1
|
Tian C, Deng S, Yang M, Bai B, Pan Y, Xie G, Zhao D, Wei L. Indole-3-carbinol and its main derivative 3,3'-diindolylmethane: Regulatory roles and therapeutic potential in liver diseases. Biomed Pharmacother 2024; 180:117525. [PMID: 39388997 DOI: 10.1016/j.biopha.2024.117525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/01/2024] [Accepted: 10/04/2024] [Indexed: 10/12/2024] Open
Abstract
Indole-3-carbinol (I3C), a compound found in cruciferous vegetables, has shown significant efficacy in treating both cancerous and non-cancerous diseases. Its primary derivative, 3,3'-diindolylmethane (DIM), formed during digestion, also exhibits similar therapeutic benefits. In liver disorders, I3C and DIM exhibit dual roles by inhibiting and promoting hepatocellular carcinoma (HCC) and providing relief for nonmalignant liver diseases, such as acute liver injury (ALI), hepatic fibrosis, nonalcoholic fatty liver disease (NAFLD), and alcohol-related liver disease (ALD). Mechanistically, I3C and DIM modulate various pathophysiological processes, including cell proliferation, apoptosis, oxidative stress, and lipogenesis. This review aims to enhance researchers' understanding of the regulatory roles of I3C and DIM in these liver diseases and explore the potential of plant-derived substances in liver disease treatment.
Collapse
Affiliation(s)
- Chao Tian
- Hepatopancreatobiliary Center, Ministry of Education Key Laboratory of Digital Intelligence Hepatology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua Medicine of Tsinghua University, Beijing 102218, China
| | - Shizhou Deng
- Hepatopancreatobiliary Center, Ministry of Education Key Laboratory of Digital Intelligence Hepatology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua Medicine of Tsinghua University, Beijing 102218, China; Research and Development Department, Guangdong Longsee Biomedical Corporation, Guangzhou 510700, China
| | - Ming Yang
- Hepatopancreatobiliary Center, Ministry of Education Key Laboratory of Digital Intelligence Hepatology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua Medicine of Tsinghua University, Beijing 102218, China
| | - Baochen Bai
- Department of Cardiology, Peking University People's hospital, Beijing 100044, China
| | - Yi Pan
- Hepatopancreatobiliary Center, Ministry of Education Key Laboratory of Digital Intelligence Hepatology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua Medicine of Tsinghua University, Beijing 102218, China
| | - Gangqiao Xie
- Hepatopancreatobiliary Center, Ministry of Education Key Laboratory of Digital Intelligence Hepatology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua Medicine of Tsinghua University, Beijing 102218, China; Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Dongliang Zhao
- Hepatopancreatobiliary Center, Ministry of Education Key Laboratory of Digital Intelligence Hepatology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua Medicine of Tsinghua University, Beijing 102218, China
| | - Lai Wei
- Hepatopancreatobiliary Center, Ministry of Education Key Laboratory of Digital Intelligence Hepatology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua Medicine of Tsinghua University, Beijing 102218, China.
| |
Collapse
|
2
|
Dai Z, Deng KL, Wang XM, Yang DX, Tang CL, Zhou YP. Bidirectional effects of the tryptophan metabolite indole-3-acetaldehyde on colorectal cancer. World J Gastrointest Oncol 2024; 16:2697-2715. [PMID: 38994159 PMCID: PMC11236226 DOI: 10.4251/wjgo.v16.i6.2697] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/13/2024] [Accepted: 03/25/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND Colorectal cancer (CRC) has a high incidence and mortality. Recent studies have shown that indole derivatives involved in gut microbiota metabolism can impact the tumorigenesis, progression, and metastasis of CRC. AIM To investigate the effect of indole-3-acetaldehyde (IAAD) on CRC. METHODS The effect of IAAD was evaluated in a syngeneic mouse model of CRC and CRC cell lines (HCT116 and DLD-1). Cell proliferation was assessed by Ki-67 fluorescence staining and cytotoxicity tests. Cell apoptosis was analysed by flow cytometry after staining with Annexin V-fluorescein isothiocyanate and propidium iodide. Invasiveness was investigated using the transwell assay. Western blotting and real-time fluorescence quantitative polymerase chain reaction were performed to evaluate the expression of epithelial-mesenchymal transition related genes and aryl hydrocarbon receptor (AhR) downstream genes. The PharmMapper, SEA, and SWISS databases were used to screen for potential target proteins of IAAD, and the core proteins were identified through the String database. RESULTS IAAD reduced tumorigenesis in a syngeneic mouse model. In CRC cell lines HCT116 and DLD1, IAAD exhibited cytotoxicity starting at 24 h of treatment, while it reduced Ki67 expression in the nucleus. The results of flow cytometry showed that IAAD induced apoptosis in HCT116 cells but had no effect on DLD1 cells, which may be related to the activation of AhR. IAAD can also increase the invasiveness and epithelial-mesenchymal transition of HCT116 and DLD1 cells. At low concentrations (< 12.5 μmol/L), IAAD only exhibited cytotoxic effects without promoting cell invasion. In addition, predictions based on online databases, protein-protein interaction analysis, and molecular docking showed that IAAD can bind to matrix metalloproteinase-9 (MMP9), angiotensin converting enzyme (ACE), poly(ADP-ribose) polymerase-1 (PARP1), matrix metalloproteinase-2 (MMP2), and myeloperoxidase (MPO). CONCLUSION Indole-3-aldehyde can induce cell apoptosis and inhibit cell proliferation to prevent the occurrence of CRC; however, at high concentrations (≥ 25 μmol/L), it can also promote epithelial-mesenchymal transition and invasion in CRC cells. IAAD activates AhR and directly binds MMP9, ACE, PARP1, MMP2, and MPO, which partly reveals why it has a bidirectional effect.
Collapse
Affiliation(s)
- Ze Dai
- Department of Gastroenterology, The First Affiliated Hospital of Ningbo University, Ningbo 315020, Zhejiang Province, China
- Health Science Center, Ningbo University, Ningbo 315211, Zhejiang Province, China
| | - Kai-Li Deng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Xiao-Mei Wang
- Department of Gastroenterology, The First Affiliated Hospital of Ningbo University, Ningbo 315020, Zhejiang Province, China
- Health Science Center, Ningbo University, Ningbo 315211, Zhejiang Province, China
| | - Dong-Xue Yang
- Department of Gastroenterology, The First Affiliated Hospital of Ningbo University, Ningbo 315020, Zhejiang Province, China
- Institute of Digestive Disease of Ningbo University, Ningbo University, Ningbo 315020, Zhejiang Province, China
- Ningbo Key Laboratory of Translational Medicine Research on Gastroenterology and Hepatology, Ningbo Key Laboratory, Ningbo 315020, Zhejiang Province, China
| | - Chun-Lan Tang
- Health Science Center, Ningbo University, Ningbo 315211, Zhejiang Province, China
| | - Yu-Ping Zhou
- Department of Gastroenterology, The First Affiliated Hospital of Ningbo University, Ningbo 315020, Zhejiang Province, China
- Institute of Digestive Disease of Ningbo University, Ningbo University, Ningbo 315020, Zhejiang Province, China
- Ningbo Key Laboratory of Translational Medicine Research on Gastroenterology and Hepatology, Ningbo Key Laboratory, Ningbo 315020, Zhejiang Province, China
| |
Collapse
|
3
|
Dai Z, Deng KL, Wang XM, Yang DX, Tang CL, Zhou YP. Bidirectional effects of the tryptophan metabolite indole-3-acetaldehyde on colorectal cancer. World J Gastrointest Oncol 2024; 16:2685-2703. [DOI: 10.4251/wjgo.v16.i6.2685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/13/2024] [Accepted: 03/25/2024] [Indexed: 06/13/2024] Open
Abstract
BACKGROUND Colorectal cancer (CRC) has a high incidence and mortality. Recent studies have shown that indole derivatives involved in gut microbiota metabolism can impact the tumorigenesis, progression, and metastasis of CRC.
AIM To investigate the effect of indole-3-acetaldehyde (IAAD) on CRC.
METHODS The effect of IAAD was evaluated in a syngeneic mouse model of CRC and CRC cell lines (HCT116 and DLD-1). Cell proliferation was assessed by Ki-67 fluorescence staining and cytotoxicity tests. Cell apoptosis was analysed by flow cytometry after staining with Annexin V-fluorescein isothiocyanate and propidium iodide. Invasiveness was investigated using the transwell assay. Western blotting and real-time fluorescence quantitative polymerase chain reaction were performed to evaluate the expression of epithelial-mesenchymal transition related genes and aryl hydrocarbon receptor (AhR) downstream genes. The PharmMapper, SEA, and SWISS databases were used to screen for potential target proteins of IAAD, and the core proteins were identified through the String database.
RESULTS IAAD reduced tumorigenesis in a syngeneic mouse model. In CRC cell lines HCT116 and DLD1, IAAD exhibited cytotoxicity starting at 24 h of treatment, while it reduced Ki67 expression in the nucleus. The results of flow cytometry showed that IAAD induced apoptosis in HCT116 cells but had no effect on DLD1 cells, which may be related to the activation of AhR. IAAD can also increase the invasiveness and epithelial-mesenchymal transition of HCT116 and DLD1 cells. At low concentrations (< 12.5 μmol/L), IAAD only exhibited cytotoxic effects without promoting cell invasion. In addition, predictions based on online databases, protein-protein interaction analysis, and molecular docking showed that IAAD can bind to matrix metalloproteinase-9 (MMP9), angiotensin converting enzyme (ACE), poly(ADP-ribose) polymerase-1 (PARP1), matrix metalloproteinase-2 (MMP2), and myeloperoxidase (MPO).
CONCLUSION Indole-3-aldehyde can induce cell apoptosis and inhibit cell proliferation to prevent the occurrence of CRC; however, at high concentrations (≥ 25 μmol/L), it can also promote epithelial-mesenchymal transition and invasion in CRC cells. IAAD activates AhR and directly binds MMP9, ACE, PARP1, MMP2, and MPO, which partly reveals why it has a bidirectional effect.
Collapse
Affiliation(s)
- Ze Dai
- Department of Gastroenterology, The First Affiliated Hospital of Ningbo University, Ningbo 315020, Zhejiang Province, China
- Health Science Center, Ningbo University, Ningbo 315211, Zhejiang Province, China
| | - Kai-Li Deng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Xiao-Mei Wang
- Department of Gastroenterology, The First Affiliated Hospital of Ningbo University, Ningbo 315020, Zhejiang Province, China
- Health Science Center, Ningbo University, Ningbo 315211, Zhejiang Province, China
| | - Dong-Xue Yang
- Department of Gastroenterology, The First Affiliated Hospital of Ningbo University, Ningbo 315020, Zhejiang Province, China
- Institute of Digestive Disease of Ningbo University, Ningbo University, Ningbo 315020, Zhejiang Province, China
- Ningbo Key Laboratory of Translational Medicine Research on Gastroenterology and Hepatology, Ningbo Key Laboratory, Ningbo 315020, Zhejiang Province, China
| | - Chun-Lan Tang
- Health Science Center, Ningbo University, Ningbo 315211, Zhejiang Province, China
| | - Yu-Ping Zhou
- Department of Gastroenterology, The First Affiliated Hospital of Ningbo University, Ningbo 315020, Zhejiang Province, China
- Institute of Digestive Disease of Ningbo University, Ningbo University, Ningbo 315020, Zhejiang Province, China
- Ningbo Key Laboratory of Translational Medicine Research on Gastroenterology and Hepatology, Ningbo Key Laboratory, Ningbo 315020, Zhejiang Province, China
| |
Collapse
|
4
|
Chen Q, Jiang C, Li H. Indole-3-Carbinol Promotes Apoptosis and Inhibits the Metastasis of Esophageal Squamous Cell Carcinoma by Downregulating the Wnt/β-Catenin Signaling Pathway. Nutr Cancer 2024; 76:543-551. [PMID: 38588526 DOI: 10.1080/01635581.2024.2337159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 03/23/2024] [Accepted: 03/25/2024] [Indexed: 04/10/2024]
Abstract
The incidence and mortality rates of esophageal squamous cell carcinoma (ESCC) have been significantly increasing in China. Indole-3-carbinol (I3C), a naturally occurring component in cruciferous vegetables, is an effective cancer therapy. Yet, its effect and action mechanism in ESCC are still not fully understood. This study explored the role of I3C in ESCC in vitro and in vivo by focusing on the Wnt/β-catenin signaling pathway. MTT and flow cytometry were used to assess cell viability and apoptosis in EC18 and TE1 cells, while wound healing and transwell assays were used to investigate cell migration and invasion in vitro. Expression of β-catenin, c-myc, and cyclin D1 was determined by Western blot; LiCl (an agonist of the canonical Wnt signaling that inhibits GSK3β activity) was used to assess the role of I3C on the Wnt/β-catenin signaling pathway. For in vivo experiments, nude BALB/c mice bearing EC18 xenografts were treated with I3C and/or LiCl. I3C promoted ESCC apoptosis and inhibited cell migration and invasion by downregulating β-catenin, c-myc, and cyclin D1 in vitro and decreased the tumor growth in vivo; this process was reversed by LiCl treatment. In summary, I3C inhibits ESCC malignant behavior by suppressing the Wnt/β-catenin signaling pathway, thus deeming it a promising drug for ESCC treatment.
Collapse
Affiliation(s)
- Qiao Chen
- Department of Nutrition, Third Medical Center of PLA General Hospital, Beijing, China
| | - Congbo Jiang
- Beiqing Road Outpatient Department, Jingbei Medical District of PLA General Hospital, Beijing, China
| | - Hui Li
- Department of Nutrition, Third Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
5
|
Chou L, Zhou C, Luo W, Guo J, Shen Y, Lin D, Wang C, Yu H, Zhang X, Wei S, Shi W. Identification of high-concern organic pollutants in tap waters from the Yangtze River in China based on combined screening strategies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159416. [PMID: 36244484 DOI: 10.1016/j.scitotenv.2022.159416] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/09/2022] [Accepted: 10/09/2022] [Indexed: 06/16/2023]
Abstract
Recently, numerous organic pollutants have been detected in water environment. The safety of our drinking water has attracted widespread attention. Effective methods to screen and identify high-concern substances are urgently needed. In this study, the combined workflow for the detection and identification of high-concern organic chemicals was established and applied to tap water samples from the Yangtze River Basin. The solid phase extraction (SPE) sorbents were compared and evaluated and finally the HLB cartridge was selected as the best one for most of the contaminants. Based on target, suspect and non-target analysis, 3023 chemicals/peaks were detected. Thirteen substances such as diundecyl phthalate (DUP), 2-hydroxyatrazine, dioxoaminopyrine and diethyl-2-phenylacetamide were detected in drinking water in the Yangtze River Basin for the very first time. Based on three kinds of prioritization principles, 49 ubiquitous, 103 characteristic chemicals and 13 inefficiently removed chemicals were selected as high-concern substances. Among them, 8, 31, 9, 3, 4 substances overlapped with the toxic, risky or high-concern chemicals lists in China, America, European Union, Japan, Korea, respectively. Specific management and removal strategies were further recommended. The workflow is efficient for identification of key pollutants.
Collapse
Affiliation(s)
- Liben Chou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Chengzhuo Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Wenrui Luo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Jing Guo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| | - Yanhong Shen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Die Lin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Chang Wang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Hongxia Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Xiaowei Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Si Wei
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Wei Shi
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Jiangsu Province Ecology and Environment Protection Key Laboratory of Chemical Safety and Health Risk, Nanjing 210023, China
| |
Collapse
|
6
|
Encapsulation of indole-3-carbinol in Pickering emulsions stabilized by OSA-modified high amylose corn starch: Preparation, characterization and storage stability properties. Food Chem 2022; 386:132846. [PMID: 35381538 DOI: 10.1016/j.foodchem.2022.132846] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 10/27/2021] [Accepted: 03/27/2022] [Indexed: 11/24/2022]
Abstract
The stability of hydrophobic bioactive compound indole-3-carbinol (I3C) is a challenge for application. In this work, Pickering emulsions were prepared to encapsulate I3C. As the emulsifier, high amylose corn starch was pretreated by acid hydrolysis, afterwards modified by different concentrations of octenyl succinic anhydride (OSA), and their emulsions were evaluated. The XRD, SEM and FTIR results indicated the successful modification. ζ-potential, mean droplet size and emulsification index (EI) of the emulsions confirmed that modified starch with a higher degree of substitution (DS) was more effective for enhancing the storage stability. The results of encapsulation efficiency (EE) and retention degree of I3C after 14 d also proved the assumption. Moreover, the Pickering emulsions protected I3C against ultraviolet light and achieved controlled release in vitro. The food-grade Pickering emulsion loading I3C is promising to be used as a nutrient or dietary supplement for food applications.
Collapse
|
7
|
Illippangama AU, Jayasena DD, Jo C, Mudannayake DC. Inulin as a functional ingredient and their applications in meat products. Carbohydr Polym 2022; 275:118706. [PMID: 34742431 DOI: 10.1016/j.carbpol.2021.118706] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/07/2021] [Accepted: 09/23/2021] [Indexed: 12/27/2022]
Abstract
Inulin, a fructan-type non-digestible carbohydrate, is a natural functional dietary fiber found in selected plants including chicory, garlic, onion, leeks and asparagus. Due to increasing popularity of inulin and rising awareness toward its low calorie value and prebiotic related health implications, consumers are becoming more conscious on consuming inulin incorporated foods. In this review, the scientific studies published in recent years regarding potential applications of inulin in meat products; and their effects on physicochemical and sensory properties, and health implications are discussed. Meat based functional foods with inulin can lead to enhance digestive health by reducing the risk of diseases like constipation, irritable bowel syndrome, inflammatory bowel disease and colorectal cancer. Inulin can be an interesting prebiotic ingredient in healthier meat formulations, apart from being a fat replacer and dietary fiber enhancer.
Collapse
Affiliation(s)
| | - Dinesh D Jayasena
- Department of Animal Science, Uva Wellassa University, Badulla 90000, Sri Lanka
| | - Cheorun Jo
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, South Korea
| | | |
Collapse
|
8
|
de Moura NA, Caetano BFR, Bidinotto LT, Rodrigues MAM, Barbisan LF. Synbiotic supplementation attenuates the promoting effect of indole-3-carbinol on colon tumorigenesis. Benef Microbes 2021; 12:493-501. [PMID: 34463193 DOI: 10.3920/bm2020.0209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Indole-3 carbinol (I3C) has shown dual effects on the promotion and progression stages of colon carcinogenesis while synbiotics (Syn) have exerted anti-carcinogenic activities in most rodent studies. This study aimed to investigate the effects of I3C given alone or together with a Syn intervention on 1,2-dimethylhydrazine (DMH)-induced colon carcinogenesis. All animals were given four subcutaneous DMH injections (4×40 mg/kg bodyweight, twice a week for two weeks) and then received either basal diet (G1), basal diet containing I3C (1g/kg chow) (G2) or basal diet containing I3C+Syn (I3C + inulin 50g/kg chow + Bifidobacterium lactis BB-12®), 2.5×1010 cfu/g of basal diet), (G3) for 21 weeks. Dietary I3C (G2) significantly increased tumour volume and cell proliferation when compared to the DMH control group (G1). Syn intervention (G3) significantly reduced tumour volume and cell proliferation when compared to I3C (G2). The colon tumours found were classified into well-differentiated tubular adenomas or adenocarcinomas. Dietary I3C or I3C+Syn did not significantly affect the incidence and the multiplicity of tumours in comparison with the DMH control group. Furthermore, Syn intervention (G3) increased Gstm1 and reduced Mapk9 gene expression in colonic tumours. The findings of the present study show that the dietary I3C shows a weak promoting activity, while the combination with Syn ameliorates I3C effects.
Collapse
Affiliation(s)
- N A de Moura
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University (UNESP), Prof. Dr. Antônio Celso Wagner Zanin 250, Distrito de Rubião Junior, Botucatu, SP, Brazil
| | - B F R Caetano
- Department of Pathology, School of Medicine, Sao Paulo State University (UNESP), Botucatu, SP, Brazil
| | - L T Bidinotto
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, SP, Brazil.,Barretos School of Health Sciences, Dr. Paulo Prata - FACISB, Barretos, SP, Brazil.,Department of Pathology, School of Medicine, Sao Paulo State University (UNESP), Botucatu, SP, Brazil
| | - M A M Rodrigues
- Department of Pathology, School of Medicine, Sao Paulo State University (UNESP), Botucatu, SP, Brazil
| | - L F Barbisan
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University (UNESP), Prof. Dr. Antônio Celso Wagner Zanin 250, Distrito de Rubião Junior, Botucatu, SP, Brazil
| |
Collapse
|
9
|
do Amaral LA, da Silva Fleming de Almeida T, Oliveira de Souza GH, Baranoski A, Souza Maris R, Bittencourt Junior FF, Murino Rafacho BP, Duenhas Monreal AC, Leite Kassuya CA, Milan Brochado Antoniolli-Silva AC, Freitas dos Santos E, Oliveira RJ. The Use of Natural Fiber-Rich Food Product Is Safe and Reduces Aberrant Crypt Foci in a Pre-Clinical Model. Nutrients 2021; 13:2708. [PMID: 34444868 PMCID: PMC8401268 DOI: 10.3390/nu13082708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/05/2021] [Accepted: 07/10/2021] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Colorectal cancer is a highly prevalent disease, requiring effective strategies for prevention and treatment. The present research aimed to formulate a natural fiber-rich food product (NFRFP) and to evaluate its safety, toxicogenetics, and effects on aberrant crypt foci induced by 1,2-dimethyl-hydrazine in a preclinical model. METHODS A total of 78 male Wistar rats were distributed in six experimental groups: negative control, positive control (1,2-Dimethylhydrazine-40 mg/Kg), and four groups fed with 10% NFRFP: NFRFP, pre-treatment protocol, simultaneous treatment, and post-treatment protocol. RESULTS The NFRFP was shown to be a good source of fibers and did not change biometric, biochemical, hematological, and inflammatory parameters, and did not induce signs of toxicity and genotoxicity/carcinogenicity. NFRFP exhibited a chemopreventive effect, in all protocols, with damage reduction (% DR) of 75% in the comet test. NFRFP reduced the incidence of aberrant crypt outbreaks by 49.36% in the post-treatment protocol. CONCLUSIONS The results suggest the applicability of NFRFP in the human diet due to potential production at an industrial scale and easy technological application in different products, since it could be incorporated in food without altering or causing small changes in final product sensory characteristics.
Collapse
Affiliation(s)
- Luane Aparecida do Amaral
- Center for Studies in Stem Cells, Cell Therapy and Toxicological Genetics–CeTroGen, University Hospital Maria Aparecida Pedrossian, Federal University of Mato Grosso do Sul, Campo Grande 79080-190, Brazil; (L.A.d.A.); (A.B.); (A.C.M.B.A.-S.)
- Postgraduate Program in Health and Development in the Midwest Region, Medical School, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil;
| | - Taina da Silva Fleming de Almeida
- Postgraduate Program in Biotechnology, Faculty of Pharmaceutical Sciences, Food and Nutrition, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil; (T.d.S.F.d.A.); (B.P.M.R.)
| | | | - Adrivanio Baranoski
- Center for Studies in Stem Cells, Cell Therapy and Toxicological Genetics–CeTroGen, University Hospital Maria Aparecida Pedrossian, Federal University of Mato Grosso do Sul, Campo Grande 79080-190, Brazil; (L.A.d.A.); (A.B.); (A.C.M.B.A.-S.)
- Postgraduate Program in Health and Development in the Midwest Region, Medical School, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil;
| | - Rafael Souza Maris
- Clinical Analysis Laboratory, University Center of Grande Dourados, Dourados 79824-900, Brazil; (R.S.M.); (F.F.B.J.)
| | | | - Bruna Paola Murino Rafacho
- Postgraduate Program in Biotechnology, Faculty of Pharmaceutical Sciences, Food and Nutrition, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil; (T.d.S.F.d.A.); (B.P.M.R.)
- Faculty of Pharmaceutical Sciences, Food and Nutrition, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil;
- Postgraduate Program in Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Food and Nutrition, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil
| | | | | | - Andréia Conceição Milan Brochado Antoniolli-Silva
- Center for Studies in Stem Cells, Cell Therapy and Toxicological Genetics–CeTroGen, University Hospital Maria Aparecida Pedrossian, Federal University of Mato Grosso do Sul, Campo Grande 79080-190, Brazil; (L.A.d.A.); (A.B.); (A.C.M.B.A.-S.)
- Postgraduate Program in Health and Development in the Midwest Region, Medical School, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil;
| | - Elisvânia Freitas dos Santos
- Postgraduate Program in Health and Development in the Midwest Region, Medical School, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil;
- Postgraduate Program in Biotechnology, Faculty of Pharmaceutical Sciences, Food and Nutrition, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil; (T.d.S.F.d.A.); (B.P.M.R.)
- Faculty of Pharmaceutical Sciences, Food and Nutrition, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil;
| | - Rodrigo Juliano Oliveira
- Center for Studies in Stem Cells, Cell Therapy and Toxicological Genetics–CeTroGen, University Hospital Maria Aparecida Pedrossian, Federal University of Mato Grosso do Sul, Campo Grande 79080-190, Brazil; (L.A.d.A.); (A.B.); (A.C.M.B.A.-S.)
- Postgraduate Program in Health and Development in the Midwest Region, Medical School, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil;
- Postgraduate Program in Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Food and Nutrition, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil
| |
Collapse
|
10
|
de Moura NA, Caetano BFR, Bidinotto LT, Rodrigues MAM, Barbisan LF. Dietary hemin promotes colonic preneoplastic lesions and DNA damage but not tumor development in a medium-term model of colon carcinogenesis in rats. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2019; 846:403076. [PMID: 31585636 DOI: 10.1016/j.mrgentox.2019.07.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/23/2019] [Accepted: 07/16/2019] [Indexed: 01/10/2023]
Abstract
Red and processed meat consumption has been strongly related to increase the risk of colorectal cancer (CRC), although its impact is largely unknown. Hemin, an iron-containing porphyrin, is acknowledged as a putative factor of red and processed meat pro-carcinogenic effects. The aim of this study was to investigate the effects of high dietary hemin on the promotion/progression stages of 1,2-dimethylhydrazine (1,2-DMH)-induced colon carcinogenesis. Twenty-four Wistar male rats were given four subcutaneous 1,2-DMH injections and received either balanced diet or balanced diet supplemented with hemin 0.5 mmol/kg for 23 weeks. Colon specimens were analyzed for aberrant crypt foci (ACF) and tumor development. Dietary hemin significantly increased ACF number and fecal water cytotoxicity/genotoxicity in Caco-2 cells when compared to 1,2-DMH control group. However, tumor incidence, multiplicity and cell proliferation did not differ between 1,2-DMH + hemin and 1,2-DMH control group. Gene expression analysis of 91 target-genes revealed that only three genes (Figf, Pik3r5 and Tgfbr2) were down-regulated in the tumors from hemin-fed rats compared to those from 1,2-DMH control group. Therefore, the findings of this study show that high hemin intake promotes mainly DNA damage and ACF development and but does not change the number nor incidence of colon tumors induced by 1,2-DMH in male rats.
Collapse
Affiliation(s)
- Nelci A de Moura
- Department of Morphology, Institute of Biosciences of Botucatu, Sao Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Brunno F R Caetano
- Department of Morphology, Institute of Biosciences of Botucatu, Sao Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Lucas T Bidinotto
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, SP, Brazil; Barretos School of Health Sciences, Dr. Paulo Prata - FACISB, Barretos, SP, Brazil
| | - Maria A M Rodrigues
- Department of Pathology, School of Medicine, Sao Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Luis F Barbisan
- Department of Morphology, Institute of Biosciences of Botucatu, Sao Paulo State University (UNESP), Botucatu, SP, Brazil.
| |
Collapse
|