Araškov JB, Nikolić M, Armaković S, Armaković S, Rodić M, Višnjevac A, Padrón JM, Todorović TR, Filipović NR. Structural, antioxidant, antiproliferative and in‒silico study of pyridine-based hydrazonyl‒selenazoles and their sulphur isosteres. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130512] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
8
|
Da Fonseca AG, Fernandes Ribeiro Dantas LLDS, Rodrigues JP, Alencar Filho MPDC, De Melo Rêgo MJB, Da Rocha Pitta MG, De Moraes Gomes PAT, De Melo Silva VG, Lima Leite AC, Furtado AA, Fernandes Pedrosa MDF, Gavioli EC, Moura Lemos TMA. PA-Int5: An isatin-thiosemicarbazone derivative that exhibits anti-nociceptive and anti-inflammatory effects in Swiss mice. Biomed Rep 2021; 15:61. [PMID: 34094537 PMCID: PMC8165752 DOI: 10.3892/br.2021.1437] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 04/23/2021] [Indexed: 12/25/2022] Open
Abstract
Pain and inflammation are symptoms of various diseases, and they can be modulated by different pathways, thus highlighting the importance of investigating the therapeutic effects of novel compounds. Previous studies have shown that isatin-thiosemicarbazone exhibits antitumor, antifungal antibacterial and other biological properties. Based on the wide range of biological effects of these compounds, the aim of the present study was to investigate the central nervous system (CNS) performance, and the anti-nociceptive and anti-inflammatory activity of (Z)-2-(5-nitro-2-oxoindolin-3-ilidene)-N-hydroazinecarbothioamide (PA-Int5) in treated mice. Three doses of PA-Int5 were tested orally (1.0, 2.5 and 5.0 mg/kg) in the nociceptive and inflammatory animal models. Additionally, the potential sedative effects of PA-Int5 (5 mg/kg, oral gavage) were investigated using an open field and rotarod tests, to exclude any possible unspecific effects of the nociceptive assays. Anti-nociceptive activity was assessed using the acetic acid-induced abdominal contortion and formalin tests, whereas anti-inflammatory activity was assessed using a carrageenan-induced paw edema and zymosan-induced air-pouch models. PA-Int5 (5 mg/kg) induced anti-nociceptive activity in the abdominal contortion model. In the formalin test, PA-Int5 (at 2.5 and 5 mg/kg) reduced nociception in the second phase. At the higher dose tested, PA-Int5 did not affect spontaneous locomotion or motor coordination. The data revealed that at all doses tested, the compound significantly reduced paw edema following carrageenan administration. In the zymosan-induced air-pouch model, PA-Int5 potently inhibited leukocyte migration and protein levels at the site of inflammation. When combined, the results revealed, for the first time, that PA-Int5 exhibited anti-nociceptive and anti-inflammatory activities, and highlights its potential, as well that of other derivatives, as novel candidates for pain relief.
Collapse
Affiliation(s)
- Aldilane Gonçalves Da Fonseca
- Research Laboratory of Clinical Biochemistry, Department of Clinical and Toxicological Analysis, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte 59012-570, Brazil
| | - Luzia Leiros De Sena Fernandes Ribeiro Dantas
- Research Laboratory of Clinical Biochemistry, Department of Clinical and Toxicological Analysis, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte 59012-570, Brazil
| | - Joquebede Pereira Rodrigues
- Research Laboratory of Clinical Biochemistry, Department of Clinical and Toxicological Analysis, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte 59012-570, Brazil
| | - Marco Polo Da Costa Alencar Filho
- Research Laboratory of Clinical Biochemistry, Department of Clinical and Toxicological Analysis, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte 59012-570, Brazil
| | | | | | | | | | - Ana Cristina Lima Leite
- Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, Pernambuco 50740-521, Brazil
| | | | | | - Elaine Cristina Gavioli
- Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Natal, Campus Universitário UFRN, Natal, Rio Grande do Norte 59064-741, Brazil
| | - Telma Maria Araújo Moura Lemos
- Research Laboratory of Clinical Biochemistry, Department of Clinical and Toxicological Analysis, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte 59012-570, Brazil
| |
Collapse
|
9
|
Liao AM, Cai B, Huang JH, Hui M, Lee KK, Lee KY, Chun C. Synthesis, anticancer activity and potential application of diosgenin modified cancer chemotherapeutic agent cytarabine. Food Chem Toxicol 2020; 148:111920. [PMID: 33346046 DOI: 10.1016/j.fct.2020.111920] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/13/2020] [Accepted: 12/06/2020] [Indexed: 01/31/2023]
Abstract
Diosgenin (DG), a steroidal saponin, is mainly found in yam tubers. DG and its derivatives displayed significant pharmacological activities against inflammatory, hyperlipidemia, and various cancers. DG was selected to modify the cancer chemotherapeutic agent cytarabine (Ara-C) due to its anti-tumor activities as well as lipophilicity. After characterization, the biomembrane affinity and the kinetic thermal processes of the obtained DG-Ara-C conjugate were evaluated by differential scanning calorimetry (DSC). Thin hydration method with sonication was applied to prepare the DG-Ara-C liposomes without cholesterol since the DG moiety has the similar basic structure with cholesterol with more advantages. Dynamic Light Scattering (DLS) analysis and cytotoxic analysis were employed to characterize the DG-Ara-C liposomes and investigate their biological activities, respectively. The results indicated that DG changed the biomembrane affinity of Ara-C and successfully replaced the cholesterol during the liposome preparation. The DG-Ara-C liposomes have an average particle size of around 116 nm with a narrow size distribution and revealed better anti-cancer activity against leukemia cells and solid tumor cells than that of free DG or Ara-C. Therefore, it can be concluded that DG displayed the potential application as an anti-cancer drug carrier to improve the bio-activities, since DG counted for a critical component in modulating the biomembrane affinity, preparation of liposome, and release of hydrophilic Ara-C from lipid vesicles.
Collapse
Affiliation(s)
- Ai-Mei Liao
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China; College of Pharmacy, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Bangrong Cai
- College of Pharmacy, Chonnam National University, Gwangju, 61186, Republic of Korea; Henan Research Center for Special Processing Technology of Chinese Medicine, School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450001, China
| | - Ji-Hong Huang
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China; Henan Cooperation Science and Technology Institute, Luoyang, 471000, China
| | - Ming Hui
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Kyung-Ku Lee
- Testing and Evaluation Center for Dental Devices, Chonnam National University Dental Hospital, Gwangju, 61186, Republic of Korea
| | - Kwang Youl Lee
- College of Pharmacy, Chonnam National University, Gwangju, 61186, Republic of Korea.
| | - ChangJu Chun
- College of Pharmacy, Chonnam National University, Gwangju, 61186, Republic of Korea.
| |
Collapse
|
10
|
Down-regulation of Bcl2 and Survivin, and up-regulation of Bax involved in copper (II) phenylthiosemicarbazone complex-induced apoptosis in leukemia stem-like KG1a cells. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
A novel thiosemicarbazone as a promising effective and selective compound for acute leukemia. Anticancer Drugs 2019; 30:828-837. [PMID: 30932944 DOI: 10.1097/cad.0000000000000780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Acute leukemias are a heterogeneous group of aggressive malignant neoplasms associated with severe morbidities due to the nonselectivity of current chemotherapeutic drugs to nonmalignant cells. The investigation of novel natural and synthetic structures that might be used for the development of new drugs with greater efficiency and selectivity to leukemic cells is mandatory. In this context, thiosemicarbazones have been well described in the literature by their several biological properties and their reaction is known as versatile, low-cost, and highly chemoselective. With this perspective, this study aimed to investigate the cytotoxic effect and the main death mechanisms of a novel thiosemicarbazone (LAP17) on acute leukemia cell lines K562 and Jurkat. The results show that the strong cytotoxic effect of LAP17 to leukemic cells is due to apoptosis induction, which resulted in caspase-3 activation and DNA fragmentation. Intrinsic apoptosis seems to be related to the inversion of Bax/Bcl-2 expression, ΔΨm loss, and AIF release, whereas extrinsic apoptosis was initiated by FasR. Gene-expression profiling of HL-60 cells treated with LAP17 by the microarray technique revealed a significant enrichment of gene sets related to cell cycle arrest at G2/M. Accordingly, K562 and Jurkat cells treated with LAP17 revealed a clear arrest at G2/M phase. Taking into consideration that LAP17 was not cytotoxic to nonhematological cells (peripheral blood mononuclear cell and erythrocytes), these results suggest that LAP17 is a promising new compound that might be used as a prototype for the development of new antileukemic agents.
Collapse
|
12
|
Synthesis, anticancer activity and mechanism of iron chelator derived from 2,6-diacetylpyridine bis(acylhydrazones). J Inorg Biochem 2019; 193:1-8. [DOI: 10.1016/j.jinorgbio.2019.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/01/2019] [Accepted: 01/07/2019] [Indexed: 12/11/2022]
|
13
|
Bakir M, Lawrence MAW, Conry RR. X-ray crystallographic, spectroscopic, and electrochemical properties of Group 12 metal-chlorides of di-2-pyridyl ketone acetic acid hydrazone (dpkaah). J COORD CHEM 2018. [DOI: 10.1080/00958972.2018.1471685] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Mohammed Bakir
- Department of Chemistry, The University of the West Indies-Mona Campus, Kingston, Jamaica
| | - Mark A. W. Lawrence
- Department of Chemistry, The University of the West Indies-Mona Campus, Kingston, Jamaica
| | | |
Collapse
|